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Abstract This chapter presents a methodology for the detection of the crawler used 
in the project AEROARMS. The approach consisted on using a two-step progressive 
strategy, going from rough detection and tracking, for approximation maneuvers, to 
an accurate positioning step based on fiducial markers. Two different methods are 
explained for the first step, one using efficient image segmentation approach; and 
the second one using Deep Learning techniques to detect the center of the crawler. 
The fiducial markers are used for precise localization of the crawler in a similar way 
as explained in chapter four. The methods can run in real-time.

1 Introduction

Detection and grasping of objects, like a crawler for inspection, is a very important 
task in aerial manipulation. This chapter presents a methodology for the detection 
of the crawler used in the project AEROARMS. The approach consisted on using a 
two step progressive strategy, going from rough detection and tracking, for approx-
imation maneuvers, to an accurate positioning step based on fiducial markers. In 
the first step two types of methods are used: the first one based on detecting invari-
ant features based on the appearance of the considered robot, through an efficient 
image segmentation approach; and the second one using Deep Learning techniques 
to detect the center of the crawler formulated as a background-object pixel-wise 
classification problem. The accurate positioning based on fiducial markers relies 
in building multiple marker detection over known augmented reality technologies, 
allowing to cross validate the different estimations and increase accuracy through 
least-squares optimization.
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2 Crawler detection through monocular vision

Accurate detection and positioning of the target to be operated is a critical aspect in
any robotic manipulation operation. In this section, the systems integrated to detect
and localize a robotic crawler in an industrial environment are described and dis-
cussed. The robotic device considered is a crawler with magnetized wheels which
adhere it to ferromagnetic pipes. This allows the crawler to travel along the pipes
in order to scan them. Deployment of this kind of devices usually requires that the
area is accessible to human personnel, which can be impossible or at least inconve-
nient in many circumstances. This disadvantages can be mitigated by performing the
deployment operations from a multi-copter autonomous unmanned vehicle (UAV).
At the same time, performing this operations using an autonomous robot require
precise knowledge of the spatial relations with respect to the environment and the
robotic crawler.

3 Rough detection and tracking for approximation maneuvers

One of the key tasks in approaching maneuvers is to detect and track the crawler
from a far distance. There are various approaches for object detection: feature based,
template based, classifier based and motion based. In feature based detection ap-
proaches the objects are models based on their appearance characteristics such as
shape, size, or color [2], [7]. These methods are computationally efficient and can
run in real time in embedded computers, which makes them desirable methods to ex-
ploit when appropriate. They are not appropriate in complex scenes where there are
many objects with occlusions, shadings and similar shapes and colors (see Fig. 1).
In these scenarios, the objects cannot be easily segmented which disables the use of
shape and size descriptors. Similarly, if the scene contains multiple objects with the
same color as the desired object the color is no longer a distinctive feature of the
object.

Fig. 1 Sample industrial environment with heavy presence of pipelines. There are also present
abundant reflections, shadows and other visual artifacts.
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In template based approaches the object is detected by matching features be-
tween a template and the analyzed image. There exist two types of templates, fixed
[13] and deformable [10]. Fixed frame matching methods can be used when ob-
ject shapes are invariant viewing angle of the camera. The template position in the
analyzed image is determined by minimizing the distance error between the tem-
plate and various positions in the image. However, most objects shape change with
respect to the viewing angle. In these cases, deformable template approaches are
more suited. The detection is obtained by combining both global and local struc-
tures of the object parametrized by a deformation transform. Classifier based object
detection methods [11], [19] are formulated as a background object pixel-wise clas-
sification problem. Deep learning classifier based methods are the current state of
the art in object detection. They consist in training a network to regress a classifica-
tion label for each pixel in the given image. Its main disadvantage is the prerequisite
of having thousands of samples of the object to be detected in multiple scenarios,
views and light conditions to train the network.

