
1

Joint on-manifold self-calibration of odometry model
and sensor extrinsics using pre-integration

Jérémie Deray1,2, Joan Solà1 and Juan Andrade-Cetto1

Abstract— This paper describes a self-calibration procedure
that jointly estimates the extrinsic parameters of an extero-
ceptive sensor able to observe ego-motion, and the intrinsic
parameters of an odometry motion model, consisting of wheel
radii and wheel separation. We use iterative nonlinear on-
manifold optimization with a graphical representation of the
state, and resort to an adaptation of the pre-integration theory,
initially developed for the IMU motion sensor, to be applied
to the differential drive motion model. For this, we describe
the construction of a pre-integrated factor for the differential
drive motion model, which includes the motion increment, its
covariance, and a first-order approximation of its dependence
with the calibration parameters. As the calibration parameters
change at each solver iteration, this allows a posteriori factor
correction without the need of re-integrating the motion data.

We validate our proposal in simulations and on a real robot
and show the convergence of the calibration towards the true
values of the parameters. It is then tested online in simulation
and is shown to accommodate to variations in the calibration
parameters when the vehicle is subject to physical changes such
as loading and unloading a freight.

I. INTRODUCTION

For a mobile robot, odometry is usually computed com-
posing the motion produced by wheel rotation during a time
step to a known pose at a previous step. Since odome-
try algorithms usually compose small displacements, they
have the main drawback of accumulating error unboundedly.
Moreover, the computation of a motion increment requires
the a priori knowledge of the mobile robot kinematic model
parameters. Such parameters are usually estimated using
often tedious and complex calibration procedures. A small
error in calibration might lead to a bad odometry system and
hence to large inaccuracy in the pose estimation over time,
preventing other tasks to be performed successfully, such as
localization or mapping.

Motion measurements are often reported at very high
rates, rendering impracticable to compose individual poses
for each measurement. Instead, several measurements are
integrated together to a single ’delta’ pose increment with

1The authors are with the Institut de Robòtica i Informàtica In-
dustrial, CSIC-UPC, Llorens Artigas 4-6, 08028, Barcelona, Spain.
jderay,jsola,cetto@iri.upc.edu

2Jérémie Deray is also with PAL Robotics, Pujades 77-79, 08005
Barcelona, Spain

This work has been supported by the Spanish Ministry of Science,
Innovation, and Universities project EB-SLAM (DPI2017-89564-P), by the
EU H2020 project LOGIMATIC (H2020-Galileo-2015-1-687534) and by
the Spanish State Research Agency through the Maria de Maeztu Seal of
Excellence to IRI MDM-2016-0656. J. Deray acknowledges support from
the Industrial Doctorate Program of the Catalan Agency for Management
of University and Research Grants.

respect to a known pose at a previous time step. A change in
the integration parameters compels the re-integration of the
measurements in order to take into account the parameters
correction.

This paper formulates a pre-integrated factor ready to use
in any graph-based estimation problem - e.g. simultaneous
localization and mapping (SLAM) - for the differential drive
motion model. Such pre-integrated factors can be corrected
a-posteriori using pre-computed Jacobians as new estimate
of the calibration parameters arrives. This avoids the need to
re-integrate all data at each iteration of the optimization. We
evaluate it in the context of a joint self-calibration scheme
that calibrates both the intrinsic parameters of the differential
drive kinematics together with the extrinsic parameters -
pose on the robot - of an embedded exteroceptive sensor
that can estimate its egomotion. By posing the calibration
problem as the optimization of a factor graph and relying on
factor pre-integration, the calibration problem can be solved
either in batch mode or incrementally online. The online
incremental calibration allows to compensate for changes in
the kinematics model as they occur, e.g., a heavy load on
top of a mobile-base that may slightly squeeze rubber tires.

