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Abstract

The renewed concern for the care of the environment has led to lower emissions

of greenhouse gases without sacrificing modern comforts. Widespread proposal

focuses on energy produced from renewable sources and its subsequent storage

and transportation based on hydrogen. Currently, this gas applies to the chemical

industry and its production is based on fossil fuels. The introduction of this energy

vector requires the development of environmental-friendly methods for obtaining

it. In this paper, existing techniques are just presented and the main focus is made

on electrolysis, a mature procedure. In turn, some developed proposals as previous

steps to the hydrogen economy are presented. Finally, some lines of research to

improve alkaline electrolysis technology are commented.
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1. Introduction

The world economy is constantly expanding. There are two influencing factors

related to that expansion: the population growth and progress in personal comfort.

Both factors affect the current fossil economy by increasing consumption and

generating greater amount of greenhouse gases (GHG). The International Energy

Agency (IEA) indicates a world consumption in 2015 of 9.383 Mtoe (1.1×105

TWh). This amount represents an increase of 18,23% and 99.64% over the past

ten (2005) and fourty (1975) years, respectively. Besides, CO2 emissions in 2015

were 32.294 MTon, compared to 15.484 MTon in 1975 (109% increment) [1].

This situation is widely accepted as critical, hence worldwide environmental im-

pact studies and environmental protection policies are generated. Moreover, the

fact that fossil fuels are neither renewable nor evenly distributed across the globe

leads to geopolitical conflicts and unequal situations.

Around the world, proposed solutions focus on the production of renewable

energy. However, the share of renewable energies has not grown significantly

(from 12.7% in 1975 to 13.5% in 2015). Besides costs issues, the global exper-

ience indicates that advances are needed to solve technical problems related to

energy fluctuations produced in renewable sources. To achieve high integration of

renewable energy, it is necessary to have the ability to accumulate the excess of

energy to be consumed at a time when consumption exceeds production. Figure 1

shows the variety of available technologies for energy storage. While some tech-

nologies such as supercapacitors or flywheels are used to store a reduced amount

of power (up to 10MW) for a short time (up to an hour) and redeliver it quickly,

for the case raised, it is necessary to use other technologies such as Compressed

Air Energy Storage (CAES), Pumped Hydro Energy Storage (PHES) or hydrogen.
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Figure 1: Current energy storage methods (taken from [2]). 1SMES: Superconducting Magnetic

Energy Storage, 2PHES: Pumped Hydro Energy Storage

So far, the most common way to store large amounts of energy is PHES. The

biggest disadvantage of this technology is related to its requirements on specific

geographical features for installation and political conditions. It is here that among

the methods of energy storage, hydrogen production currently takes relevance for

its energy density, high energy capacity and transportability [2, 3].

Moreover, in the same direction, there is the concern about pollution in the

transportation sector. Along with the development of electric vehicles, the hy-

drogen appears as an interesting energy vector. Both technologies, electric and

H2-based vehicles, share the benefit of eliminating urban pollution and, depend-

ing on the original source, reducing or eliminating pollution in the whole process

[4]. The union of these two sectors, electricity and transport, generates what is

disclosed as hydrogen economy. The hydrogen economy is stated as an integral

solution for the problem of producing, storing and supplying energy including all
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final uses while succeeding in GHG mitigation.

The industrial use of hydrogen dates from almost a century ago with a wide

consumption in the chemical and oil industries (89% of consumption share) [5].

However, progress must be achieved in various issues in order to accomplish com-

petitiveness of these technologies and develop this economic concept. Issues such

as the efficiency and cost of production, storage and transport, are concepts that

several companies, research centers and governments are developing.

Several reviews can be found that present the different technologies related to

the use of hydrogen. Abdalla et al [6] published a review of hydrogen technologies

making a detailed explanation and comparison of current storage methods. Zhang

et al [7] present a brief and well-organized compendium of production, storage

and electricity generation technologies. Dutta [8] summarizes development mod-

els for the hydrogen economy in various countries along with an explanation of

hydrogen production, storage and utilization. Mazloomi and Gomes [9] discuss

the economic aspects of centralized and distributed production. In addition, they

present the risks inherent in the production, storage and distribution stages, pro-

posing possible risk-reduction techniques.

At the same time, there are studies such as [10] that detail the steps to be

followed in order to reach a mature hydrogen economy. Among those steps there

are the Power-to-Gas [11, 12], the use of fossil hydrogen to power vehicles [13, 14,

15, 16] and the integration of electrolyzers with renewable energies in microgrids

[17, 18]. All these developments bring hydrogen technologies taking into account

the necessary economic issues in order for it to be sustainable over time. To

do this, it will be necessary that companies, governments and research centers

cooperate together in this direction [13].
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This paper provides an overview of the hydrogen production technologies,

specifically emphasizing production from alkaline electrolysis. Mueller-Langer

et al [19] in their techno-economic assessment assure that natural gas steam re-

forming, coal and biomass gasification and water electrolysis will play a signific-

ant role in the short and medium term. Besides, electrolysis occupies until today

a dominant position as it is the only technology that can use directly the power

surplus from renewable and fluctuating energies like wind mills or solar panels

[7] so it has a concrete perspective on the use of this type of energy as the axis

of the hydrogen economy. Among CO2-neutral H2 production, electrolysis high-

light because it produces high purity hydrogen and it has an infrastructure already

developed being a well-established technology [20, 21]. In the same direction,

alkaline electrolysis is a mature and reliable technology which stands out from

other types of electrolysis based on cost and simplicity [22].

The remainder of this paper is organized as follows. In Section 2, hydrogen

production technologies are compared according to efficiency, costs and envir-

onmental consequences. After that, in Section 3, water electrolysis, as the most

certain solution for ecofriendly hydrogen production, is described. Then, in Sec-

tion 4, necessary developments in alkaline electrolyzers in the short and long term

are displayed. Finally, conclusions in Section 6 reinforce the necessity to advance

research to achieve the reduction of pollution through the hydrogen economy.

