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Abstract— This paper proposes the use of piecewise C"
smooth curve for mobile-base motion planning and control,
coined Timed-Elastic Smooth Curve (TESC) planner. Based on a
Timed-Elastic Band, the problem is defined so that the trajectory
lies on a spline in SE(2) with non-vanishing n-th derivatives
at every point. Formulated as a multi-objective nonlinear
optimization problem, it allows imposing soft constraints such
as collision-avoidance, velocity, acceleration and jerk limits, and
more. The planning process is realtime-capable allowing the
robot to navigate in dynamic complex scenarios.

The proposed method is compared against the state-of-the-art
in various scenarios. Results show that trajectories generated
by the TESC planner have smaller average acceleration and are
more efficient in terms of total curvature and pseudo-kinetic
energy while being produced with more consistency than state-
of-the-art planners do.

I. INTRODUCTION

The capacity of planning a safe trajectory is of funda-
mental importance for autonomous mobile-base to enable
high-level applications in service robotics or autonomous
transportation. Not only should a robot be able to move
toward a desired configuration, but it shall do it optimally,
and most importantly safely. Such planning must happen
online in order to react to the dynamic aspects of the environ-
ment. Splines, specifically with non-vanishing n-th deriva-
tives allow to define constraints such as velocity, acceleration
but also jerk limits, which is desirable e.g. for autonomous
people transportation vehicles in order to improve comfort
and prevent motion sickness [1].

While there exist many approaches solving A-to-B type
planning, often at the cost of additional requirements, they
generally lack in speed, complexity or guarantees.

Initially designed for obstacle avoidance, the method of
Potential Field (PF) proved to be very valuable for trajectory
planning [2]. Two artificial potential fields are superimposed,
one repulses from obstacles while the second attracts toward
the desired goal. While being simple and efficient, their main
drawbacks are the presence of local-minima in which the
robot gets stuck and typically failing to find a path between
close obstacles.

Rapidly-exploring Random Trees (RRTs)-based methods
were first presented in [3], [4]. They originally aimed at
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Fig. 1: Decomposition of TIAGo’s motion traversing through
a scene with obstacles marked by dark regions on the floor

solving general nonholonomic and kinodynamic planning
problems which earlier randomizer approaches struggled
with - e.g. Probabilistic Road Maps (PRM) [5]. By sub-
sequently growing a tree randomly from the initial config-
uration, RRT methods offer good exploration of the search
space with relative ease. However they are by nature non-
guided therefore non-optimal, and have to be instrumented
to provide time guarantees.

Differential geometry on manifold for trajectory optimiza-
tion has often been used in robotics, especially on Lie groups,
with e.g. a smooth rigid-body motion on SE(3) [6] presented
as early as twenty years ago. Most methods rely on estimat-
ing piecewise-smooth curves, based on piecewise polynomial
function [7]-[9] or B-spline [10], [11] or Non-Uniform Ra-
tional B-Splines (NURBS) [12], [13]. Other methods model
the trajectory using Bezier Curves geometrically constructed
on Manifold [14]. More recently, [15] presented an extension
of the method to construct splines. For either of the later two
works, the derivatives do not exhibit the same properties as
the Euclidean case such as continuous smoothness at the
splines knots.

The Timed Elastic Bands (TEB) planner [16], [17] rapidly
became one of the most popular local planners for mobile-
bases in the Robot Operating System (ROS) [18] commu-
nity. Based on a TEB formulation (please refer to Sec.
II-B.1) which originates in [19], the TEB-planner allows



to efficiently and rapidly estimate a discretized trajectory
in the plan. Formulated as a multi-objective optimization
problem, it incorporates constraints such as the trajectory
feasibility from a robot’s kinematics point of view, together
with velocity limits and obstacle avoidance.

