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POINCARE SERIES FOR MIXED MULTIPLIER IDEALS

MARIA ALBERICH-CARRAMINANA, JOSEP ALVAREZ MONTANER, FERRAN DACHS-CADEFAU,
AND VICTOR GONZALEZ-ALONSO

ABsTRACT. We present a generalization of the Poincaré series to the case of mixed multi-
plier ideals. For that, we will recall some results about how we can compute the jumping
walls associated to a mixed multiplier ideal and introduce some results about the multi-
plicity of a given point in RZ,.

INTRODUCTION

Let X be a complex surface with at most a rational singularity at a point O € X (see
Artin [3] and Lipman [8] for details) and m = mx o be the maximal ideal of the local ring
Ox 0 at O. Given a tuple of m-primary ideals a := {ay,...,a,} C (Ox,0)" we will consider a
common log-resolution, that is a birational morphism 7 : X’ — X such that X’ is smooth,
a;- Oxr = Oxs (—F;) for some effective Cartier divisors Fj, i =1,...,rand Y, F;+FEisa
divisor with simple normal crossings where E = Exc () is the exceptional locus. Actually,
the divisors F; are supported on the exceptional locus since the ideals are m-primary.

Since the point O has (at worst) a rational singularity, the exceptional locus E is a tree
of smooth rational curves Ey, ..., E,. Moreover, the matrix of intersections (E; - E;), <ij<s
is negative-definite. For any exceptional component E;, we define the ezcess of a; at E; as
pij = —F; - Ej. We also recall the following notions:

e A component Fj; of E is a rupture component if it intersects at least three more
components of E (different from E;).

o We say that E; is dicritical if p; ; > 0 for some i. They correspond to Rees valuations
(see [8]).

We define the mized multiplier ideal at a point ¢ := (c1, ..,¢;) € RL, asE|
(1) J(ac) = j(a? ce Cl?) = W*OX/ ((Kﬂ -k - = CrFrU

where [-] denotes the round-up and the relative canonical divisor K, =% ;_| k;E; is a Q-
divisor on X’ supported on the exceptional locus E which is characterized by the property
(K + E;) - E; = —2 for every exceptional component F;, i =1,...,s.

Associated to any point ¢ € RL, we consider:
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1By an abuse of notation, we will also denote 7 (a°) its stalk at O so we will omit the word “sheaf” if no
confusion arises.
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e The region of ¢: Rq(c) = {c’ € RL, ‘ J (ac,> 2 J (ac)}
e The constancy region of e¢:  Cq (¢) = {c’ € RL, ‘ J (acl) =J (ac)}

The boundary of the region Rq(c) is what we call the jumping wall associated to e¢. One
usually refers to the jumping wall of the origin as the log-canonical wall. It follows from the
definition of mixed multiplier ideals that the jumping walls must lie on supporting hyper-
planes of the form

(2) Hj:eijzi+-+ejz=0+k; j=1,...,s

where ¢ € Z~g, and the effective divisors F; such that a;- Oxs = Ox/ (= F;), fori=1,...,r,
are of the form F; = 2321 e; jF/;. Indeed, each hyperplane Hj; is associated to an exceptional
divisor E; and the region Rq(c) is a rational convex polytope defined by

€121+t erjzr < {+ kj,

i.e. the minimal region in the positive orthant RY, described by these inequalities. Notice
that the facets of the jumping wall of ¢ are also rational convex polytopes. From now on we
will denote by JW, the set of jumping walls of a.

One can characterize which hyperplanes define the region of a given point A, namely:
Theorem 0.1 (see Theorem 3.3 in [2]). Let a := {ai,...,a,} € (Ox,0)" be a tuple of

ideals and let Dy = e?‘Ej be the antinef closure of |\ F1 + -+ 4+ N\ F, — K| for a given
A € RLy. Then the region of X is the rational conver polytope determined by the inequalities

617j21+"'+€r7j2’7-<kj+1+€;‘,

corresponding to either rupture or dicritical divisors Ej.

1. AN ALGORITHM TO COMPUTE MIXED MULTIPLIER IDEALS AND JUMPING WALLS

In [2], the first three authors presented the following algorithm. This algorithm allows us
to compute for a given tuple of ideals the associated jumping walls.