Figure 2 shows the different methods of hydrogen production presented in

Section 2. It highlights the approach outlined in this paper, explaining its organ-

ization.
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Figure 2: Taxonomy of hydrogen production with emphasis in this paper’s objective (in boldface)

2. Hydrogen production methods

There are several methods of hydrogen production with different stages of de-

velopment. Currently, its production is mainly based on the reforming of fossil

fuels (78%) and coal gasification (18%). From the pending 4% of alternate re-

sources, the main technology is the electrolysis of water as a byproduct from

chlor-alkali process [23, 24]. Despite the current use of hydrogen produced by the

last process, this technology will not be considered in the analysis because in the

long term and taking into account the amount of hydrogen necessary, it would not

be sustainable due to the chlorine produced at the same time.

In addition to the named technologies, in Table 1 it can be seen the selection

offered by Holladay et al. [25] covering industrial methods and those which are

being developed.

Some of the parameters used to compare different methods of hydrogen pro-
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duction are efficiency, cost and environmental consequences. Efficiency, overall,

compares the energy provided by the one obtained as the Lower Heating Value

(LHV) of H2 produced, whose ranges are listed in Table 1.

Moreover, the economic cost has the difficulty of analyzing mature technolo-

gies such as the steam methane reforming (SMR) with newly developed methods

on a laboratory scale as photolysis. In turn, the technologies that rely on fossil

fuels have different costs in case carbon capture and storage (CCS) approaches are

considered or not. For instance, Parthasarathy and Narayanan [38] present SMR

and coal gasification as the cheapest options (0.75 U$Skg−1 and 0.92 U$Skg−1 of

H2 produced, both without CO2 capture) while electrolysis, considering the pro-

duction of electricity with nuclear energy, costs between 2.56 U$Skg−1 and 2.97

U$Skg−1.

Besides, Hosseini et al [39] present a cost comparison between some produc-

tion methods as can be seen in Table 2. Production from fossil fuels was shown to

be cheaper, even if CCS were required. Levene et al [40] consider that electricity

costs have a great influence on the price of hydrogen produced by electrolysis, so

it is concluded that the cost of electricity must be four times lower than the current

price to have a competitive solution using solar and wind energy.

Concerning the environmental consequences, there are two commonly used

rates. Bhandari et al indicate that most of the studies analyzed are concentrated

in the Global Warming Potential (GWP) and some in the Acidification Potential

(AP) [42]. These potentials measure the equivalent mass of CO2 and SO2 emitted

per kilogram of H2 generated, respectively. Figures 3 and 4 show the comparison

of these rates for electrolysis from various renewable energy sources along with

other methods of obtaining hydrogen. Marks above the bars in the graph high-
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Table 1: Summary of methods for obtaining H2 (adapted from [25])

Technology Energy source Feedstock Efficiency Maturity Reference

Steam reforming Thermal Hydrocarbons 70-85% a Commercial [26]

Partial oxidation Thermal Hydrocarbons 60-75% a Commercial [26]

Autothermal reforming Thermal Hydrocarbons 60-75% a Near term [26]

Plasma reforming Electric Hydrocarbons 9-85% b Long term [27]

Aqueous phase reforming Thermal Carbohydrates 35-55% a Mid term [28]

Ammonia reforming Thermal Ammonia NA c Near term -

Biomass gasification Thermal Biomass 35-50% a Commercial [29, 30, 31]

Photolysis Solar Water 0.5% d Long term [32]

Dark fermentation Biochemical Biomass 60-80% e Long term [29, 33]

Photo fermentation Solar Biomass 0.1% f Long term [29, 30]

Microbial electrolysis cell Electric Biomass 78% g Long term [34]

Alkaline electrolyzer Electric Water 50-60% h Commercial [30, 35]

PEM electrolyzer Electric Water 55-70% h Commercial [30, 35, 36]

Solid oxide electrolysis cell Electric+Thermal Water 40-60% i Mid term [31]

Thermochemical water splitting Thermal Water NA c Long term -

Photoelectrochemical water splitting Solar Water 12.4% d Long term [35, 37]

aThermal efficiency, based on the Higher Heating Values (HHV)
bBased on efficiency equation from [27]
cNot available
dSolar to hydrogen via water splitting and does not include hydrogen purification
ePercent of 4 mol H2 per mole glucose theoretical maximum
fSolar to hydrogen via organic materials and does not include hydrogen purification
gOverall energy efficiency including the applied voltage and energy in the substrate. It does

not include hydrogen purification
hLower heating value of hydrogen produced divided by the electrical energy to the electrolysis

cell
iHigh-temperature electrolysis efficiency is dependent on the temperature the electrolyzer op-

erates at and the efficiency of the thermal energy source. If thermal energy input is ignored,

efficiencies up to 90% have been reported [31].

8



Table 2: Cost of hydrogen production methods (from [39])

Process Cost of H2 (USDkg−1)

Natural gas reforming 1.03

Natural gas reforming + CCS 1.22

Natural gas reforming + PSA + CCS a 1.56

Coal gasification 0.96

Coal gasification + CCS 1.03

Wind electrolysis b 6.64

Biomass gasification 4.63

Biomass pyrolisis 3.80

Nuclear thermal splitting of water 1.63

Gasoline (for comparison purposes) 0.93

aCurrent central H2 production from Natural Gas with Pressure Swing Adsortion (PSA) used

for H2 purification up to 99.6% [41]
bElectrolysis using electricity generated by wind turbines
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lights the different GWP values extracted by Bhandari et al from their sources

[42]. It must be emphasized that these studies are based on Life Cycle Assessment

(LCA), which comprises the construction, operation and end of cycle of each tech-

nology. It can be seen that electrolysis together with renewable sources produces

less pollution than widely used technologies, even in cases of considering CCS.