A. Related work
Most popular odometry calibration procedures rely on

the execution by the mobile base of a predetermined tra-
jectory, taking measures of the pose error along the path
either manually or with an external sensor. Borenstein and
Feng [1] proposed the so called UMBmark test, a calibration
procedure requiring the robot to drive along a square path
both clockwise and counter-clockwise. Ideally, by the end
of the procedure the robot has come back to its initial pose.
Measuring and minimizing the pose error between the initial
and final pose allows to calibrate the kinematic parameters.
Kelly [2] generalized this procedure by replacing the squared
shape trajectory by a list of repeatedly visited way-points
along a trajectory of any shape.

Martinelli et al. [3] proposed to augment the state of
a Kalman Filter used for localization with the kinematic
parameters. It however requires an a priori known map.
Later, the use of an Extended Kalman Filter (EKF) allowed
Martinelli et al. [4] to simultaneously estimate the systematic
and non systematic odometry errors of a mobile robot.

Censi et al. [5] proposed the simultaneous calibration of
the differential drive kinematics together with the relative 2D
pose of a sensor that estimates the robot egomotion. They
formulate the calibration problem in terms of a maximum
likelihood solved in closed form. Their method does not
require any predefined path nor an external sensor but is
suited only for parameters that do not vary in time.

2

In a graph-based SLAM context, Kümmerle et al. [6]
adds the unknown parameters to key-frames states. Doing
so allows to consider the kinematic parameters as varying in
time (dynamic) if, e.g., the robot was loaded with a cargo
heavy enough to alter the previous estimate.

Recently, Cicco et al. [7] proposed an unsupervised cal-
ibration procedure. By exploring and recording the effects
of elementary motions on the uncertainty of the parameters
estimate, their method chooses autonomously at every time
the best next motion for the robot to perform to further reduce
the uncertainty.

The calibration used here can be seen as a middle ground
between those of Censi et al. [5] and Kümmerle et al. [6],
in that it allows for the calibration of dynamic kinematic
parameters and static sensor extrinsics without a complete
SLAM framework around it. We do not require a prede-
fined trajectory, an a-priori known map, nor any external
sensor/landmark to perform the calibration.

To approach the calibration of the motion model, we get
inspired by the IMU pre-integration theory initiated by [8],
later improved in [9], then [10]. We apply it to differential
drive motion estimation, and use the mechanisms initially
conceived for bias estimation to achieve the self-calibration
of the motion model parameters. In this regard, we improve
over the formulation in [9] in the sense that we provide
recursive integration formulae, and an integration pipeline
divided in small steps. This results in equivalent but simpler
formulae, especially for the Jacobians through the use of the
chain rule. We make systematic use of Lie theory as exposed
in [11], making this work a true on-manifold estimation
approach.

The remainder of the paper is organized as follows, Sec-
tion II details the proposed motion pre-integration. Section III
explains the joint calibration problem as the optimization of a
small factor graph using the pre-integrated factors, with both
batch and online methods. Section IV presents experiments
using simulations and a real robot and show the convergence
of the optimization scheme. Conclusions are reported in
Section V.

II. DIFFERENTIAL DRIVE PRE-INTEGRATION

A. Abstraction on Lie groups of the pre-integration theory

In a typical mobile robot, motion measurements are ac-
quired at high rate, typically at 100 − 1000Hz. A mea-
surement uk corresponding to a single time increment δt
at time tk produces a local state increment δk ∈ M,
named the ‘current delta’ through a kinematic motion model
characterized by a set of parameters c,

δk = δ(uk, c) ∈M . (1)

By now, letM be an abstract Lie group or ‘manifold’ where
the robot state evolves. In fact, measurements typically come
in the form of velocities or local increments and can be easily
expressed as vectors bk in the Lie algebra of M, so that
δk = Exp(bk(uk, c)). Between two distant time instants ti
and tk, several δ can be integrated into a single ‘delta’ or
increment ∆ik ∈ M expressing the robot state at time tk
relative to the robot state at ti (Fig. 1). This integral can
be computed recursively through ∆ik = ∆ij � δk, where �

ti tj tk

�ij �k

t

xj xkxi

Fig. 1. The pre-integrated delta ∆ij ∈ SE(2) contains all motion
increments from time i up to time j, so that xj = xi �∆ij . The current
delta δk ∈ SE(2) contains the motion from time j to k, computed from
the last motion measurement at time k. We have that ∆ik = ∆ij � δk .

