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Abstract

This paper proposes a frequency-based approach for the detection of replay at-
tacks affecting cyber-physical systems (CPS). In particular, the method employs
a sinusoidal signal with a time-varying frequency (authentication signal) into the
closed-loop system and checks whether the time profile of the frequency compo-
nents in the output signal are compatible with the authentication signal or not. In
order to carry out this target, the couplings between inputs and outputs are elimi-
nated using a dynamic decoupling technique based on vector fitting. In this way, a
signature introduced on a specific input channel will affect only the output that is
selected to be associated with that input, which is a property that can be exploited
to determine which channels are being affected. A bank of band-pass filters is
used to generate signals whose energies can be compared to reconstruct an esti-
mation of the time-varying frequency profile. By matching the known frequency
profile with its estimation, the detector can provide the information about whether
a replay attack is being carried out or not. The design of the signal generator and
the detector are thoroughly discussed, and an example based on a quadruple-tank
process is used to show the application and effectiveness of the proposed method.
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1. Introduction

Cyber-physical systems (CPS) refer to a new generation of systems that re-
sults from the combination and coordination between the computation, commu-
nication and physical processes. This interaction through the different modalities
allows developing innovative technologies, while leading to new research chal-
lenges. CPSs are ubiquitous in advanced manufacturing systems, transportation
networks, industrial control processes, and critical infrastructures [1]. It is worth
mentioning that the integration of cyber and physical components increases the
systems’ efficiency but at the same time makes them susceptible to hazards, gen-
erating in this way concerns about possible cyber-attacks targeting them.

Complex cyber-attacks capable of violating the properties of data and infor-
mation technology services (confidentiality, integrity and availability [2]) have
become common in recent years. Cyber-attacks compromise measurements, ac-
tuators data integrity and readiness, and have the ability of spreading within sec-
onds. Among the most relevant cases, there are: the blackouts in large parts of
Brazil, where underground railways, traffic lights, street lamps and others were all
affected [3]; the Slammer worm, which in the year 2003 penetrated into the net-
work of the Davis-Besse nuclear power plant [4], an event which created aware-
ness in the industry about the consequences of Internet worms or virus on physical
plants; and the Stuxnet malware, one of the most important attacks, which in-
creased awareness in the public due to its complexity, functionalities and impact
on the media. This malware infected industrial computer systems (compromising
PLC software) and was responsible for disrupting the Iranian nuclear facility at
Natanz [5]. The complexity of this attack showed that the attacker had knowl-
edge of the data management (cyber components) and infrastructure weaknesses
(physical components) of the control system.

Since cyber-attacks are generic, they can influence the physical processes
through the feedback actuation, affecting many components in a coordinated way,
and can be re-designed to target any other CPS. Security in control systems is not
a new topic in the literature, since works about fault diagnosis and fault tolerant
control techniques have been presented in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
These approaches need to be extended to handle cyber-threats, so there is a grow-
ing interest in the study of CPS vulnerabilities and how to make these systems
resilient to possible disruptions.

The effects and impact of cyber-attacks on CPS were discussed in [17], and
a classification into deception and denial-of-services (DoS) attacks was provided
by [18]. In particular, deception attacks consist in one or more components (sen-
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sors, actuators and/or controllers) receiving false information and believing it to
be true. On the other hand, DoS attacks correspond to the case in which the com-
ponents cannot communicate between each other, e.g., by preventing the actuator
and sensor data from reaching their destinations. The detection of DoS attacks
has been investigated thoroughly during the recent years, and several approaches
have been suggested, see e.g. [19, 20, 21, 22, 18, 23, 24, 25]. On the other hand,
works about detection of deception attacks are more scarce in the literature since,
as discussed by [26], they are subtler than DoS attacks, hence harder to detect. It is
worth mentioning the solution proposed by [27], based on a state filtering scheme
and sensor scheduling co-design, and [28], in which a H∞ filter is designed taking
into account the possibility that a neural network could be affected by deception
attacks.

Replay attacks are a particular type of deception attacks. When a replay attack
is carried out, at first the attacker records the measurements coming from the sen-
sors. Then, in a subsequent phase of the attack, the attacker replaces the real data
with the recorded one, causing deterioration of the control system’s performance
and potentially allowing to perform other types of physical attacks without being
discovered. This type of attacks is often depicted in movies, where images coming
from surveillance cameras are replaced with recorded videos in order to hide theft,
sabotage or similar actions. The detection of these attacks was first considered by
[26], where a statistical detector was employed, and a Gaussian signal (authenti-
cation signature) was added to the optimal control input in order to increase the
attack detection rate, although at the cost of sacrificing the control performance.
In the last few years, alternative approaches have been suggested for detecting
replay attacks. For example, [29] have applied a stochastic game approach to
this problem. A variation of the receding-horizon control law to deal with this
kind of attacks and analyze the resulting system performance degradation was in-
vestigated by [30]. Finally, data-driven methods [31], quantized signals [32] and
spectral estimation [33] are other examples of recently proposed techniques.

In this paper, we propose a new method to detect replay attacks affecting CPSs
which, differently from the previously described methods, employs a frequency-
based signature. This method introduces a sinusoidal signal with a time-varying
frequency (authentication signal) into the closed-loop system, and checks whether
the time profile of the frequency components in the output signals is compatible
with the authentication signal or not. More specifically, the detection algorithm
compares the energies of different signals, obtained by applying band-pass fil-
tering to the measurements coming from the sensors. The design of the signal
generator and the detector are thoroughly discussed throughout the paper, and an
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example based on a quadruple-tank process is used to show the application of the
method and its effectiveness in determining whether a replay attack is being car-
ried out and, in the affirmative case, identifying which channels are being affected.

It is worth highlighting that the proposed method could be either applied alone,
in situations where the applicability of other approaches could not be feasible (for
example, introducing a Gaussian signature, as proposed by [26], could be prob-
lematic due to the limited bandwidth of the actuators), or it could work alongside
existing methods to further enhance the capability of detecting replay attacks.
Notably, when compared to other existing methods [30, 31, 32, 33], the proposed
frequency-based method provides also information about which output channel is
being attacked.