Although thermal decomposition has better results, it still needs to be developed.

Besides, biomass gasification is slightly more polluting than electrolysis but it is

a technology that also receives interest today.

Based on the previous study, Dincer and Acar [43] present an analysis com-

paring various technologies based on sustainability and costs. It is necessary to

clarify that for the calculation of the environmental impact of electrolysis, these

authors took the average value of all sources of electricity, including the grid.

Therefore, due to the fact that the electricity network has higher polluting emis-

sions, the GWP value of electrolysis appears as a non ecofriendly method. This

is not the case when electrolysis is combined with renewable sources, as will be

considered in this work.

While the electrolysis was the first commercial method of obtaining hydrogen

[42], other methods such as SMR have taken its place and are today the processes

used at industrial level because of their better efficiency and costs. However,

facing the new optical of environment care and GHG emissions mitigation, elec-

trolysis takes back relevance and the research is aimed at improving those two

aspects.

Moreover, there are various methods of producing hydrogen which are eco-

friendly and competitive. Currently, there is a strong research on the use of bio-

mass, which is accepted as the substitute for the use of fossil resources [39]. How-
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Figure 3: GWP for various H2 production technologies (taken from [42])

Figure 4: AP for various H2 production technologies (taken from [42])
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ever, these technologies require different levels of development and scalability

testing, but promise to be competitive [20]. Among them, it is worth mentioning

the case of microbial electrolysis, since it can achieve a high efficiency in the pro-

duction of hydrogen and is considered versatile in terms of the various alternatives

of application [44].

As stated in Section 1, electrolysis has the ability to take direct advantage of

the surplus electricity from renewable energy sources that is a fundamental step in

the development of the hydrogen economy. So from now on, this paper will focus

on this technology.

3. Water electrolysis

Electrolysis is the method through which the water molecule is separated into

hydrogen and oxygen by applying an electric current [42]. Although there are dif-

ferent methods, which are introduced below, they share the same global reaction

H2O(l) −−→ H2(g) +
1

2
O2(g).

3.1. Alkaline electrolysis

Alkaline electrolysis highlights among other technologies since it is the one

with greater maturity and the larger commercial outreach [43]. The system is con-

stituted by a pair of electrodes immersed in an alkaline solution, usually potassium

hydroxide (KOH) at a concentration of 25 to 30%, and separated by a diaphragm.

At the cathode water is split to form H2 and releasing hydroxide anions which

pass through the diaphragm and recombine at the anode to form O2 according to

the following reactions:
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2 H2O(l) + 2 e− −−→ H2(g) + 2 OH−(aq),

2 OH−(aq) −−→ 1

2
O2(g) + 2 e− + H2O.

3.2. Proton Exchange Membrane electrolysis

The electrolyte in this case is a polymeric membrane with acidic nature that

allows exchange of protons (H+), hence its name Proton Exchange Membrane

(PEM). That membrane, along with the electrodes, form what is called Membrane

Electrode Assembly (MEA). At the anode, water is oxidized to O2 and release

protons that flow through the membrane and are reduced at the cathode to form

H2 according to the following reactions [45]:

H2O(l) −−→ 1

2
O2(g) + 2 H+(aq) + 2 e−,

2 H+(aq) + 2 e− −−→ H2(g).

3.3. Solid Oxide Electrolysis (SOE)

Both Alkaline and PEM electrolyzers are known as Low Temperature Electro-

lyzers (LTE). On the other hand, a third option, Solid oxide Electrolyzer (SOE),

is known as High Temperature Electrolyzer (HTE). Although LTE is a mature

technology, HTE has the distinction of performing electrolysis of water vapor at

high temperatures, resulting in higher efficiencies compared to previous options.

Moreover, it has the possibility of using waste heat instead of part of the elec-

tricity needed [46, 47]. Despite this, they are not ready to be commercialized

because they have durability problems due to the severe conditions. The reactions

occurring at the cathode and anode are as follows:
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H2O(g) + 2 e− −−→ H2(g) + O2−,

O2− −−→ 1

2
O2(g) + 2 e−.

3.4. Anion Exchange Membrane electrolysis (AEM)

A technology that is being developed is the cell with Anion Exchange Mem-

brane (AEM). Schematically it has the same structure of a PEM cell with the

difference that the membrane transports anions OH– instead of protons H+ . In

that sense, the reactions that occur in the electrodes are the same as for the tradi-

tional alkaline cells [48]. AEM technology brings certain advantages compared

to the latter ones [49, 50]:

1. They do not present precipitation of carbonates due to the lack of metallic

cations.

2. They show lower ohmic losses because the AEM is thinner than traditional

membranes.

3. The membrane is less expensive than the PEM one.

4. It is not necessary to use a concentrated KOH solution, making installation

less critic and easier to operate.

In addition, due to its basic condition, this type of electrolyzers does not re-

quire platinum-group-metal (PGM) catalysts such as PEM cells. Instead, there

are experiences using transition-metal catalysts with suitable performances, which

makes it cheaper [51, 52, 53, 54]. Moreover, a possible advantage over the tradi-

tional alkaline electrolysers that is being studied is to be able to improve the purity

of produced gases at high pressure [55].
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A mathematical model was made by An et al [50] that was validated with

experimental data found in the literature. In that work, the authors report that the

performance of the cell improves at a higher exchange current density and liquid

saturation and with a lower membrane thickness. However, a matter to be solved

is the durability of the alkaline membrane since it has a low chemical stability

[49, 56, 57, 58].

3.5. Comparison of electrolytic methods

The three main methods of electrolysis have various features and different

stages of development, as can be seen in Table 3.