Fig. 2 Close up of the robotic crawler casing over a pipe in a synthetic environment, presenting
varying color intensity, with no texture or invariant shape constraints.

The last category of object detection methods is based on motion features ex-
tracted as temporal changes at pixel or block level with frame differencing [14],
optical flow [3] or Gaussian mixture based methods [1]. Although being the most
widely used detection methods are prone to error with noisy videos and rapid cam-
era position changes. For our particular problem of detecting a crawler with an em-
bedded computer template based approaches are not well suited due to the high
computational complexity of the template matching optimization problem. Also, a
motion feature based approach would also fail due to the vibrations and fast accel-
eration of the drone itself. Then, given the fact that the crawler appearance is clearly
distinctive with respect to a pipe the most appropriate methods are classified and
featured based methods. Classifier methods, and in particular deep learning meth-
ods, would be the most appropriate method for far distance accurate positioning. We
will explain briefly both methods that have been used.
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The crawler shape appearance is not invariant to camera view position and it has
not texture which disables the use of shape, size and texture features. However, it
has a distinctive color with respect to refinery pipes (see Fig. 2). Hence, the first ap-
proach used for rough detection and pose estimation for approaching maneuvers is
a color based segmentation method. Color based features are constant under view-
point changes and computationally efficient to acquire. The developed algorithm
considers each color component separately and transforms the image representation
from RGB to HSL. Then, the image is thresholded to only capture the blue parts
of the image and a connected components analysis is performed. In a perfect case
scenario, there would be only one connected component, the crawler. To remove
possible outliers each of the connected components is filtered based on its dimen-
sions. Finally, once the object is detected its pixel coordinates are projected to the
camera plane and the depth is obtained through the dimension of the object.

Fig. 3 Experiments on detection of the robotic crawler through visual inspection in a pipe.

The experiments show (Fig 3) that the proposed method is reliable at providing
the crawler direction to navigate towards it. Notice that algorithm cannot provide
a reliable depth estimation because the object shape is not in-variant to the camera
viewpoint. However, this method is intended to be used in the approaching ma-
neuvers, where the important information is the approaching direction, and not its
accurate distance to the crawler.

The second technique uses deep learning technique to detect the crawler and it is
formulated as a background-object pixel-wise classification problem. The method
consists in training a network to regress a classification label for each pixel in the
given image. Fig. 4 shows the architecture of the deep learning network.

Our method is based on regression problem using ConvNets [18]. Given an input
image I ∈RHxWx3 (H is the height, W is the width, and 3 is the depth), the first step
consists in extracting image features from a pre-trained network, in our case VGG
[9]. Let us denote these features as Ψ(I ) ∈ RH

′
xW
′
xC. The image features are then

fed into the 2D detection branch, which is responsible for estimating the 2D loca-
tions of the crawler center u ∈U , where u = (u,v) is the set of all (u,v) pixel loca-
tions in the input image I . The 2D location u is represented as a probability density
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Fig. 4 Deep Learning architecture for detecting the crawler

Table 1 Symbols used in the development of rough crawler detection and tracking.

Definition Symbol

3-channel H×W (height x width) resolution image: I ∈ RH×W×3 I

Set of image features Ψ(I ) ∈ RH
′×W

′×C Ψ(I )
Set of all pixel locations (u,v): u = (u,v) U
Crawler center in image I u
Probability density map (belief) for u = (u,v) B ∈RHxW

Deep Learning cost function L
Binary Cross Entropy BCE
Mean Squared Error MSE

map B ∈RHxW computed over the entire image domain as B(u,v) = P(ui = (u,v)),
∀(u,v) ∈U . The output u = (u,v) can be recovered as the following weighted sum
over the belief map B:

u =
∑(u,v)∈U u

∑B
(1)

v =
∑(u,v)∈U v

∑B
(2)

The model is trained to minimize the Mean Square Distance between the esti-
mated and desired probability density maps. The model was trained with scenes
in indoors, outdoors, different orientations and different illuminations and different
scales.

