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Abstract— Since most of fuel cell models are generally non-
linearly parameterized functions, existing modeling techniques
rely on the optimization approaches and impose heavy com-
putational costs. In this paper, an adaptive online parameter
estimation approach for PEM fuel cells is developed in order to
directly estimate unknown parameters. The general framework
of this approach is that the electrochemical model is first
reformulated using Taylor series expansion. Then, one recently
proposed adaptive parameter estimation method is further
tailored to estimate the unknown parameters. In this method,
the adaptive law is directly driven by the parameter estimation
errors without using any predictors or observers. Moreover,
parameter estimation errors can be guaranteed to achieve
exponential convergence. Besides, the online validation of re-
gressor matrix invertibility are avoided such that computation
costs can be effectively reduced. Finally, comparative simulation
results demonstrate that the proposed approach can achieve
better performance than least square algorithm for estimating
unknown parameters of fuel cells.

Index Terms—PEM Fuel Cell, nonlinearly parameterized
system, online parameter estimation.

I. INTRODUCTION

Fuel cells have been considered a promising and
environmental-friendly energy source in recent years [1].
Through the chemical reaction between hydrogen and oxy-
gen, fuel cells can directly convert the chemical energy into
water, electricity and heat [2]-[5]. Based on this chemical
principle, there are various advantages of fuel cells, such
as high efficiency, zero pollutant emission, and flexible
installation, etc.

Extensive research has been carried out on modelling dy-
namic characteristics of fuel cells. On this topic, there exists
three major ideas: i) physical models that are based on the
material property, physical structure and chemical reaction,
i.e., lumped models [6], [7], hierarchical models [8], three-
dimensional models [9]-[11]; ii) data-driven models which
consider the fuel cell as a black box modelling by artificial
intelligence-based approaches, i.e., Neural Network [12]; iii)
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semi-empirical models that combine some physical charac-
teristics with partially empirical variables [13]. However,
most of those models are complex, nonlinear and strongly
coupled where it is very difficult to apply control techniques
and optimization algorithms. Besides, some parameters in
the fuel cell model are not practically feasible to directly
measure, and some parameters can suddenly change when
fuel cells operate under degradation condition. Thus, the
parameter estimation approaches for fuel cells are very
helpful to understand the operation process.

The lumped or semi-empirical models of fuel cells can
be considered as a nonlinearly parameterized system, which
is hard to directly apply well-recognized estimation ap-
proaches. In order to address this problem, some optimization
techniques are used to estimation parameters of fuel cells.
In [14], [15], recursive least square (LS) algorithms were
proposed to estimate parameters in a semi-empirical model.
However, these approaches assume that noise or disturbance
is uncorrelated and independent of the regression vector.
In [2], [16], genetic algorithm combined with curve fitting
procedure was used to estimate fuel cell parameters. Never-
theless, there are still some drawbacks for genetic algorithm,
such as low speed. Wenyin et al. [17] proposed an adaptive
differential evolution algorithm to estimate parameters in the
electrochemical model.

In this paper, we tailor the adaptive parameter estimation
approach for a polymer electrolyte membrane (PEM) fuel
cell and present a modified adaptive estimation method based
on our recent work [18], [19], which proposed a novel adap-
tive parameter estimation framework for linearly parameter-
ized systems. Since unknown parameters to be estimated are
embedded in the nonlinear function of fuel cells, those pa-
rameters are first extracted by using Taylor series expansion.
In this way, the nonlinearly parameterized system can be
reformulated into a linearly parameterized system. Then the
proposed adaptive law driven by parameter estimation errors
is used to estimate unknown parameters in the electrochemi-
cial model of the PEM fuel cells. The estimation error can
be guaranteed exponential convergence under the persistent
excitation condition. Moreover, the online validation of the
invertibility of the regressor matrix can be avoided such that
the online estimation and faster convergence are achieved.
Compared to existing parameter estimation methods for fuel
cell [14]-[17], the proposed adaptive parameter estimation
approach does not need the recursive computation and avoids
designing any observer/predictor. Finally, comparative sim-
ulations between the proposed method and the LS method
demonstrate the estimation efficacy of the proposed method
for fuel cells.
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Fig. 1. Schematic diagram of the fuel cell

II. FUEL CELL MODEL

Fig. 1 depicts the open-cathode fuel cell that will be used
in this work. Its modelling and experiment validation have
been addressed in our earlier work [20], [21].