The rest of the paper is organized as follows. Section 2 is devoted to the
problem formulation and overview of the proposed method. Then, in Section 3,
the main concepts related to the signal generator are discussed. Section 4 presents
the detector logic, which determines when there is a replay attack, and illustrates
the choice of the design parameters. In Section 5, the proposed method is applied
to an example based on a quadruple-tank process, and simulation results are used
to validate its performance. Finally, the main conclusions are drawn in Section 6.

2. Problem Formulation

2.1. Description
In this section, we introduce the replay attack, which can be used by an adver-

sary to disrupt the behavior of the system while remaining hidden.
In order to establish the scenario of a replay attack, some conditions must be

taken into account:

1. The controlled system is either in a constant or a periodic steady state when
the adversary performs the attack;

2. It is assumed that the attacker has control over all sensors;

3. The control loop could be disrupted because of the corrupted data.

In this work, for the sake of simplicity, linear time invariant (LTI) models are
considered in order to describe the dynamic behavior of the plant. Advantages of
this type of models, which will be exploited throughout the work, is that the super-
position principle holds and, moreover, when excited with a sinusoidal wave input
at a given frequency, the output is itself a sinusoidal wave at the same frequency,
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whose magnitude and phase can be determined by looking at the frequency re-
sponse characteristics. It is worth recalling that, whenever a nonlinear plant is
operating around a constant steady-state, an equivalent LTI model representing
the plant with a good approximation can be obtained by means of linearization.

More specifically, let us consider a continuous-time LTI system with the fol-
lowing state space form:

ẋ(t) = Ax(t)+Bu(t)+Dd(t) (1)
y(t) =Cx(t)+Ev(t) (2)

where x ∈ Rnx is the state variable, u ∈ Rnu is the action applied to the process
(input), y ∈ Rny represents the sensor measurements (output), d ∈ Rnd is the ex-
ogenous disturbance, v∈Rnv represents the measurement noise, and A, B, C, D, E
are known matrices of appropriate dimensions. We will assume that each element
of the vectors d and v can be described by Gaussian white noise with unit vari-
ance (the case of colored noise can be taken into account by filtering white noise
through a dynamic process).

Given a system, a generic adversary model applicable to an attack scenario is
composed by an attack policy [34], defined as:

a(t) = [ũ(t), ỹ(t)] = h(S, u(t), y(t)) (3)

where a(t) is the attack vector at time t, that can affect the system behavior; S
represents the system knowledge including the physical plant, the controller and
the detector; u(t) and y(t) are the available input and output data collected by the
attacker; while ũ(t) and ỹ(t) are the corrupted input and output, respectively.

Once the attack policy is defined, the replay attack can be presented. This type
of attack, which does not corrupt the input u(t), is carried out in two stages:

1. The attacker collects the data without disturbing the system. This stage does
not affect the dynamics of the system and allows the adversary to collect
knowledge that may be used in later phases of the attack. The data gathering
starts from time t0 until t0 +w, where w is the size of the attack window;
thus in t ∈ [t0, t0 +w]:

a(t) = 0
ũ(t) = u(t)
ỹ(t) = y(t)

(4)

2. At time t1, the attacker begins to replay the collected data, such that the
data collected in the interval [t0, t0 +w] replaces the data in the intervals
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Figure 1: Replay attack example.

[
t1 +(N f −1)w, t1 +N f w

]
, where N f ∈ N, N f ≥ 1:

a(t) = h f (S,y(t))
ũ(t) = u(t)

ỹ(t) = y(t + t0− t1− (N f −1)w)
(5)

An exemplification of a possible replay attack scenario is given in Fig. 1.
In this figure, at time t0, the attacker starts collecting the real output data y(t)
(blue line). Note that in this phase, the signal ỹ(t) (red line) matches y(t) (yellow
background). At time t1, the attacker begins replaying periodically the collected
data (pink background). In this particular example, it is shown that starting from
time t1 +w, the attacker performs a physical attack on the system by affecting

6



its state, such that a mismatch between y(t) and ỹ(t) arises (for example, this
scenario could represent water or energy being stolen from a CPS). However, due
to the replay attack being carried out, the physical attack goes unnoticed since the
signal ỹ(t) is compatible with the expected system’s steady state.

Remark 1. It is noteworthy that the main goal of this attack is to make the false
reading ỹ(t) look as genuine as the real y(t). However, as a consequence of re-
placing real measurements with false measurements, the feedback loop of the con-
troller does not operate properly anymore.

Having in mind that the control systems are not resilient to replay attacks,
there is a need to develop methods to detect this kind of attack. Hereafter, the
concepts behind the methodology proposed in this paper will be described.

2.2. Overview of the proposed method
The method proposed in this paper aims at detecting a replay attack by im-

plementing a frequency-based signature method. The idea is to introduce the sig-
nature (a sinusoidal signal with a time-varying frequency) into the system and
to detect if the measured output is compatible with the introduced signature or
not. In order to carry out this goal, first there is a need to eliminate the couplings
between inputs and outputs, such that a signature introduced on a specific input
channel will affect only the output which is selected to be associated with that
input. This is done through minimization of the coupling at specific frequencies,
using a dynamic decoupling technique based on vector fitting. In order to carry
out the detection, the output signals are passed through a bank of band-pass fil-
ters. Each filter is designed to let pass only a specific frequency among the ones
used for the generation of the authentication signal. By comparing the energies
of the band-pass filtered signals, an estimation σ̂(t) of σ(t) can be determined.
Then, by matching the known piecewise constant signal σ(t) with its estimation,
the detector will provide the information if a replay attack is being carried out or
not.

3. Signal Generator

3.1. Description
In this section, we describe the signal generator module, which is one of the

components of the frequency-based replay attack detector (see Fig. 2 for the con-
ceptual system diagram). Following the work presented in [26], in order to detect
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Figure 2: System Diagram.

a replay attack, it is necessary to include a signature, which is an authentication
signal ∆u(t), into the input u(t). The authors in [26] have suggested to generate
the signature ∆u from an independent and identically distributed Gaussian distri-
bution with zero mean and a certain covariance, and to apply a χ2 detector [35] to
evaluate the presence of a replay attack from an anomaly in its expectation. On the
other hand, the approach proposed in this paper aims at detecting replay attacks
using a frequency-based signature.