This paper proposes a Timed-Elastic Smooth Curve
(TESC) planner for mobile-base motion planning and con-
trol. Building upon the work of Rosmann et al. [16], [17]
we formulate a sparse trajectory planning scheme whose
discretization lies on piecewise C" curve on a Lie manifold.
Unlike the work of [16], [17] whose TEB’s connectedness is
ensured by kinematic constraints, our trajectory’s connect-
edness is maintained by a revisited formulation of smooth
interpolation on Lie manifolds. This ensures non-vanishing
n-th derivatives at any point along the TEB. Moreover, our
proposal differs from the traditional polynomial or spline-
based trajectory estimation in that we do not aim at estimat-
ing coefficients [10] nor control points which encompass and
define the curve [14], [15] but rather a discrete collection of
points which themselves lie on the piecewise curve in SE(2)
that forms the trajectory. The formulation of the problem
allows for a seamless calculus of a pose at any time along
the TEB.

The remainder of the paper is as follows. Section II details
the TESC planner formulation. Section III describes the
experiments and results. Section IV draws a conclusion and
proposes further developments.

II. TESC PLANNING
A. Notation and Definitions

We consider the trajectory as a sequence of points lying
on a Lie manifold SE(n) of rigid motions. Although our
formulation can be expressed abstractly for each dimension
n, in this paper we focus on the algebraic realization for the
Lie manifold SE(2) of rigid motions in the plane (translation
in the plan, rotation over the z-axis), which is where we
performed all the benchmarking experiments. While the
mathematical tools used in this work rely on linear algebra,
rotations are not part of a vector space. This motivates the
use of Lie groups and their associated Lie algebra, which
is a vector space. The reader may refer to [20] for further
details about the Lie theory of the most common Lie groups
in robotics.

1) The SE(2) Lie group: We note generic elements
[RP] € SE(2) with x, the translation with p and a 2D
rotation matrix of #rad with R = R(#). For the sake of
brevity we express x directly as x = (x,5,0) £ (p,0).
Composition - and inversion ~! are performed respectively
with

Pa + Rapb:| X71 _ |:RTp:| (1)

Xa~Xb:|: 9a+9b = 79

2) Exponential map: Associated to any point of SE(2)
is a tangent space. The tangent space at the identity is
named the Lie algebra and noted se(2). This space has
elements [ ] with u = [u,v]” and [6], £ [ 7], and
is isomorphic to the Cartesian space R3. We thus express
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Fig. 2: The TEB is a sequence of robot poses forming a

trajectory. Consecutive poses are tied to one another by a time
interval.

tangent elements as 7 = (u,0) € R3 =~ se(2). The
exponential map relating R® and SE(2) is as follows,

exp(+)

log(+)

Given x = (p, ) and 7 = (u,0), we have [21],

T € R ~ 5¢(2) x € SE(2) . )

exp(T)é[Rgg) Ai“}zh’“} 3)

log(x) 2 [A_;'p] . ()
with

| e G

3) Plus and Minus: The operators ¢ and © allow us
to express variations around the manifold elements x as
vectors T in its tangent space. They are defined such that,
for x,,x;, € SE(2) and T = R3,

Xq -exp(T) € SE(2), (6)
log(x, ' -x;) €R?. (7)

Xp =X, DT

> [>

T =Xp © Xg

These operators are respectively called right- plus and minus
(see [20] for a more elaborate discussion).
B. TESC Problem Formulation

1) Timed Elastic Band: The Timed-Elastic-Band is de-
scribed as a sequence of n+/ robot poses € SE(2) linking
together an initial and a final configuration:

Q= {xi}i=0..n , ®

with x( fixed at the origin. All consecutive poses are tied to
one another by n time intervals Jt,

AT = {dt;}iz1..n , &)

with §t; denoting the time interval required for the robot to
move from a pose x;_; to x; along the trajectory. The TEB
is illustrated in Fig. 2.



2) Multi-objective Problem: Defining the pairs,
P = {(xi,6ti) }i=1..n »

the TEB is formulated as a multi-objective optimization
problem:

(10)

P = argmanwkckl (Q;, AT,) , (11

k,i

which can be solved by means of a least-squares nonlinear
solver. The terms wj are weight factors used to balance
the different cost contributions cg;(Q;, AT;). These costs
depend on Q; and AT;, which are subsets of respectively
Q and AT in the neighborhood of dt;. The cost functions
are built simply with ¢, = e, ey, with e;, an error measure.
The index k € {s,v,a,j,1,g,0} indicates the nature of each
objective error during the interval dt;. These are described
hereafter with the time index ¢ dropped.