Before we introduce the model, the following assumptions
are required:

Assumption 1: All gases are the ideal gasses.

Assumption 2: The temperature for the whole fuel cell is
uniformly distributed.

Assumption 3: The heat capacity of gases is negligible.

The PEM fuel cell polarization curve can be written as
[3]:

'Ufc = Neell * (Ener — Vact — VUecon — vohm) (1)

where n..; is the number of cells in the fuel cell stack; F,,c,
is the Nernst voltage; v, ¢ represents the activation losses;
Veon 18 the concentration losses; and v,p,, represents the
ohmic losses.

The Nernst voltage can be approximately expressed as a
function of gas partial pressure and temperature. In order to
predict the net fuel cell voltage, vy, the Nernst voltage is
thus very necessary to be estimated.

In practice, the open circuit potential of fuel cells is
significantly lower than the theoretical potential voltage.
There are three typical potential losses in the fuel cell which
are activation losses, v,.¢, ohmic losses, vyp,, concentration
losses, vVeon. Since concentration losses only happen due to
the diffusion of reactants and products, it has less impact on
potential losses. Thus, concentration losses are not consid-
ered in this paper.

The activation potential loss is the energy that reactants
must overcome in the chemical reaction. It usually occurs
at each electrode-electrolyte interface. The activation loss at
the cathode channel is governed by the Tafel equation [22]:

Vact = i:}:—f : f (chvifc) (2)
where iy is the stack current; T is the stack temperature;
o is the charge transfer coefficient; R and F' represent
gas constant and Faraday’s constant, respectively. Function
f(Tyesige) is expressed as:

f (ch,ifc) =In (AZJ;JFECD> 3)

cllp

where A, is the surface area of the catalyst layer. The

apparent exchange current density i3 ““? is obtained as:
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where 5/ is the initial exchange current density of cathode
catalyst layer at the atmosphere condition (1. = 25°C
and Py = 1 atm); E,, is activation energy in the cathode
catalyst layer; EC'SA represents the electrochemical active
surface area; Pp, is partial pressure of oxygen.
The ohmic loss is expressed as:

Vohm = rohmifc (5)

where 7,1, is the ohmic resistance.

The thermal energy balance in the fuel cell can be ex-
pressed as:
dT

7C:H0*H(’oo 6
” tot o0l (6)

where my. and Cp ¢, are the mass and the heat capacity of
fuel cell, respectively. The total exothermic heat flow, H,,,
is made up of exothermic thermal heat flow and electrical
power. Specifically, the exothermic thermal heat flow can
be approximately calculated by thermoneutral voltage. And
H.ool represents the heat transfer between the produced heat
and the ambient air. Thus, the total exothermic heat flow and
cool heat flow can be represented as follows:

mycCp,fe

Htot = ncellEthifc - ’Ufcifc @)
Hcool = pai’r'Aefoai'GC,ai’r' (ch - Tr'ef) (8)
where Ejj, is the thermoneutral voltage; p,;, is air density;
A.ry represents the effective inlet area of cathode channel,

Cp.air 18 specific heat capacity of air; v, represents the
velocity of air flow.