In particular, u(t) is made up by two different signals:

u(t) = u∗(t)+∆u(t) (6)

where u∗(t) is the control signal, chosen as the combination of a feedforward and
a feedback law:

u∗(t) = u∗f f (t)+u∗f b(t) (7)

while the signature ∆u(t) should be a zero-mean signal such that no bias is intro-
duced in x(t). Following the assumption about the controlled system being either
in a constant or a periodic steady state (see Section 2), the reference trajectory
yre f (t) can be expressed as the sum of a finite number R of sinusoidals:

yre f (t) =
R

∑
r=1

Y (r)
re f cos

(
ωrt +ϕ

(r)
re f

)
(8)

where Y (r)
re f ∈ R

ny
+ , ωr ∈ R+ and ϕ

(r)
re f ∈ R

ny
[0,2π]

are the magnitude, frequency and
phase, respectively, of each component (R = 1 and ω1 = 0rad/s describe the case
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of constant steady-state). As a consequence of the linearity of the system, the
feedforward input u∗f f (t) needed to track the reference trajectory (8) is given by:

u∗f f (t) =
R

∑
r=1

U (r)
f f cos

(
ωrt +ϕ

(r)
f f

)
(9)

with U (r)
f f ∈ R

nu
+ and ϕ

(r)
f f ∈ R

nu
[0,2π]

.
On the other hand, u∗f b(t) in (7) is a typical linear error feedback control law

of the type:
U∗f b(s) = K(s)

(
Yre f (s)−Y (s)

)
(10)

where K(s) denotes the controller and U∗f b(s), Yre f (s), Y (s) are the Laplace trans-
forms of u∗f b(t), yre f (t), y(t), respectively. According to the internal model prin-
ciple, if the reference trajectory (8) is wanted to be tracked without steady state
error, it is necessary to include its generator inside the control loop [36]. In the
following, for the sake of exemplification, a constant reference trajectory will be
used, such that a proportional integral (PI) structure must be chosen for K(s),
which can be described by [37]:

u∗f b(t) = KP
(
yre f (t)− y(t)

)
+KIxI(t) (11)

ẋI(t) = yre f (t)− y(t) (12)

where KP and KI denote the proportional and integral gain, respectively. Con-
sequently, the system (1)-(2) can be described through the following augmented
system:

ẋaug(t) = Aaugxaug(t)+
[

BKP
I

]
yre f (t) (13)

+Baug
(
u∗f f (t)+∆u(t)

)
+

[
D
0

]
d(t)+

[
−BKPE
−E

]
v(t)

y(t) =Caugxaug(t)+Ev(t) (14)

with xaug(t) =
[

x(t)T xI(t)
T ]T and:

Aaug =

[
A−BKPC BKI
−C 0

]
Baug =

[
B
0

]
Caug =

[
C 0

]
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3.2. Dynamic decoupling using vector fitting
The frequency-based signature technique aims at detecting a replay attack by

introducing the authentication signal ∆u(t) into the system (1)-(2), and detecting
whether the measured output is compatible with the introduced ∆u(t) or not. In
order to do so, it is desirable to establish a bijection between the available inputs
and the available outputs, such that the effect of an element of ∆u(t), i.e. ∆ul(t),
l = 1, . . . ,L, will be observed on, and only on, the associated output yl(t). How-
ever, there are two problems that hinder the establishment of such a bijection.
First of all, the system (1)-(2) could be not square, i.e. nu , ny. This problem can
be solved easily by considering, for replay attack detection purposes, a subset of
L = min{nu,ny} inputs and outputs, such that the aforementioned bijection can be
established between the elements of these subsets.

The second problem is that the closed-loop transfer matrix from ∆u(t) to y(t),
i.e. G(s) = Caug(sI−Aaug)

−1Baug is usually coupled, since each individual in-
put influences all of the outputs. Handling these couplings (non-diagonal terms in
G(s)) is a problem for which well-established results are available in the literature,
see [38, 39, 40]. To this aim, a decoupler F(s) could be introduced in the loop such
that the series interconnection of F(s) and G(s) is dynamically decoupled, i.e. the
transfer matrix Gd(s) = G(s)F(s) is diagonal and the augmented system may be
perceived as consisting of independent subsystems. However, from a practical
point of view, dynamic decoupling is very demanding, since in many cases it re-
quires a complex and highly sensitive control law, and in other cases it cannot be
achieved at all [40]. For this reason, different types of partial decoupling have
been proposed as alternatives [38], e.g. steady-state (static) decoupling, where
a static decoupler compensates couplings at zero frequency, and dynamic decou-
pling in a given frequency range, where a dynamic decoupler minimizes couplings
over a finite frequency range. However, in this paper we are interested in solving
a different problem, that will be referred to as dynamic decoupling for a given fre-
quency set, and which involves enforcing decoupling for a finite set of frequencies
ωi, i = 1, . . . ,N. The developed solution is based on vector fitting (VF) [41], a ro-
bust numerical method for rational approximation in the frequency domain using
poles and residues.

More specifically, given the system (1)-(2), it is wished to design the decou-
pler:

ẋd(t) = Adxd(t)+Bd∆u′(t) (15)
∆u(t) =Cdxd(t)+Dd∆u′(t) (16)
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such that ∀i = 1, . . . ,N, Gd(ιωi) calculated using F(s) = Cd(sI−Ad)
−1Bd +Dd

approximates an identity matrix. It is straightforward to obtain that, in order to
achieve this goal, F(ιωi) = G(ιωi)

−1 is needed, which provides a set of N con-
straints that the decoupler (15)-(16) must satisfy1.

Hence, the objective becomes approximating F(ιωi), i = 1, . . . ,N, using a
rational function, which can be chosen as [42]:

F(s) =
M

∑
m=1

rm

s−am
+d (17)

where M denotes the order2, rm and am are the residuals and the poles of F(s),
respectively, and d is a constant term.