3) C™ Smooth Curve: Considering the TEB as a collection
of discrete points, we aim at enforcing consecutive points to
lie on a smooth curve in SE(2), and the different pieces to
form a continous, smooth, spline. Jakubiak et al. [22] propose
a geometric two-step algorithm to generate smooth splines
on Riemannian manifolds, in particular Lie groups. Given
two configurations x; and X;;;, the algorithm allows for
interpolating a configuration x; so that it lies on a smooth
curve connecting x; and x;4;. The smoothness constraint
proposed here results from a revisited formulation of the
interpolation algorithm of [22]. Given three consecutive
poses x;_1, X; and X;41, and their associated time intervals
0t; and dt; 1, we proceed as follows. First compute the
tangent vectors 7;_; and 7,41, which are approximated with
backward differences, and the interpolation factor ¢,

Ti =X, ©Xj—1 (12)
t = 0t;/(6t; + 6tiy1) €0, 1] (13)

Then compute the desired interpolated point X; with
I(t)=xi—1® (t- Ti—1) , (14)
r(t) =xip1 @& ((E—1) - Tiga) , (15)
Bt) =rx(t) 1), (16)
X =1(t) @ (o(t) - B(1)) - (17)

The resulting error is then:

e, =X, 0X; . (18)

While the definition of the real valued smoothing function
@(t) in (17) is given hereafter, the reader can refer to [22]
for more detailed reference of its critical guarantees:

m

S

with
mi14j =(—1)7 (?) mti (20)
- Am414j 1)

_1_
" jZ::Om—i-l-i-j’

where m is the smoothness degree (C™).

Figure 3 illustrates (14-18) and how the intermediate
(middle) pose x; is attracted towards the smooth curve
defined by x;_1,X;+1,Ti—1, Ti4+1 and ¢.

Fig. 3: The pose x; is constrained towards the smooth curve
defined by x; 1,Xi+1,7: 1 and T;41 (tangents are illustrated
by the arrows).

The trajectory smoothness at segments junctions (knots)
is implicitly ensured by design as the final tangent of the
i-th segment is to be equal to the initial tangent of the ¢ +
1-th consecutive segment. We therefore do not require to
explicitly impose equality constraints on knots, unlike other
spline-based frameworks such as [23].

4) Curve’s Derivatives Boudaries Constraints: The for-
mulation from Sec. II-B.3 ensures non-vanishing n-th deriva-
tives at every point, allowing to enforce upper and lower
boundaries (i.e. inequality constraints) on the curve’s deriva-
tives. The derivatives subject to inequality constraints are:

o v the average velocity over a dt

o aj the average acceleration over a 0t

e ji the average jerk over a 0t .

They are approximated using backward finite differencing
through a sliding window over the TEB of, respectively, the
past two, three and four configurations,

X; O Xi—1

i = , 22

v o, (22)
Vi — Vi1

S—o. i Viml 23

a 5t; + 0ti 1 23)

ji = G (24)

5t + O0tiq + 0ti—n

Similarly to [17] we use a nonlinear least-squares solver
to optimize the TESC problem. Inequality constraints are
approximated by two-sided quadratic penalties so that the
error functions of an inequality constraint are,

—v4vy, ifv<yg
e, =1 +v—vy, ifv>uyy (25)
0, otherwise ,

with v a constrained variable, vy, and vy respectively v’s
lower and upper bounds, and <, > are element-wise com-



parisons. From (22-25) results the following error functions:

e, subjectto vy <v; <vVvy , (26)
e, subjectto aj <a; <ay , 27
e; subjectto jr <Jj; <ju . (28)

5) Non-holonomic Constraints: Since the trajectory opti-
mized is that of a mobile-base, one has to take the kinematic
constraint into account so that the trajectory is physically
feasible. The first of such kinematic constraints is the non-
holonomic constraint since differential or bicycle-like base
cannot move sideways. It is imposed as,

en subject to vy =0 . 29)

with v,; the y-component of the velocity vector computed
from (22). Given our current optimization framework, equal-
ity constraints are obtained by setting both the lower and the
upper bounds to the same value.