III. PARAMETER ESTIMATION ALGORITHM

In this section, some parameters of the electrochemical
model are selected to be estimated. As analyzed in Section II,
the Nernst voltage, E,,.,, is necessary to be estimated since
it affects the net voltage of fuel cell. Moreover, the charge
transfer coefficient, «, in the activation loss is usually a
empirical value. And the electrochemical active surface area,
ECSA, highly depends on the changes of water saturation,
which is very difficult to be measured in the experiment.
Besides, the ohmic resistance, 7,p.m,, 1S possible to change
under different operation condition. Thus, the parameters to
be estimated in this paper are set as:

0= [Ener Tohm i ﬁ]ﬂr (9)

From (1) to (4), the lumped electrochemical model is a
highly nonlinear function. Especially, the unknown parame-
ter, ooy (corresponding to 6), is embedded in the non-
linear function f (T, %¢.), which increases extra difficulties
in the parameter estimation algorithm design.

Considered the nonlinear parameterized function
f(Tyesife), the electrochemical model (1) of PEM



fuel cells can be reformulated in a general notation as
follows:

y =f(x,u,0) (10)

where x € RP*! is the system state vector; u € R™*! is
the system input vector; y € R™*! is the output vector; 8 €
R™*1 defines the vector of unknown constant parameters;
f(x,u,0) € R"*! is a nonlinearly parameterized function
where unknown parameters are embedded.

Our objective is to propose a parameter estimation al-
gorithm which allows to estimate the unknown parameter,
6, through using the measurable input and output. For this
purpose, the parameter estimation algorithm requires the
following assumptions:

Assumption 4: The system states, x, the system input, u
are bounded and measurable. And the unknown parameters,
0, are also bounded constants.

Assumption 5: The nonlinear function f (x, u, ) is a con-
tinuously second-order differentiable function with respect
to 6.

In order to extract the unknown parameter 8 from the
nonlinear function f (x,u, ), the Taylor series expansion is
performed. Thus, the nonlinear system (10) is reformulated
as

y=f (x,u,é) +§:§i%f (x,u,é) 14 (é) (11)
i=1 ¢

where 8 = 0 —  is the estimated parameter error; 0
represents the estimated parameter; §(6) is the Lagrange
remainder term of the Taylor series expansion, which is
considered as a bounded disturbance.

To facilitate the parameter estimation algorithm, the re-
gressor matrix is defined and then the system of (11) can be
represented as:

y=& (x,u,é) 0+ (x,u,é) iy (é) (12)
where
df1(x,u,6) df1(x,u,6) ’
9 o= O lo=6
o(xud)=| T P
9 (x,1,8) .. Ofa(xu,0) ‘
9 lo=p m |o=p

is the known regressor matrix which is based on inputs u
and states x; ¢ fx,u,é) =f (x, u, é) - (x, u, é) 6 can
be updated online.

Remark 1: Applying the first order Taylor series expan-
sion, the unknown parameters, 6, are extracted from the
nonlinear function f (x, u, @). The high-order term of Taylor
series expansion & (5) will be vanished when the convergence
of parameter estimation is achieved.

Following the process above, we will use the Taylor series
expansion to extract the parameter 84. For brevity, we first
define that neet RT e

h= nkF

)
fo= fe
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The term f16051n ( f2é4 is added and subtracted in the
completed form of the lumped electrochemical model from
(1) to (5). Then the Taylor series expansion is used to extract
04. Thus, the regressor matrix is represented as:

P = |:ncell —Neettife —f1-In (f294) —fi- éﬁ} (13)

And the residual term in (12) is derived as: ¢ = flég.
Before developing the parameter estimation approach, the
maximum and minimum matrix eigenvalues are denoted as
Amin {*}> Amax {-} for brevity.
In order to estimate unknown parameters, auxiliary matrix
P € R™*™ and vector q € R™*! are defined as:

P=—(P+3"®, P(0) =0
{q:—€q+<I>T (y—go(x,u,é))7 q(0)=0

where ¢ > 0 is a constant value. It can considered as a
forgetting factor which guarantees the boundness of P and

q

(14)

Lemma 1 ( [18], [19]): If  the
] (x, u, é) satisfies the persistent excitation (PE) condition