The VF method first identifies the poles of F(s) solving the following problem
in the least-square sense [41, 43]:

σ(s)F(s) = p(s) (18)

with:

σ(s) =
M

∑
m=1

r̃m

s−qm
+1 (19)

p(s) =
M

∑
m=1

rm

s−qm
+d (20)

where {qm} is a set of initial poles and {r̃m} are the residues. The authors in [41]
have shown that the poles of F(s) must be equal to the zeros of σ(s), which can
be calculated as [44]:

{am}= eig(diag{qm}−1M · r̃) (21)

where r̃ is a row vector containing {r̃m}, and 1M denotes a M×1 vector of ones.
The least square problem can be solved iteratively, where at each step the new

poles {am} replace the previous poles {qm} (this procedure usually converges

1Note that G(ιωi) is a complex number, not a transfer function and, in general F(s) ,G(s)−1.
Moreover, in cases where G(s) has zeros with positive real parts, a stable F(s) that satisfies
F(ιωi) = G(ιωi)

−1, i = 1, . . . ,N, can be calculated.
2In general, a higher order will lead to a better approximation, but at the cost of increasing the

complexity.

11



in 2-3 iterations). After the poles have been identified, the residues rm can be
calculated by solving once more the least square problem, this time with known
poles. Finally, once F(s) in (17) has been estimated, the decoupler (15)-(16) can
be easily calculated, e.g. using a canonical form.

3.3. Signature generation using frequency-varying sinusoidals
The idea of the frequency-based signature approach is to introduce frequency-

varying sinusoidal signals into the system (1)-(2) and the decoupler (15)-(16). The
simplest possibility is to consider signals of the form:

∆u′l(t) = αl cos
(
ωσl(t)t

)
l = 1, . . . ,L (22)

where αl denotes the magnitude, while σl(t) denotes a piecewise constant signal,
which takes integer values between 1 and N, such that at each time instant ωσl(t)
equals one of the frequencies ωi, i = 1, . . . ,N, for which decoupling is achieved
by the decoupler (15)-(16), as explained in the previous section. It is assumed that
the signal σl(t) changes from its previous value to a random value between 1 and
N, which could be the same as the previous value, at equally-spaced time instants
t( j)
s , j ∈ N0, with t(0)s = 0 and t( j+1)

s − t( j)
s = Ts, where Ts is the switching period.

In the following, we will denote the value taken by ωσl(t) in the time interval

[t( j)
s , t( j+1)

s ] as ω jl . It is worth noting that the piecewise constant signal σl(t) is
completely known by the detector, whereas the attacker does not have access to
this information.

Let us perform the Fourier analysis of the signal (22), which can be rewritten
as the sum of infinite windowed signals:

∆u′l(t) = αl

∞

∑
j=0

w
(

t,
[
t( j)
s , t( j+1)

s

])
cos
(
ω jlt

)
(23)

where w(·) denotes the window function, defined as follows:

w
(

t,
[
t( j)
s , t( j+1)

s

])
=

{
1 t ∈

[
t( j)
s , t( j+1)

s

]
0 otherwise

(24)

Using the linearity property of the Fourier transform and the convolution the-
orem [45], the following is obtained from (23):

∆U ′l (ω) = αl

∞

∑
j=0
F

{
w
(

t,
[
t( j)
s , t( j+1)

s

])}
∗F
{

cos
(
ω jlt

)}
(25)
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where F{·} denotes the Fourier transform of its argument, ∆U ′l (ω) = F{∆u′l(t)},
and ∗ denotes the convolution operation. It is well-known that:

F{cos(ω jlt)}= π
[
δ (ω +ω jl)+δ (ω−ω jl)

]
(26)

where δ (·) is the delta function. On the other hand:

w
(

t,
[
t( j)
s , t( j+1)

s

])
= w

(
t− t( j)

s + t( j+1)
s

2
,

[
−Ts

2
,
Ts

2

])
(27)

Hence, according to the time shifting property of the Fourier transform:

F

{
w
(

t,
[
t( j)
s , t( j+1)

s

])}
= e−ιω

t( j)
s +t( j+1)

s
2 W (ω) (28)

where [46]:

W (ω) = F

{
w
(

t,
[
−Ts

2
,
Ts

2

])}
=

2sin
(
ω

Ts
2

)
ω

(29)

Eq. (29) shows that the spectral window, i.e. the Fourier transform of the time
window, decays relatively slowly (as ω−1). Due to this fact, the convolution of
(28) with (26) gives rise to the undesired effect known as spectral leakage, which
was detailed carefully in the seminal work by Harris [47].

As discussed by [48], suppression of the spectral leakage can be achieved
by self-convolving a window function multiple times in the time domain. More
recently, [49] has presented an approach for the construction of a family of desired
order continuous time window functions without self-convolution of the parent
window.

Following these results, and in particular [49], another possible choice for the
signal ∆u′l(t) could be the following:

∆u′l(t) = αl

∞

∑
j=0

wm

(
t,
[
t( j)
s , t( j+1)

s

])
cos
(
ω jlt

)
(30)

where m is the order of the window function. For example, if m = 1 then
w1

(
t,
[
t( j)
s , t( j+1)

s

])
is given by (31), which corresponds to [49]:

F

{
w1

(
t,
[
t( j)
s , t( j+1)

s

])}
=

2(1− cosω)

ω2 e−ιω
t( j)
s +t( j+1)

s
2 (32)
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w1

(
t,
[
t( j)
s , t( j+1)

s

])
=

{
1− 2

Ts

∣∣∣t− 1
2

(
t( j)
s + t( j+1)

s

)∣∣∣ t ∈
[
t( j)
s , t( j+1)

s

]
0 otherwise

(31)

4. Detector Logic

This section describes the band-pass filtering of the output signals, the replay
attack detection algorithm and the choice of the design parameters involved in the
proposed strategy.