Because of its long tradition, alkaline electrolyzers are nowadays sold in greater

numbers, although PEM models are competing with them. As can be seen in Table

3, the latter have important advantages over the former in relation to a higher cur-

rent density, a greater operating range and a higher purity [45]. On the other hand,

the biggest disadvantage of PEM electrolysers lies in the durability of the compon-

ents [62] and in the higher costs associated with titanium-based contact elements,

such as bipolar plates and current collectors, and the high iridium charge of the

electrocatalyst for Oxygen Evolution Reaction (OER) in MEA [63]. Because of

this, the greatest efforts in the latter are devoted to the search for new materi-

als. In spite of greater efficiency, SOE electrolyzers are still being developed for

commercialization so this technology will not be deeply analyzed. Its efficiency

close to 100% (in practice it can reach values of 90%) generates interest in the de-

velopments related to the improvement of durability and costs [64]. Despite these

efforts, the SOE electrolysers are far from reaching commercialization status [65].

In the research carried out by Felgenhauer and Hamacher [66] to BMW, differ-

ent companies and models of alkaline and PEM electrolyzers are compared until
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Table 3: Typical specifications of electrolizers (taken from [43] and updated with information from

[59])

Specification Units Alkaline PEM SOE

Technology maturity
Widespread

commercialization
Commercialization

Research &

Development

Cell temperature ◦C 60-80 50-80 900-1000

Cell pressure bar <30 <30 <30

Current density A cm−2 <0.45 1.0-2.0 a 0.3-1.0

Cell voltage V 1.8-2.4 1.8-2.2 0.95-1.3

Voltage efficiency % 62-82 67-82 81-86

Specific system energy consumption b kWh Nm−3 4.2-4.8 4.4-5.0 2.5-3.5

Minimum partial load % 10-40 0-10 c -

Cell area m2 3-3.6 <0.13 <0.06

Hydrogen production per stack d Nm3 h−1 <1400 <400 <10

Stack lifetime kh 55-120 60-100 8-20 e

System lifetime year 20-30 10-20 -

Hydrogen purity % >99.8 99.999 -

Cold start-up time min 15 <15 >60

Investment costs e kW−1 800-1500 1400-2100 >2000 e

aTypical commercial values, although laboratory experiments with a current density up to 20

A cm−2 are reported [60].
bExcluding rectifier and utilities (0.4-0.8 kWh Nm−3)
cVendors do not report a technical limit but it is known that there is gas contamination at high

pressures and low current density that prevent reaching values close to 0 [61]
dAccording to a recent market survey
eHigh uncertainity due to pre-commercial status of SOE
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the first half of 2014. In Table 4, it can be seen some technical data of electro-

lyzers from nine companies: CETH2/Areva H2Gen, Hydrotechnik, Hydrogenics,

ITM Power, McPhy Energy, NEL, Next Hydrogen, PERIC and Siemens.

For large-scale systems, there are configurations commercially available formed

by several stacks allowing greater production than the ones listed in Table 3. An-

other advantage of this type of configuration is the possibility to have a wider

range of operation.

Although it is not explicit in the table, Felgenhauer and Hamacher say that

efficiency is between 52% and 62% for alkaline electrolyzers and 57-64% for

PEM systems, at the beginning of life (BOL) and 10 bar outlet pressure. Taking

into account that the average of the efficiency degradation of the models analyzed

by Felgenhauer and Hamacher is double for the PEM type (1.57%) than for the

alkaline ones (0.78%), the former difference becomes less important, leading to

an even situation throughout the life of the system.

In the study mentioned, an economic evaluation of these systems is performed

and better outcomes for the case of higher alkali production are obtained. In Fig.

5 investment cost and the cost of annual operation and maintenance per produced

power of hydrogen (LHV) are observed. Moreover, the best cases (AEL25+), that

represent Alkaline Electroyzers with a generation capacity over 25 kgH2h−1, are

shadowed.

Being the technologies in commercial state, Schalenbach et al [67] make a

comparison between the alkaline electrolysis cells and the PEM cells together

with a review of the challenges of both.

In Figure 6, it can be seen schemes of both cells with a similar configuration.

The most important difference lies in the nature of the separator that divides the
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Table 4: Technical data of commercial electrolyzers (taken from [66])

System Generation capacity
Efficiency

degradation

Maximum output

pressure
Stack lifetime

kgH2/hour %/year bar hour

Alkalines

A06 5.9 1.50 10 55000

A10 9.9 1.50 10 55000

A25 25.0 1.00 1 78840

A27A 27.0 0.50 13 87600

A27B 27.0 0.25 10 96000

A31 31.4 0.10 13 50000

A36 36.0 1.00 30 87600

A44 43.7 1.00 1 78840

A45 45.0 0.25 10 96000

A50 50.0 1.00 1 78840

A54 54.0 0.50 13 87600

PEM

P09 9.0 1.17 30 70080

P11 12.0 2.50 14 100000

P21 21.2 0.50 35 80000

P22 21.6 2.50 14 100000

P47 47.0 1.17 30 70080

half-cells of H2 and O2 production: in the case of the alkaline electrolyzers, this

is a porous diaphragm that allows the free circulation of the hydroxyls present in

the alkaline solution, generally potassium hydroxide (KOH), which floods the cell

[68], while in the PEM cells, it is a solid polymeric electrolyte (SPE) that provides

the necessary protons for the process [45].

Behind the separator, there are electrodes whose surface is covered with elec-
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Figure 5: Investment cost and cost of operation and maintenance by produced power of H2 (taken

from [66]). The best cases (AEL25+), that represent Alkaline Electroyzers with a generation

capacity over 25 kgH2
h−1, are highlighted

trocatalysts that allow the reaction. These electrodes must be porous to allow the

circulation of water, produced gases, electrons and ions [69]. In the case of the

PEM cells and due to their acidity, only the platinum-group metals (PGM) have

been tested commercially for being stable and having an acceptable ionic activ-

ity as electrocatalysts. However, the advances that have been made in the use

of electrocatalysts with a transition metal base are promising. Such is the case

of the transition metals of the first row (Mn, Fe, Co, Ni, Cu) as calchogenides,

phosphides, nitrides and carbides [70, 71]. In addition, the electrochemical prop-

erties of transition metal carbides (WC, Mo2C, TaC, NbC) have been tested for

HER at medium temperatures (200-400 oC) obtaining a proper activity although a

demonstration is still needed under realistic conditions [72].