(when T > 0 and & > 0, [/*" ®T (1) ® (1) dr > eI, Vt >
0), the matrix P (¢) defined in (14) is positive definite
(>\min (P (t)) >p > O, Vit > O)

Proof: A detailed proof of the above lemma can be
found in our previous work [18], [19], and thus it will not
be presented here. [ ]

Then another auxiliary vector w € R™*! can be defined
as:

regressor  matrix

w=Pl—q 15)

Lemma 2: From the auxiliary vector w given in (15), we
can obtain that _
w= PO+ (16)

where 1 (t) = —f(f e =7)®T (1) § (r)dr is a bounded
residual error, since § is bounded, such that ||| <
@[l 4] /¢ = p, V> 0.

Proof: In order to prove Lemma 2, the equation (14)
can be derived as:

P(t) = [} e ‘=D& (1) ® (1) dr

a(t) = [y eI (1) (y — (x u, é)) dr
From (12), we can reformulate that y — ¢ = ®6 + § and
then verify that g = PO+, which are substituted into (15).

Finally, the equation (16) can be derived and proved. [ ]
The adaptive law for updating @ is defined as:

a7

6= _Tw (18)

where I' > 0 is a constant diagonal matrix.

Theorem 1: Considering system (12) with unknown pa-
rameter @, the adaptive law (18) is used. If the regressor
matrix ® is satisfied PE condition, then the estimation error
] converges to a small compact set given by:

_ 280+ e Amax T H(16(0)|2
- >\min {I‘il}

6




where the matrix P is positive definite (Apmin (P) > p >
0, Vt > 0); the residual error is bounded (||¢|| < w); and
n > 1/2p is a positive constant.

Proof: The Lyapunov function is considered as

1 - -
V= 5¢9T1“*19 (19)

Then we can calculate the derivation of (19) along (16) and
(18) as

V=0T '9=-06T'9=-6w=0 (fPé' n xp) (20)
By applying Young’s inequality a™v < a%a/2n + nbTb/2
with a positive constant n > 0, we can further derive that

2
> nle|

o 2

. ~112  ~T 1
v<-—p|d] +8 \If§—<p—>
2n

< -—nV+3
2D

where 7 =2 (p — 1/2n) /Amax {T" }, B = np?/2 both are
positive constants for n > 1/2p. Moreover, the solution of
(1) is V(t) < e "V (0) + 3/n. Based on the definition of

(19), it can be derived that HéH < \/QV () /Amin {1“—1} <
\/2(5/7) + V (0) e) /Amin {1"_1 }. Therefore, the estima-

tion error 6 will exponentially converge to a small compact
set as defined in Theorem 1. . n

Remark 2: The ultimate size of estimation errors 6 de-
pends on the excitation level p and the learning gain I’
as shown in Theorem 1. A higher excitation level p and a
higher gain I' can increase the convergence speed. Moreover,
a larger filter constant ¢ can reduce the residual error as
shown in Lemma 2. However, the larger filter constant £ may
produce a larger DC gain, and then reduce the amplitude of
the learing gain I' so as to decrease the convergence rate.
Thus, the filter constant ¢ should be chosen small practically.

Remark 3: From Lemma 2, the estimation error PO in-
volved in the auxiliary matrix w is used to drive the new
adaptive law (18) and thus there is no need to use observers
in the classical parameter estimation scheme.

Remark 4: The sufficient condition to prove the conver-
gence of the proposed adaptive law (18) is that the regressor
matrix ® satisfies the PE condition. However, there is still
an open problem to online validate the PE condition. In
this paper, we provide a feasible method to online test this
condition for the proposed parameter estimation framework,
as shown in Lemma 1.