4.1. Band-pass filtering of the output signal
According to the theory of LTI systems, the response of the augmented sys-

tem made up by (13)-(14) will be the sum of the natural response (which can be
neglected, due to the steady-state assumption), the forced responses due to the
inputs acting on it, namely yre f (t), u∗f f (t), ∆u′(t), and d(t), and the noise signal
v(t). With the aim of analysing only the content of y(t) at the frequencies ωi,
i = 1, . . . ,N, used to generate the signature signal ∆u′(t), the augmented system is
cascaded with a bank of filters Hi(s). In particular, each Hi(s) is a ny×ny diagonal
transfer matrix, with each element on the diagonal chosen as a band-pass filter, i.e.
[50]:

Hi(s) = diag

{
ωi
Qi

s

s2 + ωi
Qi

s+ω2
i

}
(33)

where ωi is the frequency at which the filter peaks and Qi is the selectivity of
the filter. In general, to a higher value of Qi corresponds a narrower frequency
response ‖Hi(s)‖ around the peak frequency ωi, even though higher values of Qi
will also lead to a slower dynamic response, since the poles of (33) are given by:

s1/2 =−
ωi

2Qi

(
1±

√
1−4Q2

i

)
(34)

Following [51], it is possible to convert (33) into a state-space structure by
using a canonical form. More specifically, by applying the observable canonical
form, the l-th output of the system (1)-(2) can be fed to the following system:

ẋz,il(t) =
[

0 −ω2
i

1 −ωi/Qi

]
xz,il(t)+

[
0

ωi/Qi

](
yl(t)− yre f ,l(t)

)
(35)

zil(t) =
[

0 1
]

xz,il(t) (36)
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σ̂l(t) =


σl(t) i f σl(t) , σl(t−Ts) ∧ t ∈ [t∗s , t

∗
s + ttrans +Tω ]

arg max
i=1,...,N

t∫
t−Tω

|zil(τ)|2dτ otherwise

(39)

where yre f ,l(t) is subtracted from yl(t) in order for the band-pass filter to extract
only the information that is relevant for the replay attack detection.

4.2. Replay attack detection algorithm
The replay attack detection algorithm is based on comparing the known piece-

wise constant signal σl(t) with σ̂l(t), which is a reconstruction based on the sig-
nals zil(t) obtained from (36). In particular, as long as σ̂l(t) = σl(t), l = 1, . . . ,L,
the algorithm will provide the information that no replay attack is being carried
out on the output yl(t). On the other hand, if σ̂l(t) , σl(t), then the algorithm will
warn about the output yl(t) being affected by a replay attack.

It is clear that the effectiveness of the algorithm depends on how the signal
σ̂l(t) is calculated. A simple choice would be to compare the energies of the dif-
ferent zil(t) over the largest period associated with the frequencies ωi, i= 1, . . . ,N,
i.e. during the time intervals [t−Tω , t], with:

Tω = max
i=1,...,N

2π

ωi
(37)

and determine σ̂l(t) as the index corresponding to the signal with the biggest en-
ergy, i.e.:

σ̂l(t) = arg max
i=1,...,N

t∫
t−Tω

|zil(τ)|2dτ (38)

However, when a change in the frequency of the signal ωσl(t) in (22) occurs,
the system will exhibit a transient behavior with respect to the signal ∆u′(t), which
will affect the matching between σl(t) and σ̂l(t). In these cases, a better choice
is to take into account the time needed for such transient to become negligible,
denoted in the following as ttrans, and calculate σ̂l(t) as (39), where t∗s = bt/TscTs
denotes the last switching time.

It is worth noting that the analytical calculation of ttrans, although possible, is
not an easy task, since the overall system made up by decoupler, plant, controller
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and band-pass filter is a high order system. However, since the band-pass filters
Hi(s) determine the frequency content of the output signals, a reasonable estima-
tion of ttrans is given by the biggest among the settling times of Hi(s), i = 1, . . . ,N.

4.3. Choice of the design parameters
Hereafter, the choice of the design parameters involved in the proposed strat-

egy is discussed. In particular, given the matrices A, B, C, D, E, KP, KI , and a ref-
erence signal yre f (t) as in (8), which determines univocally u∗f f (t), the following
parameters should be determined: N, ω1, . . . ,ωN , α1, . . . ,αL, Ts and Q1, . . . ,QN .
In order to determine these parameters, the following considerations will be taken
into account:

• independently from the choice of ωi, Ts and Qi, the gain from the signal
∆u′(t) to the output of the band-pass filter (33) will be an identity matrix
and, in order for the attacker not to realize about the presence of ∆u′(t) by
looking at the output signal coming from the sensors, ∆u′(t) should be small
when compared to yre f (t);

• in order for the attacker not to realize about the presence of ∆u′(t) by look-
ing at the input signals being sent to the actuators, ∆u(t) should be small
when compared to u∗f f (t);

• ∆u′(t) should overcome the effect of the unknown disturbance d(t) and the
measurement noise v(t) on the output, denoted in the following as yd(t) and
yv(t), respectively;

• the filter selectivities Qi should be chosen such that the components of y(t)
at frequencies ω j ,ωi are attenuated sufficiently; however, Qi cannot be too
high, because such a choice would lead to a slower response of the band-
pass filter, as shown by Eq. (34);

• higher frequencies ωi are desirable in order to make the response of the
band-pass filters faster; however, ωi cannot be too high because typically
stronger ∆u′(t) are needed at high frequencies in order to overcome the
effect of the measurement noise, due to the limited band of the actuators;

• the switching period Ts should be big enough such that the outputs of the
band-pass filters settle to the corresponding steady-state after a change in
the frequency ωσl(t) in (22);
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• finally, the number of frequencies N is a degree of freedom in the design of
the detector, which should be selected in order to obtain faster replay attack
detectors.