indicates the composition law of the Lie group M and ∆ii

is its identity.
The pre-integration theory developed for the IMU sensor

[8, 9] deals with the problem of producing motion factors for
a factor graph from the aggregation of hundreds of motion
measurements. At the time of evaluating the residuals of such
factors, one realizes that the integrated IMU delta ∆ik has
two undesired dependencies with the state [8]. On one side,
it depends on the initial state xi; on the other side, it depends
on the sensor biases c. This can be visualized as

∆ik(Uik,xi, c) = ∆ij(Uij ,xi, c)� δk(uk, c) , (2)

where Uik = {ui, · · · ,uk} is the set of all measurements
in the interval. Since the estimates of xi and c change
during the optimization, ∆ik would need to be re-integrated
at each solver iteration for the residual to be evaluated.
This is addressed in two ways. First, a change of reference
frame [10] allows us to write a delta that is independent
of the initial states. Second, the effect of the change in the
calibration c is linearized around a value c (the ’current’
estimate of c as of the time the linearization is performed)
so that the pre-integrated delta can be corrected a posteriori.
The result is a pre-integrated delta that only depends on the
measured data and c,

∆ik(Uik, c) = ∆ij(Uij , c)� δk(uk, c) , (3)

together with an expression for linearly correcting it when
the estimations of bias c deviate from the values c used
during pre-integration,

∆ik(Uik, c) ≈ ∆ik(Uik, c)⊕ J∆ik
c · (c− c) , (4)

where we note Jyx ,
∂y
∂x , and ⊕ is defined so that ∆⊕ v ,

∆�Exp(v) for v in the Lie algebra of M (see [11]). This
pre-integration avoids the need of re-integrating all motion
data at each iteration of the optimizer, as can be seen in the
expression of the factor’s expectation error,

e = (∆ik(Uik)⊕ J∆ik
c (c− c))	 (xj � xi)) , (5)

which clearly separates the states {xi,xj , c} from the mea-
surements Uik. The Jacobian matrix J∆ik

c required for this
update is pre-integrated alongside ∆ik during the motion
phase. The same is true for the covariances matrix Q∆ik

required for computing the residual r = Q
−>/2
∆ik

e.
In the following we drop the measurements Uij and uk

from the notation for simplicity.

B. Differential drive kinematic model
The differential drive model for a ground robot consists of

two actuated wheels on a single axle, one on each side of its

3

base. The robot’s frame is defined at the center of the axle,
with the X-axis looking forward, i.e., perpendicular to the
wheels’ axle. The model is parameterized by the wheels radii
(rl, rr) and the wheel separation d. To each of these values is
associated a calibration parameter, c = (cl, cr, cd), obtaining
the calibrated parameters (clrl, crrr, cdd). The robot state
and all deltas lie in SE(2), though we note the orientation
part with a simple angle for simplicity.

Motion is measured by means of wheel encoders reporting
noisy incremental wheel angles u = δψ = (δψl, δψr) every
time step. Assuming constant wheel velocities between times
tj and tk, the motion of the vehicle can be described by a
small arc of length δlk, angle δθk, and radius δlk/δθk,

δlk =
1

2
(crrrδψr,k + clrlδψl,k) ,

δθk =
1

cdd
(crrrδψr,k − clrlδψl,k) .

(6)

This arc can be expressed in the tangent or velocity space
of SE(2), i.e., the Lie algebra se(2), with

bk(uk, c) = [δlk, δsk, δθk]> ∈ se(2) , (7)

where δsk is a zero-mean perturbation accounting for lateral
wheel slippage.

C. Delta pre-integration
Contrary to the IMU case, the ‘deltas’ of pose in SE(n)

are naturally independent of the initial pose xi. Thus we
only need to address the dependency with the calibration
parameters c, which we do by setting bk = bk(uk, c).