6) Minimum Turning Radius Constraints: If the mobile-
base considered is a bicycle-like model (e.g. car-like), one
has to ensure a minimum turning radius. We implement the
equivalent condition on the inverse radius, since unlike R,
1/R crosses zero continuously as the robot transitions from
a left turn to a right turn. We have,

1/R: vwi/VCEi )

(30)

er subject to 3D

with v,; and v,,; respectively the x- and the angular-
components of the velocity vector (22). For v,; — 0, we
constrain v,,; to zero in a way akin to (29) to avoid turning
in place.

7) Minimizing Time and Trajectory Length: Not only
shall a trajectory be feasible but also should it be as short
as possible, both in terms of execution time and travelled
distance. While a double objective of distance and time,
ie.,, c = wy (T, T) + w; 6t> seems natural, we have found
that having them enforce each other gives better results
in terms of smoothness and stability of the solutions in
the optimization framework used here. We define the joint
length-time error as,

er = (Ti6t, Ti6t) = (13, T3)0t% (32)

where (,) denotes the inner product! and (;,7;) is the arc-
length of the i-th segment squared. While this cost function
has no particular physical meaning, it is preferable for a
numerical optimization process. Having two different cost
functions for time and length, each having their own weight,
leads to optimizing 2(n — 1) unique cost functions, each one
having a fairly large residual with respect to the other cost
functions. This is so since, e.g., time will not reduce as much
as the distance to the final target. Instead, by merging those
two cost function into (32), we only have n — 1 unique cost
functions to minimize, a single weight to tune and a residual
of a similar order as the others.

'On se(2) the weigthed Euclidean inner product is defined as (7, T) =
7T W - 7, with diag(W) = [1, 1, 2] the weight matrix relative to the
space basis.

8) Distance to the Target Configuration: While the pre-
vious cost functions constrain the overall shape of the
trajectory, this one pulls the TEB’s tip, x,,, toward the desired
configuration or goal, x,. It is defined as follows:

e, =X4OXy, . (33)

9) Obstacle Avoidance: When dealing with mobile-base
navigation, the robot’s surrounding environment is often
represented by a 2D Occupancy Grid (OG). In its simplest
ternary form, the OG has three distinct values denoting
whether a cell is free (no obstacle), occupied (obstacle)
or unknown. In this work, the environment is represented
by means of an Euclidean Distance Grid (EDG) which
stores in each cell the distance to the closest obstacle in
the grid. Cells representing an obstacle have a zero value.
Such representation allows to efficiently evaluate whether a
configuration is in collision with an obstacle or not. Given a
2D-0G, an EDG is computed using the distance transform
algorithm described in [24]. This algorithm is of first choice
as it is fast, efficient and computes an exact Euclidean
distance. Given a distance grid and two consecutive poses
x; and x; along the TEB, the obstacle avoidance constraint
is computed as follows.

First, k poses are interpolated between x; and x;1 as per
[22], with k£ chosen in adequacy with the grid resolution.
Then the EDG cells’ distance corresponding to each of the
k + 2 poses are evaluated. The resulting error functions is

r—d,
€o =
0,

with d the smallest distance evaluated over the k& + 2 poses
and r the radius of the circle encompassing the robot foot-
print. Notice that complex footprint shapes can be considered
and is left here to further work. Evaluating intermediate
interpolated configurations allows to assert that a segment
as a whole is obstacle free avoiding the common problem
in discrete trajectory planning of having consecutive poses
lying on each side of an obstacle.

ifd<r

, 34
otherwise 34

III. EXPERIMENTS

This section describes the experimental setup along with
results from simulations in three different scenarios using the
TIAGo mobile-manipulator robot’s simulation?.