A first constraint on ∆u′(t) aims at making this signal small when compared
to yre f (t):

Apeak
{

∆u′l(t)
}
� Apeak

{
yre f ,l(t)

}
l = 1, . . . ,L (40)

where Apeak{·} denotes the peak amplitude. It is straightforward that Apeak
{

∆u′l(t)
}

= αl while, on the other hand:

Apeak
{

yre f ,l(t)
}
≤

R

∑
r=1

Y (r)
re f ,l (41)

which means that (40) can be rewritten as:

αl < κ1

R

∑
r=1

Y (r)
re f ,l l = 1, . . . ,L (42)

with κ1� 1.
Another constraint on ∆u′l(t) aims at making ∆u(t) small when compared to

u∗f f (t):

Apeak {∆ul(t)}� Apeak

{
u∗f f ,l(t)

}
l = 1, . . . ,L (43)

In order to estimate Apeak {∆ul(t)}, let us note first that, independently from
the choice of ωi, F(ιωi) = G(ιωi)

−1 will hold by design. Then, by neglecting the
spectral leakage, the following relationship can be obtained:

Apeak {∆ul(t)} ≤
L

∑
m=1

max
i=1,...,N

|Flm(ιωi)|παm (44)

while, on the other hand:

Apeak

{
u∗f f ,l(t)

}
≤

R

∑
r=1

U (r)
f f ,l (45)

which means that (43) can be rewritten as:

L

∑
m=1

max
i=1,...,N

|Flm(ιωi)|παm < κ2

R

∑
r=1

U (r)
f f ,l l = 1, . . . ,L (46)
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with κ2� 1.
With regard to the effect of the unknown disturbance d(t) and the measure-

ment noise v(t) on the output, simple calculations show that the transfer functions
from d and v to y are given by:

Tyd(s) =
[
I +C(sI−A)−1BK(s)

]−1
C(sI−A)−1D (47)

Tyv(s) =
[
I +C(sI−A)−1BK(s)

]−1
E (48)

Following [52], and taking into account that both d and v are independent
white noises, i.e. their power spectral densities are identity matrices, the power
spectral density of yd(t)+ yv(t) can be calculated as:

Sy(ω) =
[

Tyd( jω) Tyv( jω)
][ Tyd( jω)T

Tyv( jω)T

]
(49)

where the bar denotes the conjugate operation. Then, a possible specification
concerning ∆u′(t) overcoming the effect of the unknown signals can be expressed
as:

Apeak
{

∆u′l(t)
}
= αl > κ3σl l = 1, . . . ,L (50)

with κ3� 1, where σl is the standard deviation of the l-th element of yd(t)+yv(t),
which can be calculated from the l-th diagonal element of Sy(ω), namely Sy,ll(ω),
as follows:

σl =

√√√√√ 1
2π

+∞∫
−∞

Sy,ll(ω)dω (51)

In order for each filter Hi(s) to reject adequately the frequency content cor-
responding to values ω j of the varying frequency which are different from the
specific ωi of the filter, it is suggested to choose the ωi sufficiently spaced among
themselves. For example, by requiring that |Hi( jωi−1)| ≤Ψ and |Hi( jωi+1)| ≤Ψ,
conditions (52)-(53) are obtained.

In fact, from (33), it follows that:

|Hi(ιω)|= ωiω√
Q2

i
(
ω2

i −ω2
)2

+ω2
i ω2

(54)

By requiring that |Hi(ιω)|= Ψ, the following equation is obtained:

Ψ
2Q2

i ω
4 +
[(

Ψ
2−1

)
−2Q2

i Ψ
2]

ω
2
i ω

2 +Q2
i Ψ

2
ω

4
i = 0 (55)
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ωi−1 ≤
ωi

ΨQi

√√√√2Ψ2Q2
i +(1−Ψ2)−

√
(Ψ2−1)2−4Ψ2 (Ψ2−1)Q2

i

2
(52)

ωi+1 ≥
ωi

ΨQi

√√√√2Ψ2Q2
i +(1−Ψ2)+

√
(Ψ2−1)2−4Ψ2 (Ψ2−1)Q2

i

2
(53)

that has the solution:

ω =

ω2
i

(
2Ψ2Q2

i +
(
1−Ψ2

)
±
√

(Ψ2−1)2−4Ψ2 (Ψ2−1)Q2
i

)
2Ψ2Q2

i
(56)

which leads to (52)-(53).
However, it can be calculated that, if equal rejection properties are desired for

the frequencies ωi−1 and ωi+1, then Qi should satisfy:

Qi =
ωi−1ωi

√
1−Ψ2

Ψ
∣∣ω2

i −ω2
i−1

∣∣ =
ωi+1ωi

√
1−Ψ2

Ψ
(
ω2

i+1−ω2
i
) (57)

which means that ωi−1 = ωi/k and ωi+1 = kωi for some k > 1, i.e. all the fre-
quencies should be selected as elements of a geometric series. Under this choice,
it can be shown that Qi = Q, i = 1, . . . ,N, with:

Q =
k
√

1−Ψ2

Ψ(k2−1)
(58)

Concerning the choice of the switching period Ts, taking into account the dis-
cussion in Section 4.2 and the reconstruction of σ̂l(t) using (39), it is clear that
the following should hold:

Ts� ttrans (59)

which leads to:
Ts = κ4ttrans (60)

with κ4� 1.
Hence, (42), (46), (50), (58) and (60) provide conditions for a suitable choice

of the design parameters, in the form of a set of inequalities to be solved under
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the constraint that ωi = ki−1ω1, i = 1, . . . ,N. The frequency ω1 can be chosen as
the highest frequency for which a solution to the set of inequalities can be found.
On the other hand, it is worth noting that (46) leads to a tradeoff between the
number of different frequencies ωi that can be used, i.e. the design parameter N,
and how high the frequency ω1 can be chosen. Hence, the choice of N must take
into account that, on one hand, the phenomenon of coincidental matches between
the generated and the reconstructed random frequency profiles should be avoided
and, on the other hand, the band-pass filters should be faster in order to obtain
shorter settling times, which would allow for a smaller Ts, ultimately leading to a
faster replay attack detector.

5. Example

In this section, the signal generator and the detector logic presented in the pre-
vious sections are illustrated by considering a quadruple-tank process controlled
through a wireless communication network (see Fig. 3), which is a testbed that
has found recent success in the field of secure control against cyber attacks [53].