That is why the electrodes are commercially made with an SPE base coated
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Figure 6: Schematic of an electrolytic cell (taken from [67]).

with platinum at the cathode and iridium at the anode. On the other hand, as the

KOH solution provides the anions, the electrodes can be made as a metallic mesh,

usually Ni. Moreover, stable catalysts made of Ni, Co and Fe are much more

abundant and cheaper than their PGM pairs [67].

Since the Ni electrodes allow a proper electrical conduction and have sufficient

mechanical resistance, it is not necesary to use collectors in the alkaline electro-

lyzers, therefore the electrodes are connected directly to the bipolar plate. On the

contrary, the electrodes of the PEM cell require the support of the collectors to

ensure the conductivity and structural stability.

The problems of durability [73] in the PEM cells lie in the replacement of pro-

tons by other cations losing conductivity [74], the loss of dimensional properties

under temperature and pressure [75], the degradation by the formation of HF [76]

and the ohmic losses by the oxidation of Ti present in the collectors and bipolar

plates [77]. In contrast, alkaline electrolyzers are intrinsically more durable but it

is important to be careful with the Ni disolution when the cell potential falls below
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1.23V, so it would be necessary to maintain a stand-by power that would hinder

direct and isolated interconnection with renewable energies.

The study concludes that, for large-scale industrial water electrolysis, liquid

alkaline electrolyzers seem to be more suitable because they are not limited to the

use of precious and scarce metals. In turn, due to the different corrosion mechan-

isms in acidic and alkaline media, the latter show greater durability. Finally, the

alkaline electrolyte is chemically stable and interchangeable, while the SPEs are

vulnerable to the loss of conductivity due to impurities, chemical decomposition

and thermomechanical deformation. As presented by the companies in Table 4, a

tie situation can be observed in terms of the stack durability and a minor differ-

ence from the summary presented in Table 3. This is not in accordance with what

was stated before but it could be justified by the efficiency degradation which was

pointed out by Felgenhauer and Hamacher [66].

The main issues of each of the technologies that has to be worked out, are the

outlined next. For the case of PEM cells:

• Designing of SPE membranes more durable thermomechanically and chem-

ically.

• Finding other suitable catalysts than Ir.

• Counteracting the corrosion and low conductivity of passive layers that de-

grade anodic collector bipolar plates.

• Lowering diffusivity in the solid phase of membranes for greater purity.

In contrast, the challenges for alkaline cells, which will then be discussed in

Section 4, are outlined as follows:
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• Making porous electrodes that allow the effective evacuation of the bubbles

and therefore decrease the ohmic fall.

• Optimizing porous alloys catalysts with Ni, Fe and Co.

• Preventing hydride formation and hydrogen embrittlement in Ni cathode.

• Reducing pores diameters of separators for greater purity.

4. Developments in Alkaline electrolysis

In recent decades, advances have been made in this type of electrolyzers called

as advanced alkaline electrolyzers. The most important points of development are

[21]:

• Zero-gap configuration. It consists of minimizing the distance between elec-

trodes to reduce the ohmic losses.

• New materials for the diaphragm. Previously made of asbestos, the use of

inorganic membranes is investigated. Some are based on antimony poly-

acid impregnated with polymers [78], on porous composite composed of a

polysulfone matrix and ZrO2 (Zirfon) [79], or on polyphenil sulfide (Ryton)

[80].

• Temperature increase. The temperature is increased to promote electrolytic

conductivity and improve reaction kinetics at the electrodes.

• Electrocatalytic materials. Such materials are developed to reduce overpo-

tentials at the electrodes.
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A computational analysis of the citations made in recent years on electrolysis

was developed by Ogawa et al [81]. The results indicate that the amount of pub-

lications related to this technology is increasing, and that the areas of microbial

electrolysis and catalysts in alkaline and PEM electrolyzers are attracting greater

interest. It is clear that although alkaline electrolysis technology is widely known,

there is still interest in developing improvements in different fields, some of which

are presented below.

4.1. High temperature and pressure electrolysis

The electrolyzers are currently designed for stationary operation. In turn, there

are electrolyzers that produce gases at atmospheric pressure or up to 30 bar. So

compression stages are required for storage at high-pressure levels. Against this,

the opinions are divided between those who propose to design electrolizers that

produce directly the gases with greater pressure [82, 83] and those who assure that

this is a loss of efficiency [84].

In the last group are Roy et al [84] who consider in their analysis the energy

consumption in the auxiliary equipment and the loss of gas during the operation

to conclude that atmospheric electrolyzers are more efficient compared to electro-

lyzers operating at pressures up to 700 bar. The percentage of increase in energy

consumed reaches 16.66% at 700 bar, according to the calculations of the authors.

At the same time, they consider that corrosion, hydrogen embrittlement, opera-

tion complexity, dynamic response and costs, make pressurized electrolyzers less

favorable.

On the contrary, the first group claim that the energy needed to compress the

gases grows more than the theoretical energy of dissociation of water. There are

even projects that try to demonstrate with pilot plants the realizability of such a
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Table 5: Development perspectives of selected parameters in alkaline electrolysis technology

(taken from [83])

Specification Symbol Unit State of the art
Short-term

Development

Middle-term

Development

Temperature ϑ ◦C 70-80 80-90 >90

Pressure p bar 30 >60 >100

Current density i kA/m2 3-4 6-8 >10

Cell voltage U V 1.9-2.3 1.8-2.1 1.7-2.0

Voltage efficiency Φ % 64-78 70-82 74-87

Spec. energy use, sys Ψsys kWh/Nm3 4.6-6.8 4.5-6.4 4.4-5.9

Part load capacity θ % 25 <15 <10

Operating life τ h <90000 >100000 >120000

System durability Π y <25 30 >30

solution, as the case of Brandenburg University of Technology Cottbus [83]. In

the presentation of the project, they define the perspectives on the technology of

alkaline electrolysis, as shown in Table 5.