We compare the proposed TESC approach against the
state-of-the-art TEB planner [17].

Specifically, each planner is executed a 1000 times for
each scenario and results were compiled from these trials.
To achieve a fair comparison TESC and TEB are initialized
with the same velocity and acceleration limits.

The evaluation covers eight metrics. First is the suc-
cess rate, which indicates whether the planner has found
a collision-free trajectory or not. The optimization time,
measures how much time the planner took to find a trajectory.
As the robot operates in the real environment it is important
to be able to find plans in a timely manner, especially

Zhttp://wiki.ros.org/Robots/TIAGo



(a) Obstacle-free scenario, collage of four different (b) Four obstacles scenario, collage of three different

goal.

goals.

Fig. 4: Experiment setups. TEB and TESC are depicted respectively with violet and red arrows. The initial pose at the center of the

grid is depicted with a larger black arrow.

TABLE I: Metrics used in our experiments.

Metric
Success rate in % 100 -
Planning time in s
Trajectory arc length Six: ©xi 1]l
Trajectory time (s) t;

Description
Success
success+ failure

Average velocity mean(||v;||)
Average acceleration mean(||a;||)
Energy See (35)
Trajectory curvature See (36)

for reactive control applications. The trajectory arc-length
and the trajectory time show how much the robot has to
move to reach the goal and the time it takes to do so. The
average velocity and acceleration metrics encompass both
their linear and angular components. Finally the energy is
an approximation of the kinetic-energy, while the trajectory
curvature highlights the smoothness of the trajectory’s curve.
Smoother trajectories require less acceleration/deceleration,
therefore putting less stress on the mechanical parts of
the robot. Moreover they allow people to feel safer in the
robot’s vicinity due to a more predictable behavior. The
aforementioned height metrics are listed in Table L.
The energy metrics reads,

(35)

Z |[log(x; " - x;_1)||

2 t?

The curvature is approximated as the sum of acceleration’s
norm in the global frame,

log(x; - x;_1) — log(x; L - x,_
Z||2 Og(xz X 1) Og(Xz—l X 2)|| (36)

Oty + 0t;_q1 + 0t;_o

The weight factors wy, for the TESC planner are empiri-
cally determined so that the costs wgcg; (Q,, AT;) are all of
the same order of magnitude. Similarly to the observations
made in [17], we found that the weights associated to both
the kinematics (Section II-B.5) and the goal (Section II-B.8)
must be an order of magnitude higher than other weights. The
weight factors used for the TEB planner are those presented
as optimal in the original paper.

A. Obstacle-free planning

In the first scenario, the robot is located at the center
of an 8 x 8m. grid with no obstacles and has to plan a
trajectory toward a randomly generated pose. It is illustrated
in Fig. 4a for four different goals. Statistics of the several
metrics were summarized in Fig. 5, columns associated with
this experiment are marked with the OF suffix. As Figs. Sa—
5b show, the optimization time of both planners in this
environment is well within realtime-capable requirements.
Both planners performed very similar trajectory arc length,
with a short advantage for TESC (Fig. 5¢). Trajectory time
as shown in Fig. 5d are also very similar. For the average
velocity metric shown in Fig. Se, TESC has a slightly higher
values than TEB but has a much lower acceleration average
(Fig. 5f). Finally, TESC outperformed TEB for both the total
energy cost and the trajectory curvature shown respectively
in Fig. 5g and Fig. 5h. These first results highlight that the
smooth properties of the TESC approach improve the quality
of the generated trajectories.

B. Synthetic obstacles scenario

The second environment is a 8 x 8m. grid with four
circular obstacles surrounding the robot. Goals are randomly
generated and their feasibility is verified. Fig. 4b depicts this
scenario for three different goals. Statistics of the several
metrics were summarized in Fig. 5, columns associated with
this experiment are marked with O suffix.