Pump 1 Pump  2

Valve 1 Valve 2

y21y

Tank 3 Tank 4

Tank 1 Tank 2

1v v2

Figure 3: Schematic diagram of the quadruple-tank process.
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Table 1: Parameters of the quadruple-tank process
Symbol Description Parameter value
A1,A3 Cross-sections of Tanks 1,3 28cm2

A2,A4 Cross-sections of Tanks 2,4 32cm2

a1,a3 Cross-sections of outlet holes 1,3 0.071cm2

a2,a4 Cross-sections of outlet holes 2,4 0.057cm2

g Acceleration of gravity 981cm/s2

k1 Flow parameter from tank 1 to 4 3.14cm3/V s
k2 Flow parameter from tank 2 to 3 3.29cm3/V s
γ1 Valve 1 opening parameter 0.43
γ2 Valve 2 opening parameter 0.34

The plant model is given by [54]:

dh1(t)
dt

=− a1

A1

√
2gh1(t)+

a3

A1

√
2gh3(t)+

γ1k1

A1
u1(t)

dh2(t)
dt

=− a2

A2

√
2gh2(t)+

a4

A2

√
2gh4(t)+

γ2k2

A2
u2(t)

dh3(t)
dt

=− a3

A3

√
2gh3(t)+

(1− γ2)k2

A3
u2(t)

dh4(t)
dt

=− a4

A4

√
2gh4(t)+

(1− γ1)k1

A4
u1(t)

where hi ∈ [0,30]cm, i = 1,2,3,4, are the state variables, corresponding to the
water levels in each tank, while u1, u2 are the control inputs, i.e., the voltages
applied to pump 1 and pump 2. The list and values of the model’s parameters are
given in Table 1.

The linearized state-space model around an equilibrium point is described by
(1)-(2), with:

A =


− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4
A2T4

0 0 − 1
T3

0
0 0 0 − 1

T4

 B =


γ1k1
A1

0
0 γ2k2

A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0


where the time constants Ti are:

Ti =
Ai

ai

√
2h0

i
g

i = 1,2,3,4
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and h0
i , i = 1,2,3,4 are the steady-state levels.

In particular, we will consider that the quadruple-tank system operates around
the set-point yre f (t) = [6.3,6.5]T , which corresponds to the feedforward actions

u1
f f (t) = u2

f f (t) = 3.15V such that Apeak

{
u∗f f (t)

}
=
[

3.15 3.15
]T and steady-

state equilibrium levels h0
1 = 12.4cm, h0

2 = 13.2cm, h0
3 = 4.7cm, h0

4 = 5.0cm.
Consequently, the values of the matrices A and B to be used in the remaining of
the example are given as follows:

A =


−0.0159 0 0.0258 0

0 −0.0109 0 0.0177
0 0 −0.0258 0
0 0 0 −0.0177

 B =


0.0482 0

0 0.0350
0 0.0775

0.0559 0


By considering that the measured level signals are y1(t) = 0.5h1(t), and y2(t) =
0.5h2(t), and that a matrix E is used to describe the sensor noise, the LTI state-
space description is completed3 by the matrices:

C =

[
0.5 0 0 0
0 0.5 0 0

]
E =

[
0.01 0

0 0.01

]
In order to track yre f (t) with zero steady-state error, a decentralized linear error
feedback PI control law as in (10), with parameters taken from [54], has been
used:

K(s) =
[ 165s+1.5

110s 0
0 −26.4s−0.12

220s

]
On the other hand, using (51), the values for the standard deviations are calculated
as σ1 = 0.0032 and σ2 = 0.0030.

By solving inequalities (42), (46) and (50) with κ1 = κ2 = κ3 = 3, and by
selecting N = 2 and ω2 = 2ω1, the following parameters are calculated: ω1 =
0.30rad/s, α1 = 0.0125, α2 = 0.0093. Then, by requiring an attenuation of
−20dB (Ψ = 0.1) at frequencies ωi−1 and ωi+1, (58) can be used to calculate
Q as Q = 2

√
11.

According to Section 3.2, the specification of dynamic decoupling for the fre-
quencies ω1 and ω2 is satisfied if F(s) is chosen such that:

F(ιω1) =

[
2.175+12.238ι −2.336−0.112ι

−1.157−0.005ι 0.525+16.947ι

]

3Note that no exogenous disturbance affects the plant, i.e. D = 0.
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F(ιω2) =

[
2.164+24.782ι −2.366−0.058ι

−1.169−0.003ι 0.508+34.218ι

]
Using the VFIT3 routine4, which is an implementation of fast relaxed VF

[41, 42, 55], the decoupler (15)-(16) which guarantees the above specification is
calculated as:

Ad =


−1061.1 0 0 0

0 −0.1 0 0
0 0 −0.3 0
0 0 0 −1016.5

 Bd =


1 0
0 1
1 0
0 1


Cd = 107

[
−4.64 0 0 0

0 0 0 −5.88

]
Dd = 104

[
4.372 0

0 5.786

]
A comparison between the Bode plot of the non-decoupled system (blue line)

and the decoupled one (red line) is depicted in Fig. 4. It can be seen that, at
the frequencies ω1 and ω2, Gd approximates an identity matrix such that a good
decoupling is achieved.

Then, following the discussion in Section 4.3, the ttrans is calculated as ttrans =
174s and, by applying (60) with κ4 = 4, Ts = 696s is obtained.

In order to assess the effectiveness of the proposed strategy, three different
simulation scenarios are considered.

5.1. Scenario 1
In the first scenario, the system is working without replay attacks being per-

formed. Fig. 5 shows the output signal y(t), which tracks the reference yre f (t),
in scenario 1. It can be seen that the introduction of the signature ∆u′(t) does not
have a visible effect on y(t), which is important for the attacker not to become
aware of the implementation of the proposed detection strategy.

In Fig. 6, the outputs of the band-pass filters zil(t), i = 1,2, l = 1,2, are
plotted along with the signals σ1(t) and σ2(t), which determine the time-varying
frequency profile of the signal (22). It appears evident that when ωσl = ω1 (low
state of the red line), then z1l(t) is the signal with the strongest energy. Conversely,
when ωσl = ω2 (high state of the red line), then z2l(t) becomes the signal with the
strongest energy.

Using (39), σ̂1(t) and σ̂2(t) can be determined, as shown in Fig. 7, and these
estimations can be compared with the signals σ1(t) and σ2(t) in order to obtain a

4https://www.sintef.no/projectweb/vectfit/
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Figure 4: Decoupling (Bode plot).