IV. THE LEAST SQUARE ALGORITHM

In this section the least square (LS) algorithm with a
variable forgetting factor [23] is represented.
The tracking error e is calculated as follows:

e=y—9=y—®0—p=205(0)+ ®6. (22)
For LS method with variable forgetting factor [23], the
adaptive law is driven by the tracking error e as follows:
H®Te

é:
m2

(23)

[ee]
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Fig. 2. The input current of fuel cell stack without disturbance
TABLE I
FUEL CELL MODEL PARAMETERS
Parameter Value

2.5 x 10~3 [m?]
8.5 x 103 [m?]
1005 [J-kg— 1K1
1200 [J-kg— K1
7 x 104 [J-mol—1]

Ay, surface area of catalyst layer

A ff effective area of cathode channel
Cp,air» heat capacity of air

Cp, se» heat capacity of stack

FElcq, activation energy of cathode channel
ECSA, electrochemical active surface area
FEner, Nernst voltage

FEp,, thermoneutral voltage

F, Faraday’s constant

igef , exchange current density

Mye, stack mass

n, number of electrons

Neell, Number of cells 24

Po,,, partial pressure of oxygen 2.1 x 10* [Pa]

1.16 [V]

1.23 [V]

96485 [C-mol~1]
5x 1073 [A-m—2]
0.3 [ke]

2

P, atmosphere pressure 105 [Pa]

Tohm, Ohmic resistance 0.7 [©2]

R, gas constant 8.314 [J-mol—1.K—1]
T e s, atmosphere temperature 298 [K]

Vair, iNput air velocity [m-s—1]

a, charge transfer coefficient 0.28
0, effective contact angle 91 [°C]
Pair, air density 1.205 [kg-m?]

where m2 = 1+ ®Td is a normalizing factor; H is a

learning gain which is updated as:

. H®T®H
H=-———35—+K(I-aHH (24)
m
where the boundness of initial learning gain is manually
defined as 0 < i[ < H(0) = Hy = H] < 0%1[; and
K > 0 is a constant diagonal matrix. Thus, the estimation
error of LS algorithm is derived as:
Hoe
o 2

6=—6= 25)

m

In (22), the observer error e includes estimation errors 6
and the Lagrange remainder term from Taylor series expan-
sion. Thus, the boundness of estimated parameter error may
depend on the amplitude of this remainder term. Moreover,
the LS algorithm have a potential possibility in producing the
drifting and bursting phenomena. Besides, the convergence
of estimation error could not be claimed without online
verifying the PE condition even though the estimation error
converges to zero.

V. SIMULATION RESULTS

In this section, the proposed parameter estimation method
is validated by simulations using the proposed fuel cell
model. In practice, the fan is used to remove the heat of fuel
cell and simultaneously increase the amount of oxygen in the
cathode channel. Thus, the air velocity can be fixed adjusting
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Fig. 4. The auxiliary matrix w evolution in the proposed method

the pulse-width-modulation (PWM) duty cycle signal of a fan
[20]. The value of PWM duty cycle is 90% in this simulation.
Moreover, the physical parameters of fuel cell are set as the
same with the H-100 fuel cell parameters in [20], [21], which
are summarized in TABLE I. The stack current are set as
depicted in Fig. 2.

The parameters used in (14) and (18) are set as ¢ = 3,
I = diag ([750 36 2400 2.15]). Due to the parameter
0, in the natural logarithm, the initial value of 6, cannot
equal to zero. Thus, the initial values of unknown Parameters
are set as Gg = [0.464 0.28 1.4286 0.0138] .

Simulation results of the estimated parameter profiles are
depicted in Fig. 3. It is shown that the estimated parameters
converge to their true values and the adaptive law can achieve
accurate estimation. The auxiliary matrix w converges to
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Fig. 5. Minimum eigenvalue of matrix P(t)

zero as depicted in Fig. 4. In practice, we can online check
whether the auxiliary matrix w converges to zero in order
to make sure that the estimated parameters converge to the
true value. Moreover, Fig. 5 illustrates that the minimum
eigenvalue of matrix P is larger than zero such that the
regressor vector satisfies the PE condition. This provides a
feasible method to online test the PE condition.