Algorithm 1.1 (see Algorithm 3.11 in [2]). (Constancy regions and mixed multiplier ideals)

Input: A common log-resolution of the tuple of ideals @ = {ay,...,a,} C (Ox,0)".
Output: List of constancy regions of a and its corresponding mixed multiplier ideals.
Set N ={Xo=1(0,...,0)} and D = (. From j =1, incrementing by 1
(Step j) :
(j.1) Choosing a convenient point in the set N:
- Pick A; the first point in the set N and compute its region Rq(A;) using
Theorem [0.11
- If there is some A € N such that A € Rq();) and J(a*) # J(a*) then
put A first in the list N and repeat this step (j.1). Otherwise continue
with step (5.2).
(j.2) Checking out whether the region has been already computed:
- If some A € D satisfies J(a*) = J(a*) then go to step (j.4). Otherwise
continue with step (5.3).
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(j.3) Picking new points for which we have to compute its region:
- Compute

C(j) = Ra(Aj)\ (Ra(A1) U+ - URa(Aj-1))-

- For each connected component of C(j) compute its outer facetsﬂ
- Pick one interior point in each outer facet of C(j) and add them as the
last point in V.
(j.4) Update the sets N and D:
- Delete A; from N and add A; as the last point in D.

2. MULTIPLICITIES OF JUMPING POINTS

The goal of this section is to study the Poincaré series associated to a mixed multiplier
ideal. For that, we need to begin introducing the notion of multiplicity. Namely, if we
consider a = (ay,...,a,) C (Ox,0)" a tuple of m-primary ideals. We define the multiplicity
attached to a point ¢ € R;O as the codimension of J (a°) in J (a(l_s)c) for € > 0 small
enough, i.e.

J (a(lfs)c)

J (a°)

Our goal is to compute explicitly these multiplicities. Since we are dealing with any
general point, it will be convenient to consider the notion of mazimal jumping divisor.

m(e) := dimc

Definition 2.1. Let a := (a1,...,a,) C (Ox,0)" be a tuple of ideals. Given any point
¢ € RY,, we define its mazimal jumping divisor as the reduced divisor H, < S F
supported on those components F; such that

crelj +--+crepj —kj € Zsg.
In particular, we have
J@179) = 1,05/ ([Kr — 1 Fy — -+ — ¢, F, ] + He),
In fact, we can compute the multiplicity using those divisors:

Theorem 2.2. Leta C (Ox,0)" be a tuple of m-primary ideals and He the mazimal jumping
divisor associated to some ¢ € RL,. Then,
m(e) = ([Kr —ca1Fy — - — ¢ F,| + He) - He + # {connected components of He} .

2.1. Poincaré series of mixed multiplier ideals. Given a m-primary ideal a € Ox o,
Galindo and Montserrat [0] (see also [I]) introduced its Poincaré series as

(3) Py(t)= > m(c)t°.
C€R>Q
For a tuple of m-primary ideals @ = {ay,...,a,} C (Ox0)" we are going to give a

generalization of this series by considering a sequence of mixed multiplier ideals indexed by

2The outer facets of C(j) are the intersection of the boundary of any connected component of C(j) with
a supporting hyperplane of Ra(A;).
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points in a ray L : ¢g + pu in the positive orthant RZ ;) with a vector u = (uy,...,u,) € ZZ,,
u # 0 and ¢ € Q. Here we are considering, for simplicity, a point ¢y belonging to

a coordinate hyperplane but not necessarily being the origin and pu € Rsg. Namely, we
consider the sequence of mixed multiplier ideals

J@) 2T @) 2T @?)2---2J (@)D

where {¢; }i~0 = LNIJWg or equivalently {¢; };~0 is the set of jumping points of this sequence.
Then we define the Poincaré series of a alongside the ray L as

(4) Py(t; L) =) _mfc) t°.

cel

where 1€ := {7 - - - 07,

Theorem 2.3. Leta = {ay,...,a,} C (Ox,0)" be a tuple of m-primary ideals and L : co+pu
a ray in the positive orthant RY . The Poincaré series of @ alongside L can be expressed as

m(ep + pu) t
Pt =10 S (P ey
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