Boolean information about the presence of a replay attack, as depicted in Fig. 8. It
can be seen that the detection test is not affected by false alarms, hence it succeeds
in providing the information about no replay attacks affecting the measurements.

5.2. Scenario 2
In the second simulation scenario, it is assumed that an attacker records the

measurements of both outputs in the first 2000s and then replays the recorded
data periodically starting from t = 2000s. In this case, the signals zil(t) do not
follow anymore the corresponding varying frequency profiles ωσl(t) (see Fig. 9).
This fact leads to a mismatch between σl(t) and σ̂l(t), as shown in Fig. 10, which
provides an information about both the output channels being attacked (see Fig.
11). In fact, based on the information provided by σ̂l(t), a replay attack acting on
the first output channel is detected at time t = 2031s, while a replay attack on the
second output channel is detected at time t = 2044s (notice that due to σ̂l(t) being
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25



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.02

-0.01

0

0.01

0.02

F
irs

t b
an

d-
pa

ss
 fi

lte
r

0.2

0.4

0.6

F
re

qu
en

cy
 ω

σ
 1

(t
) 

(r
ad

/s
)

z
11

(t)

z
21

(t)

ω
σ 1

(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (s)

-0.02

-0.01

0

0.01

0.02

S
ec

on
d 

ba
nd

-p
as

s 
fil

te
r

0.2

0.4

0.6

F
re

qu
en

cy
 ω

σ
 2

(t
) 

(r
ad

/s
)

z
12

(t)

z
22

(t)

ω
σ 2

(t)
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calculated as in (39), σ1(t) , σ̂1(t) and σ2(t) , σ̂2(t) hold intermittently under
replay attack).
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Figure 9: Outputs of the band-pass filters zil(t) and varying frequency ωσ (t) in scenario 2.

5.3. Scenario 3
In the last scenario, only the first output is considered to be affected by the

replay attack starting from t = 200s. In this case, the signals zi1(t), i = 1,2, do
not follow the profile of ωσ1(t), while the signals zi2(t), i = 1,2, follow ωσ2(t)
throughout the simulation (see Fig. 12). Consequently, a mismatch between σ1(t)
and σ̂1(t) arises, as shown in Fig. 13, which allows detecting a replay attack acting
on the first output channel at time t = 2032s (see Fig. 14).

5.4. Comparison between N = 2 and N = 4
In order to conclude the analysis of the performance of the proposed approach,

a comparison between the detector designed for a number of frequencies N = 2
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Figure 10: Piecewise constant signals σ1(t), σ2(t) and their estimations σ̂1(t), σ̂2(t) in scenario 2.
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Figure 11: Result of the replay attack detection test in scenario 2.
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Figure 12: Outputs of the band-pass filters zil(t) and varying frequency ωσ (t) in scenario 3.
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Figure 13: Piecewise constant signals σ1(t), σ2(t) and their estimations σ̂1(t), σ̂2(t) in scenario 3.
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Figure 14: Result of the replay attack detection test in scenario 3.
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and N = 4 is performed. Note that the case N = 2 corresponds to the same de-
signed parameters used in the simulations of scenarios 1-3 described previously.
On the other hand, the choice N = 4 leads to ω1 = 1.4rad/s, ttrans = 37.40s and
Ts = 149.60s (see Fig. 15 for an exemplification of the outputs of the band-pass
filters for this detector when no replay attack is affecting the system throughout
a simulation). For each case, 100 simulations have been performed, in each of
which a replay attack affected both of the output channels starting from a time t1
randomly generated from a uniform distribution with support [100s,300s]. Over
the considered simulations, the detector with N = 2 has detected a replay attack
acting on the first (second) output channel in an average time of 400s (458s),
while the detector with N = 4 has performed the detection in an average time of
2694s (2605s). This comparison suggests that choosing a binary set of frequen-
cies leads to a better performance of the detector.
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Figure 15: Outputs of the band-pass filters zil(t) and varying frequency ωσ (t) with N = 4 (no
replay attacks).
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6. Conclusions

In this work, replay attacks on cyber-physical systems were considered, and
an innovative method for detecting this type of attacks affecting control systems
has been proposed. The developed approach is based on adding an authentication
signal (signature), to the input. In particular, the chosen signature is frequency-
based, which means that frequency-varying sinusoidal signals are used. More
specifically, a piecewise constant signal σ(t) determines at each instant of time
the frequency of the authentication signal. By filtering the signature with a dy-
namic decoupler, designed using the vector fitting method, it is ensured that a
given signature affects only one of the available output channels. This property
can be exploited in order to determine which channels are being affected by the
replay attack. By filtering the output signals using a bank of band-pass filters, each
one designed to let pass only the component corresponding to a specific frequency
among the ones used for the generation of the authentication signal, an estimation
σ̂(t) of σ(t) can be determined. Then, by comparing the known piecewise con-
stant signal σ(t) with its estimation, an information about whether a replay attack
is being carried out or not is provided (replay attack detection algorithm). The
choice of the design parameters involved in the proposed strategy has been dis-
cussed thoroughly. Finally, the signal generator and the detector logic have been
evaluated by considering an example based on a quadruple-tank process. Three
simulation scenarios have demonstrated the effectiveness of the proposed tech-
nique, and shown its main characteristics. In particular, the proposed method has
shown not to trigger false alarms while being able to identify successfully the
channels affected by the replay attack in all the considered scenarios. The com-
parison between detector designed with different numbers of frequencies (N = 2
and N = 4) has suggested that choosing a binary set of frequencies leads to a better
performance of the detector.

Future work will aim at extending the proposed approach to discrete-time sys-
tems, as well as to add more complexity to the problem formulation by taking into
account possible nonlinearity and structural uncertainties affecting the system’s
matrices. Moreover, the information provided by the proposed detection method
will be used to develop secure control strategies, with the aim of compensating the
negative effects of replay attacks, which can potentially disrupt a control system
when wrong measurements are fed back to the observer/controller instead of the
true ones.
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