In order to further reveal the merit of the proposed
approach driven by the estimation error, the LS algo-
rithm (23) with a variable forgetting factor (24) in Sec-
tion IV is used to estimate the unknown parameters 6.
The parameters used in (23) and (24) are set as K =
diag ([9000 2500 6000 2]) x=1and a; = 107°.

Fig. 6 shows the parameter estimation results of LS
method in (23) and (24). And the reconstructed output by
the estimated results, the input of current and air velocity are
depicted in Fig. 7. It is shown that the unknown parameters
cannot be accurately estimated by LS method even though
the observer errors converges to zero. Hence, the proposed
adaptive method (18) can achieve better estimation results
than the LS method (23).

VI. CONCLUSIONS

In this paper, an online parameter estimation approach
for a nonlinearly parameterized system of fuel cells has
been developed. The nonlinearly parameterized system is
reformulated by the Taylor series expansion. Then, one
recently developed adaptive parameter estimation method
is tailored to achieve parameter estimation for fuel cells.
The adaptive law in this method is directly driven by the
parameter estimation errors. Moreover, this new estimation
framework provides a feasible method to online test the
required PE condition to guarantee the error convergence.
The convergence of the estimation error has been proved in
terms of Lyapunov method. Comparative simulation results
illustrate the efficacy of the proposed estimation parameter
method. Future work will focus on extending the proposed
parameter estimation approach to the unknown time-varying
parameters in the nonlinear functions of fuel cell systems.



0.8 . , ; ; .
s
mﬁ 0.6
0.4 : ‘ ‘ :
0 50 100 150 200 250 300
0.35 . ; : , .
g
503 1
0.25 ' '
0 50 100 150 200 250 300
1.44 : ,
Sis u\'\_‘__,_:——"
1.42 : : : :
0 50 100 150 200 250 300
0.02 w T T w
<
n
Q 0.01 1
=
0 L I T T T
0 50 100 150 200 250 300
Time [s]

[1]

[2]

[3

=

[4

=

[5

=

[6]

[7]

[8]

[9]

Fig. 6. Parameter estimation results of LS method

REFERENCES

O. Z. Sharaf and M. F. Orhan, “An overview of fuel cell technology:
Fundamentals and applications,” Renewable and Sustainable Energy
Reviews, vol. 32, pp. 810-853, 4 2014.

E. Ariza, A. Correcher, C. Sanchez, A. Navarro-Pérez, and E. Garcia,
“Thermal and electrical parameter identification of a proton exchange
membrane fuel cell using genetic algorithm,” Energies, vol. 11, p.
2099, 08 2018.

F. Barbir, PEM Fuel Cells: Theory and Practice.
2005.

P. Pei and H. Chen, “Main factors affecting the lifetime of Proton
Exchange Membrane fuel cells in vehicle applications: A review,”
Applied Energy, vol. 125, pp. 60-75, 7 2014.

P. Mogoteguy and A. Brisse, “A review and comprehensive analysis
of degradation mechanisms of solid oxide electrolysis cells,” Interna-
tional Journal of Hydrogen Energy, vol. 38, no. 36, pp. 15 887-15902,
12 2013.

J. T. Pukrushpan, H. Peng, and A. G. Stefanopoulou, “Control-
Oriented Modeling and Analysis for Automotive Fuel Cell Systems,”
Journal of Dynamic Systems, Measurement, and Control, vol. 126,
no. 1, p. 14, 3 2004.

A. M. Murshed, B. Huang, and K. Nandakumar, “Control relevant
modeling of planer solid oxide fuel cell system,” Journal of Power
Sources, vol. 163, no. 2, pp. 830-845, 1 2007.

M. Sorrentino, C. Pianese, and Y. G. Guezennec, “A hierarchical
modeling approach to the simulation and control of planar solid oxide
fuel cells,” Journal of Power Sources, vol. 180, no. 1, pp. 380-392, 5
2008.