Allebrod et al [85] assure to have succeeded in improving the efficiency of al-

kaline systems with an operating state of 240 ◦C and 37 bar. In turn, they propose

a new design with electrolyte inside a porous structure allowing current densities

up to 2 Acm−2 and voltages not exceeding 1.75 V (typical value in commercial

equipment). On the other hand, in the cost analysis competitive prices are obtained

by not using precious metals.

Ganley [86] also experimented with electrolytic cells of high pressure and

temperature (up to 87 bar and 400 ◦C). The results were promising given that

the applied voltage is drastically reduced. However, the author raises objections

about these results due to the possible mixture of products and corrosion of the

electrodes that could have distorted the aforementioned values. Having said that,
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it is necessary to design new experiments that allow to explain the observed phe-

nomena.

In conclusion, it is theoretically possible to increase the efficiency of the sys-

tem by increasing the pressure and temperature but there are still technical issues

to be solved, among which cross-contamination of gases and materials stability

stands out, respectively.

4.2. Overpotentials reduction

The principle of alkaline electrolysis functioning has been widely described

by several authors. In 2003, Ulleberg [87] proposed a model based on concepts of

thermodynamics and heat transfer to obtain the package voltage, the produced gas

flow rate and the thermal equilibrium of the system, as a function of the imposed

current. These results were validated at the PHOEBUS plant in Jülich, where tests

of photovoltaic cells, production and storage of hydrogen are carried out [88].

On the other hand, Ursúa and Sanchis [89] start from the same thermodynamic

theory to define the ideal tension of water dissociation to construct an electrical

model of the overpotentials. The final model has the same terms proposed by Ul-

leberg as can be seen in equation 1, where ve is the voltage applied in the stack,Ns

is the number of cells in a series configuration, vact is the activation overpotential

and vohm is the ohmic overpotential:

ve = Ns(Vrev + vact + vohm) (1)

The first overpotential, vact, is due to the polarization of the electrodes because

of the approximation of the electrolyte ions to the surface of the electrodes, what

is known as double layer effect. In her doctoral thesis, Roy [90] proposes the
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calculation of the second overpotential, vohm from the conductivity of the mater-

ials in the path of the current and the presence of gas bubbles. This means that

said overpotential includes both the electrical and the ionic conductivity in the

electrolyte.

On one hand, Zouhri and Lee [91] propose a model to investigate the effects

of properties of different materials on the ohmic overpotential, which influences

the exergetic efficiency of alkaline electrolysis. In their work, it is shown that

parameters such as membrane resistivity, distance between electrodes, bubbles,

KOH concentration and temperature affect such overpotential. It is concluded

that the greatest loss of efficiency is due, in order of priority, to:

1. The presence of hydrogen bubbles on the surface of the electrode

2. The ionic resistivity of the electrolyte

3. The presence of oxygen bubbles

4. Electrodes distance

5. Membrane (or diaphragm) resistivity

Alternatively, a way to reduce ohmic overpotentials is the introduction of an

intermediate electrode so the reduction and oxidation of water occur in successive

processes instead of in simultaneous ones. For example, in Japan, Choi et al [92]

propose a cell of three electrodes submerged in an alkaline medium: metal hydride

(MH), negative; manganese dioxide (MnO2), intermediate; and nickel hydroxide

(Ni(OH)2), positive. This idea was developed taking the experience made in other

studies of the inclusion of a third electrode in the water splitting thermochemical

cycles [93, 94]. The general reactions of each half-cell are
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OER: 2 MnO2 + H2O −−→ 2 MnOOH +
1

2
O2,

HER: 2 MnOOH −−→ 2 MnO2 + H2.

By having an intermediate electrode that separates the reactions, two object-

ives are achieved: a) higher purity, since the gases are produced in different steps,

and b) lower ohmic overpotential, by the use of a thinner separator. In this work,

voltage levels below 1.6V were reached at 60◦C, resulting in a potentially more

efficient production of hydrogen and higher purity.

One way to reduce construction costs is to increase the current density. In

order to achieve this goal, it is necessary to counteract the overpotentials so as not

to lose efficiency. This is why this particular topic attracts the greatest interest

currently. Particularly, as will be presented in Section 4.4, the issues about the

materials of the electrodes, catalysts and their structures.

4.3. Impact of electric input fluctuation

The study of the response to variable input currents is of great interest given

the attention caused by the interconnection of electrolyzers with renewable ener-

gies. The more direct the connection between them, the higher efficiency can be

achieved in the storage of energy in the form of hydrogen. While there are certain

investigations that study the response of electrolyzers to the change in the power

supply such as a complete interruption or an impulse [95, 96, 97, 98], there is not

much information about it [99].

Dobó and Palotás [100, 101] developed a series of experiments to characterize

the response of an alkaline electrolysis cell to fluctuations in voltage and current.

The electrolytic cell consisted of a closed container filled with 30 wt. % potassium
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hydroxide solution with flat plate stainless steel electrodes. In the former case,

the cell was fed with a sinusoidal voltage signal with amplitude a and frequency

f mounted on a direct voltage UDC . With an amplitude between 0 and 2V, a

frequency between 1Hz and 5000Hz and a direct voltage between 1.4V and 2.8V,

6512 experiments lasting 15s were carried out. In each case, the electric power

delivered and the gases produced were calculated, the second ones as a function of

the pressure change in the cell. The results obtained show that at greater amplitude

a and frequency f , the efficiency of the cell decreases. In turn, UDC values are

found in which the efficiency is maximum (around 2.2V). Efficiency is defined as

η = 100Q

[
VmP

U0F

(
1

zH2

+
1

zO2

)]−1

,

where Q is the measured flow of gases produced, Vm is the molar volume of the

ideal gases for normal conditions, U0 is the theoretical decomposition voltage of

water, F is the Faraday constant and z is the charge number. A degradation of

efficiency is obtained with respect to that corresponding to the DC operation of up

to 20%. However, there are work zones in which the efficiency drops due to the

fluctuation in the input (<2%) can be considered negligible. It is concluded that it

is possible to accept fluctuation in the tension but it is recommended to soften the

ripple to obtain better results.