With the increase in challenge, the difficulty is reflected
by both a decrease of success rates as well as an increase
of execution time. As Fig. 5a depicts, TEB and TESC only
succeeded planning in 83% and 61% of the time respectively.
An example of failure - discontinued trajectory - is illustrated
for TEB on the right side of Fig. 4b. TESC optimization time
increases largely while TEB’s remains fairly stable as visible
in Fig. 5b. Both planners performed in a similar manner in
terms of trajectory time. Observations for the trajectory arc-
length and time are similar to those in Section III-A. With a
lower average velocity (Fig. 5e), a much smaller acceleration
(Fig. 5f) and overall curvature (Fig. 5g) TESC produced
trajectories not only smoother but less prone to cause motion
sickness and wear out vehicle hardware while consuming
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Fig. 5: Experiment metrics

less energy (Fig. 5g). Note how even the deviation depicted
in both Figs. 5g—5h is much smaller for TESC than TEB,
signifying consistent better results.

C. Complex obstacle scenario

The third experiment considers a more realistic scenario
relying on the OG generated from a simulated small office.
The environment is of size 10,2 x 14,85m, constituted of
two distinct rooms connected by an open door, both filled
with furniture such as shelves and tables. Once again goals
are generated randomly while their feasibility is verified.
Statistics are presented in Fig. 5, columns associated with
this experiment are marked with SO suffix.

Unlike experiment in Section III-B, the success rate of
both planners is much closer to one another with 77%
and 71% for respectively TEB and TESC. However the
optimization time of TESC slightly increased again while
TEB’s remained fairly stable. Trajectory length and time
for both planners show the same trend as for previous
experiments. The same manner TESC shows once again
a smaller average velocity (Fig. 5¢) and a much smaller
acceleration (Fig. 5f) than TEB, but also smaller and more
consistent energy (Fig. 5g) and curvature (Fig. 5h).

D. Implementation Details

The TESC planner has been implemented in C++ using
the least-squares solver Ceres [25] as it is flexible and
offers automatic-differentiation. It also relies on our recently
released manif library [20], a Lie-theory library for state-
estimation. All scenarios are simulated using ROS [18],
TESC has been integrated within the navigation stack and
the output of these planners are directly applicable to real
robots using ros_control [26]. The source code of the
planner is available online.

3https://github.com/artivis/tesc_planner

IV. CONCLUSION

We presented a novel formulation, Timed-Elastic Smooth
Curve (TESC), for C" smooth trajectory optimization. The
generated trajectory’s curve has non-vanishing n-th deriva-
tives, allowing to constrain velocity, acceleration, jerk, efc.
with ease. Moreover, the continuity of the curve at its knots
is ensured by design, which relieves from the addition of
extra cost functions to do so. While relying on a discrete
set of points, its formulation allows for interpolating points
that do belong to the trajectory curve. This property allows
e.g. to ensure that the whole trajectory is collision-free.
We benchmarked TESC in a series of mobile base motion
planning scenarios and shown that it prevails or matches the
performance of the TEB planner in most presented metrics.
TESC has also proven to be more consistent in the quality
of the generated trajectories.

However challenging, these experimental scenarios put
both planners to the test. While TESC could not uniformly
prevail in all metrics, we believe it is due to Euclidean Dis-
tance Grid (EDG) discretization and unsigned-ness, leading
to discrete or non-existing gradients, thus to optimization
issues.

Our experiments have shown that TESC is planning more
energy-efficient and smoother trajectories of the same length
as TEB but with a smaller average velocity and acceleration
at the cost of increasing the optimization time.

Further work includes extending the framework to other
Lie manifolds, specifically SE(3). This is feasible with
little modification, since (12—18) are group-agnostic, simply
employing the appropriate exp(-) and log(-) functions. Such
3D planner would typically be interesting for optimizing the
trajectory of e.g. an Unmanned Aerial Vehicle, or the end-
effector of a robotics arm in robotics manipulation tasks. A
second extension will be the use of a Signed Euclidean Dis-
tance Transform for our collision avoidance cost, allowing



for the existence of discrete gradient throughout the grid and
thus to recover from a collision.
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