There was also developed a second version of the crawler detection using Deep
Learning techniques, which not only computes the probability of being the crawler
in the image in a similar way as explained before, but also the probability to de-
tecting the upper-left and the bottom-right locations of the crawler in a bounding
box that circumscribe the it. This technique which architecture is shown in Fig. 5
performed better that the previous one.

The results obtained using this last architecture shown a result of 97% of success
and in Fig. 6 can be seen some of the detection results.
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Fig. 5 Deep Learning architecture for detecting the crawler using image probability and bounding
box detection

Fig. 6 Results of the crawler detection using image probability and bounding box detection

4 Accurate positioning and tracking for crawler operations

Precise estimation of the crawler pose is a mission critical information in order to
successfully perform the logistics operations from the UAV. There are many tech-
niques to detect objects through computer vision, but as described in the previous
section, most of them present limited accuracy unless prior knowledge exist, or
present excessive computational costs. On the other side, methods based on fidu-
cial markers present the better trade-off between of ac-curacy and performance,
especially when the computational power budget is restricted, and other advantages
[16], like adding recognition capabilities. There are many libraries implementing
different alternative algorithms, like Matrix [15], ARToolkit [8], ARTag [4], and
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AprilTag [12], to name the most relevant. Some of the most usual are commented in
[5], with an in-depth discussion on the different steps performed by each algorithm.

Fig. 7 Detail of the geometrical constraint model optimization process, based on ALVAR. The
fiducial markers observed concurrently in a given image are annotated to perform LSE optimization
calibration.

Thus, in order to guarantee the maximal accuracy, a positioning system based on
fiducial makers was build. Several libraries were tested, including ARuco [6], AL-
VAR [17], and the works at [8] and [4]. The results obtained were in accordance
with those reported in the literature, with ALVAR and ARuco showing greater ac-
curacy and resilience to occlusions thanks to the ability to detect multiple markers
jointly. Finally, the use of ALVAR enabled the introduction of a model learning pro-
cess (see Fig 7), described in [17], which allows to learn a model describing the
geometrical relations between the different markers. This process takes few minutes
to complete, allowing to modify the setup and geometrical model.

Fig. 8 Experiments with several sensors.Both the rough detection and the accurate positioning of
the crawler are active: the red box is positioned according the accurate (marker based) estimation,
while the blue box is positioned with the rough estimation
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The experiments performed, seen in Fig 8, assumed a worst case scenario where
the camera resolution was set at 640x480 pixels to minimize computational load.
The results obtained where gave us a relative error in position estimation below 2%
at distance interval between 1m and 1.2m, which was determined accurate enough,
but produced spurious estimation in about 6% of the frames. most of the spurious
estimations presented negative depth in the pose, which required the introduction of
a filter to reject them. Reducing the distance below 1m increased the accuracy, and
reduced the chances of spurious estimations to 3.4% or lower.

In the case that the fiducial markers are not flat, but are in a curve surface, then
it is better to use other fiducial markers using Augmented Virtual Reality Markers,
explained in a previous chapter of the Perception for Aerial Robotic Manipulation
part.

5 Conclusions

In this chapter we have presented various approaches for detecting AEROARMS
crawler robot. The two-steps strategy has been shown to be able to detect the crawler
robot, minimizing the computational effort required at each phase of the approxima-
tion and operation. Though the rough detection step cannot provide depth informa-
tion, it is informative enough to set a direction to allow the UAV traveling towards
the crawler robot. We have tried two techniques to detect the crawler which are
based on color and shape. One uses only color and the other one color and shape in
an Deep Learning architecture. At the same time, the fiducial marker method pro-
posed is able to detect the crawler with accuracy, and thanks to the model learning
procedure, operations related to acquiring or modifying the fiducial model of the
crawler or any other robot can be performed quickly.
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