In the second case, the cell was fed with several current waveforms (sine, tri-

angle, sawtooth and square) characterized by the direct current IDC , the root mean

square (rms) value Irms and the frequency f . In turn, a ripple factor r is defined

as the relationship between the rms value of the Irms alternating component and

the continuous IDC value, thus comparing the different waveforms.

For frequencies between 1Hz and 10kHz, direct current between 1 kA m−2

and 5 kA m−2 and for amplitudes of the alternating component between 0 A m−2
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to IDC , 4620 experiments were performed. The results obtained mark a drop in

efficiency (similarly calculated as in the previous case) with the increase of the

direct current. In turn, there is a decrease in efficiency with the ripple factor (e.g.

for IDC = 4kA m−2 and f = 1kHz, the efficiency has a relative decrease of up to

16 % with r = 100%).This is explained considering that the production of gases

is directly related to IDC , while the alternating component increases the power

consumed at the same IDC . Although frequency has a smaller participation, it is

highlighted that at higher f an improvement in efficiency is achieved (e.g. IDC =

2kA m−2 and r =100%, the efficiency is 48.5% for the case of continuous and it

increases to 50% for f = 10kHz).

4.4. Electrode materials

The electrodes are usually made of nickel because of its stability. However,

it is necessary to counteract the deactivation mechanism. Some solutions are the

iron coating [102] or vanadium disolution [103].

On the other hand, the use of electrocatalysts allows, in addition to stabilizing

the electrodes, to reduce the ohmic overpotential. Zeng and Zhang [104] present

some examples of anode (Table 6) and cathode (Table 7) materials used in com-

mercial electrolyzers.

In turn, there are those who claim that, for the estimated global capacity of

electrolyzers, it will be necessary to dispense with noble metals [116]. Therefore,

there are experiences using stainless steel electrodes seeking to improve their elec-

trical efficiency [117]. Besides, Cruden et al [118] compare electrodes based on

Nickel with Molybdenum-Resorcinol-Formaldehyde (Mo RF) and other Ni-C-Pt-

made electrodes. It is concluded that the proposed Ni-Mo RF can be a replacement

for the existing Ni-C-Pt electrodes, the latter being more expensive.
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Table 6: Oxygen overpotential of different electrode materials [taken from [104]]

Composition formula Method T (oC) Electrolyte C(mol dm−3) j (Am−2) ηoxygen (mV) Ref.

Ni+Spinel type Co3O4 Thermo-decomposition 25 KOH 1 1000 235± 7 [105]

Ni+La doped Co3O4 Thermo-decomposition 25 KOH 1 1000 224± 8 [105]

MnOx modified Au Electro-deposition 25 KOH 0.5 100 300 [106]

Li10% doped Co3O4 Spray pyrolysis RT KOH 1 10 550 [107]

Ni N/A 90 KOH 50 wt% 1000 300 [108]

La0.5Sr0.5CoO3 Spray-stiner 90 KOH 50 wt% 1000 250 [108]

Ni0.2Co0.8LaO3 Plasma jet projection 90 KOH 50 wt% 1000 270 [108]

Table 7: Hydrogen overpotential of different electrode materials [taken from [104]]

Composition formula Method T (oC) Electrolyte C(mol dm−3) j (Am−2) ηhydrogen (mV) Ref.

Ni-Fe-Mo-Zn Co-deposition 80 KOH 6 1350 83 [109]

Ni-S-Co Electro-deposition 80 NaOH 28 wt% 1500 70 [110]

Ni50%-Zn Electro-deposition N/A NaOH 6.25 1000 168 [111]

MnNi3.6Co0.75Mn0.4Al0.27 Arc melting 70 KOH 30 wt% 1000 39 [112]

Ti2Ni Arc melting 70 KOH 30 wt% 1000 16 [113]

Ni50%Al Melting 25 NaOH 1 1000 114 [114]

Ni75%Mo25% Co-deposition 80 KOH 6 3000 185 [115]

Ni80%Fe18% Co-deposition 80 KOH 6 3000 270 [115]

Ni73%W25% Co-deposition 80 KOH 6 3000 280 [115]

Ni60%Zn40% Co-deposition 80 KOH 6 3000 225 [115]

Ni90%Cr10% Co-deposition 80 KOH 6 3000 445 [115]
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Table 8: Main electrocatalyst materials and their current development [taken from [119]]

Material Activity Stability Status

Raney Ni Sufficient activity Deactivation after intermittent opera-

tion

Commercially used

NiCo, NiFe High activity, which can be further im-

proved upon alloying with rare earths

Better stability than Raney Ni, but still

not optimal

Laboratory applications

NiFe2O4 Very high activity Long term stability Applied in lab-scale electrolysis with

polymeric membrane

NiMo Very high activity Long term stability Pyrophoric material: inappropriate for

commercialization

(Ni,Co)W High activity Unknown Laboratory applications

Co2Si Very high activity Unknown Laboratory applications

Ni3N High activity Unknown Laboratory applications

As stated previously, the study of catalysts is receiving increasing interest. As

stated by Sapountzi et al [119], the worldwide development of hydrogen produc-

tion by electrolysis is limited by the search for stable, active and abundant elec-

trocatalysts that allow intermittent conditions. The authors present in Table 8 the

main electrocatalyst materials and their current development. Another issue that is

being investigated is the use of nanostructures to obtain higher efficiencies or de-

crease the amount of precious metals needed. Some examples are the deposition

of Pd and Ru [120], the incorporation of NiO into a Ni-P matrix [121], the use of

Ni nanoparticles on carbon nanotubes [122] and the development of RuO2-NiO

nanorod arrays on a Ni foam substrate [123]. Table 9 shows the latest develop-

ments in the use of nanostructures showing the variety of forms and materials.