The ‘current delta’ δk = (δxk, δyk, δθk) , (δpk, δθk) ∈
SE(2) is computed from the arc (7) using the exponential
map δk = Exp(bk) [11] with δsk = 0,

δpk =

[
δlk
δθk

sin(δθk)
δlk
δθk

(1− cos(δθk))

]
≈
[
δlk cos(1

2δθk)
δlk sin(1

2δθk)

]
(8)

δθk = δθk .

where the right-hand expressions account for suitable ap-
proximations when δθk → 0.

The pre-integrated delta ∆ij = (∆pij ,∆θij) ∈ SE(2)
is the discrete integration of several current deltas δk. We
implement � in (3) with the composition law of SE(2),

∆pik = ∆pij + ∆Rij δpk

∆θik = ∆θij + δθk ,
(9)

where ∆Rij = R(∆θij) ,

[
cos ∆θij − sin ∆θij
sin ∆θij cos ∆θij

]
. Inte-

grated angles are systematically brought back to (−π, π].

D. Delta Jacobian pre-integration
In this work, all Jacobian and covariance blocks are

computed in the Lie-theoretic form, that is, they map vectors
in tangent spaces of the involved manifolds — see [11]. They
are of dimension 3× 3 unless otherwise stated. Their closed
form formulae are given in Appendix I.

The Jacobian J∆ik
c in (4) is computed recursively starting

at J∆ii
c = 0 and using the chain rule,

J∆ik
c = J∆ik

∆ij
J

∆ij
c + J∆ik

δk
Jδkbk

Jbk
c , (10)

where J∆ik

∆ij
, J∆ik

δk
, Jδkbk

and Jbk
c are respectively the Jacobian

blocks of (9), (8) and (6–7).

E. Delta covariance pre-integration
Let Qψ , Qδ and Q∆ be the covariances of respectively the

measurement noise, the current delta and the pre-integrated
delta. We first define the covariance of the measurement
noise,

Qψ =

[
σ2
ψl

+ α2 0
0 σ2

ψr
+ α2

]
∈ R2×2 , (11)

σ2
ψl

= kl|δψl|, σ2
ψr

= kr|δψr|, α = 1
2 (µl + µr) .

where kr and kl are wheels intrinsics parameters, α acts as
an offset equal to half the wheels encoders resolution µl and
µr [12]. The covariance of the current delta δk reads,

Qδ = Jδkbk
(Jbk

δψQψ Jbk

δψ

>
+ Jb

s σ
2
sJ

b
s

>
)Jδkbk

>
, (12)

with Jbk

δψ , and Jb
s = [0, 1, 0]> ∈ R3, the Jacobians of (7),

and σ2
s the perturbation variance of the wheel slippage δsk.

The motion covariance starts at Q∆ii
= 0 and is also pre-

integrated recursively,

Q∆ik
= J∆ik

∆ij
Q∆ij J∆ik

∆ij

>
+ J∆ik

δk
Qδ J∆ik

δk

>
. (13)

F. Residual
The residual of the differential drive factors reads,

r(c) = Ω>/2(∆(c)− ∆̂) ∈ R3 , (14)

where Ω = Q−1
∆ is the information matrix of the pre-

integrated motion, ∆(c) comes from (4); and ∆̂ = xk � xi
is an independent estimate of the platform motion typically
obtained from another embedded sensor (laser scan registra-
tion e.g. [13], visual odometry, etc) an external sensor (Vicon,
etc), or from a graph with nodes xi,xk.

III. JOINT CALIBRATION OF DIFFERENTIAL DRIVE
INTRINSIC AND SENSOR EXTRINSIC PARAMETERS

We assumed in Section II both ∆̂ and ∆(c) to be expressed
in the differential drive’s reference frame. From now on, we
consider ∆̂S to be expressed in another sensor’s reference
frame, S, which is expressed relative to the robot frame by
the extrinsics T , (x, y, θ) ∈ SE(2). Hereafter we write
∆ , ∆(c) for readability.