M. Hu, A. Gu, M. Wang, X. Zhu, and L. Yu, “Three dimensional,
two phase flow mathematical model for PEM fuel cell: Part I. Model
development,” Energy Conversion and Management, vol. 45, no. 11-
12, pp. 1861-1882, 7 2004.

Academic Press,

Voltage [V]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

14
12 1
10+

8 r 4

6r 1

‘—Theoretical value = = -Estimated value
4
0 50 100 150 200 250 300
Time [s]

Fig. 7. Reconstructed output of LS method

T. Berning and N. Djilali, “Three-dimensional computational analysis
of transport phenomena in a PEM fuel cell—a parametric study,”
Journal of Power Sources, vol. 124, no. 2, pp. 440—452, 11 2003.

B. Haberman and J. Young, “Three-dimensional simulation of chem-
ically reacting gas flows in the porous support structure of an
integrated-planar solid oxide fuel cell,” International Journal of Heat
and Mass Transfer, vol. 47, no. 17-18, pp. 3617-3629, 8 2004.

G. Napoli, M. Ferraro, F. Sergi, G. Brunaccini, and V. Antonucci,
“Data driven models for a PEM fuel cell stack performance predic-
tion,” International Journal of Hydrogen Energy, vol. 38, no. 26, pp.
11628-11638, 8 2013.

M. A. S. Al-Baghdadi, “Modelling of proton exchange membrane
fuel cell performance based on semi-empirical equations,” Renewable
Energy, vol. 30, no. 10, pp. 1587-1599, 8 2005.

K. Ettihir, L. Boulon, M. Becherif, K. Agbossou, and H. Ramadan,
“Online identification of semi-empirical model parameters for PEM-
FCs,” International Journal of Hydrogen Energy, vol. 39, no. 36, pp.
21165-21176, 12 2014.

M. Kandidayeni, A. Macias, A. A. Amamou, L. Boulon, and
S. Kelouwani, “Comparative Analysis of Two Online Identification
Algorithms in a Fuel Cell System,” Fuel Cells, 5 2018.

K. Priya, T. Sudhakar Babu, K. Balasubramanian, K. Sathish Kumar,
and N. Rajasekar, “A novel approach for fuel cell parameter estimation
using simple Genetic Algorithm,” Sustainable Energy Technologies
and Assessments, vol. 12, pp. 46-52, 12 2015.

W. Gong, Z. Cai, J. Yang, X. Li, and L. Jian, “Parameter identification
of an SOFC model with an efficient, adaptive differential evolution
algorithm,” International Journal of Hydrogen Energy, vol. 39, no. 10,
pp. 5083-5096, 3 2014.

J. Na, M. N. Mahyuddin, G. Herrmann, and X. Ren, “Robust adaptive
finite-time parameter estimation for linearly parameterized nonlinear
systems,” in Proceedings of the 32nd Chinese Control Conference, 7
2013, pp. 1735-1741.

J. Na, M. N. Mahyuddin, G. Herrmann, X. Ren, and P. Barber, “Robust
adaptive finite-time parameter estimation and control for robotic sys-
tems,” International Journal of Robust and Nonlinear Control, vol. 25,
no. 16, pp. 3045-3071, 11 2015.

S. Strahl, A. Husar, P. Puleston, and J. Riera, “Performance Improve-
ment by Temperature Control of an Open-Cathode PEM Fuel Cell
System,” Fuel Cells, vol. 14, no. 3, pp. 466478, 6 2014.

S. Strahl and R. Costa-Castelld, “Model-based analysis for the ther-
mal management of open-cathode proton exchange membrane fuel
cell systems concerning efficiency and stability,” Journal of Process
Control, vol. 47, pp. 201-212, 11 2016.

A. L. Dicks and D. A. J. Rand, Fuel Cell Systems Explained.
Chichester, UK: Wiley, 4 2018.

M. d. Mathelin and R. Lozano, “Robust adaptive identification of
slowly time-varying parameters with bounded disturbances,” Automat-

ica, vol. 35, no. 7, pp. 1291-1305, 7 1999.