This list is not exhaustive given the large dispersion.

4.5. Gas-purity dependence

Haug et al [131] developed a series of experiments to analyze the variation

of the volumetric concentration of H2 in O2 at the outflow of a zero-gap alkaline
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Table 9: Comparison of works using nanostructures to obtain higher electrolysis efficciencies

Material Nanostructure HER/OER a Activity Stability Ref

CoP Nanosheet@microwire

array on Nickel foam

OER High activity (296mv

@100mA)

At least 65h [124]

NiWO4 Nanowire on Ti mesh Both Good activity (101mV for HER

and 322mV for OER @20mA)

— [125]

CoTe2 – MnTe2 Hybrid nanowire on Ti mesh OER Sufficient activity (310mV

@50mA)

At least 60h [126]

Fe – NiCr2O4/NF Fe doped nanoparticles film OER Good activity (228mV @20mA

and 318mV @500mA)

At least 60h [127]

CoP3 Nanowire array HER Sufficient activity (76mV

@10mA)

At least 60h [128]

CoP Nanosheet on carbon cloth Both High activity (52mV for HER

and 300mV for OER @10mA)

— [129]

PtCo – Co/TiM Ultrafine alloy decorated

nanowire

HER Superior to Pt-based elec-

trocatalysts (70mV @46.5mA)

At least 50h [130]

aTested in Hydrogen or Oxygen Evolution Reaction

electrolyzer. In this way, states of operation that define the following trends are

achieved:

• The reduction in the electrolyte recirculation flow rate allows less impurit-

ies.

• A rise in the electrolyte concentration decreases the hydrogen content in

oxygen.

• An increase in the temperature of the electrolyte implies less impurities.

It is necessary to clarify that these tendencies are delimited by other relations

of commitment, as ohmic overpotential or properties of materials.

Another idea investigated is to know the change of the impurities with three

configurations of the circuit. The first and traditional one is the mixing of the
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electrolyte recirculation circuits to the cell and the interconnection of both gas

separators (mixed). The second one is the independence of recirculations and gas

separators, while the third one keeps the recirculation circuits separated but al-

lows the interconnection of the gas separators (partly separated). It is observed

that there is an improvement in the purity when passing to separate recircula-

tion circuits while it is not considerable when the gas separators are independent.

However, the separation of the recirculation circuits does not allow the equaliz-

ation of KOH concentrations necessary for the suitable performance of the cell.

That is why two solutions that improve the purity are proposed:

• Partly separated method at low current densities (when impurities are higher)

and change to mixed method when higher current densities are reached.

• Period cycling of the order of half an hour between the methods partly sep-

arated and mixed to achieve an improvement in the purity with respect to

the traditional method.

5. Discussions

As presented in the current review, there are interesting alternative methods

for the production of hydrogen with virtually zero emissions, among them high-

lighting the production from biomass and electrolysis. Its biggest disadvantage is

the economic cost superior to industrial processes such as the SMR in both con-

struction and operation. It can be seen that these three technologies will coexist in

the medium term, waiting for the proportion of SMR to gradually decrease, gener-

ating two important niches to be filled by the other two methods: mass production

of hydrogen for industry and mobility from biomass, and electrolysis as an energy

buffer for renewable sources.
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Within the area of electrolysis, a comparative analysis of the various existing

technologies was carried out. Advantages and disadvantages of the two commer-

cially available methods have been pointed out, observing opinions of authors in

favor of one and against another indistinctly. It is our opinion that both techno-

logies have benefits that lead to their use in different situations: in the case of

alkaline electrolyzers, more developed and tested, they are usable as large install-

ations for the stabilization of electrical networks or directly connected to large

wind or solar farms. On the other hand, for PEM electrolyzers, with better dy-

namics and gas quality, it is expected that they can be used as an intermediate

energy buffer in industrial plants or at a residential level. In any case, the need

to continue research lines to increase their efficiency and reduce their costs is

highlighted. Among them is the study of materials for electrodes, electrocatalysts

and separators. The other two technologies in development, the SOE and AEM

electrolyzers, must overcome the durability barriers in order to compete with the

previous ones in the medium to long term.

6. Conclusions

The search for alternative methods of power generation and transport has de-

veloped the concept of hydrogen economy. While today hydrogen is obtained

mainly from hydrocarbons, new technologies to achieve lower GHG emissions are

being developed and consolidated. This paper summarizes the different methods

of hydrogen production with emphasis on the current status of alkaline electro-

lysis. Among hydrogen methods, electrolysis stands out for ease of connection to

renewable energies, obtainable purity and their existing but nascent commercial-

ization.

34



In this paper, current lines of research on alkaline electrolyzers are discussed

as it is the ecofriendly-technology with the highest maturity so far. Nevertheless,

it requires improvements to be competitive against the production of fossil hydro-

gen, which means lowering construction and operating costs. The former depends

mainly on the materials of the electrodes, so simple or coated non-precious metals

are proposed. The later are strongly linked to the efficiency of the system which

implies reducing ohmic overpotentials and gases cross-linking of gases. For this

purpose, there are several proposals that will need to be deeply discused and ana-

lysed to find the optimum point of operation of alkaline electrolyzers.

The public has to be aware of the importance of reducing the GHG emis-

sions. The hydrogen economy and renewable energies are, until today, the best

solution. The development of these technologies needs the coworking between

politics, business and science. The aim of this paper is to give a concise and pre-

cise idea of the latest progress around the world related to hydrogen economy and,

specially, electrolysis in order to encourage the development and investigation in

this important matter.
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