The aim is now to calibrate jointly the differential drive
model c together with the sensor extrinsics T. From Fig. 2
we clearly see that T�∆S = ∆�T, so we can define the
error of each individual motion delta following this closed
kinematic chain

e(c,T) = (T� ∆̂S)− (∆�T) . (15)

A. Jacobians and covariance propagation
The Jacobians of each error ek with respect to the un-

known c and T can be computed by steps, using the Jacobian
blocks in Appendix I and the chain rule. Define with Fig. 2,

e = U− L , U , T� ∆̂S , L , ∆�T . (16)

4

∆ij

∆S
ij

T

xi

xj

T

Fig. 2. A differential drive robot moves from pose xi to xj . It mounts an
exteroceptive sensor at pose T (red) with respect to the robot base (blue).
It holds that ∆ij �T = T �∆S

ij .

c

T

r1 rk

r0

Fig. 3. Factor graph for the estimation problem. Two state blocks c and
T are linked by a number of factors, each computing a residual of the type
rk = Ω

>/2
k (∆k(c)�T−T�∆S

k) (see Fig. 2). An absolute factor (grey)
of the type r0 = Ω

>/2
0 (c− c0) keeps c close to its nominal values c0.

Then apply the chain rule to find all the Jacobians of e,

Je
∆ = Je

LJL
∆ = −JL

∆ (17a)

Je
∆̂S = Je

UJU
∆̂S = JU

∆̂S (17b)

Je
T = Je

LJL
T + Je

UJU
T = JU

T − JL
T (17c)

Je
c = Je

LJL
∆J∆

c = −JL
∆J∆

c . (17d)

Then propagate both Q∆̂S and Q∆ to the space of e,

Qe = Je
∆̂SQ∆̂SJe

∆̂S

> + Je
∆Q∆Je

∆
> (18)

B. Residual

The residual is similar to (14) with Ω = Q−1
e ,

r = Ω>/2 e ∈ R3 (19a)

Jr
c = Ω>/2 Je

c , Jr
T = Ω>/2 Je

T (19b)

C. Batch calibration process

The calibration problem can be modeled as a simple factor
graph composed of only two nodes (Fig. 3), one holding
the differential drive kinematic parameters c, the second
holding the sensor extrinsic parameters T. The nodes are
constrained one another by K factors, each containing the
pre-integration of a (large) number of motion measurements,
whose residuals are evaluated with (19a). Additionally, the
c node is constrained by an absolute factor attracting the
calibration parameters towards their nominal values c0,

r0(c) = Ω
>/2
0 (c− c0) (20)

where Ω0 = diag(σ−2
l , σ−2

r , σ−2
d) is chosen sufficiently

small not to constrain the optimizer from reaching an ad-
equate solution. In our experiments we chose σl = σr =
σd = 0.01.

Algorithm 1: Incremental joint self-calibration

Input: c0, T0, {Ψk}, {∆S
k }

c = c0, T = T0

while new sensor reading {∆S
k ,Q

S
k } do

c = c
Pre-integrate diff. drive motion
{∆,Q,J∆

c }k = integrate(c,Ψk) (6–13)
Pack all info for factor k
{∆,Q,J∆

c , c,∆
S ,QS}k → Φk

x = (c,T)
while not end condition do

b = 0,H = 0
for i ∈W do

Unpack info for factor i
{∆,Q,J∆

c , c,∆
S ,QS} ← Φi

∆(c) = correct(∆,J∆
c , c, c) (4)

{r,Jr
c,J

r
T}i = ri(∆(c),Q,T,∆S ,QS)

b← b + J>i ri, H← H + J>i Ji (22)
Update x← x−H+b (23–24)
(c,T)← x

Output: c,T

Collecting all factors, our estimation problem can be
written as

[c∗,T∗] = arg min
c,T

K∑
k=0

rk(c,T)>rk(c,T) . (21)

A simple solution can be implemented via Gauss-Newton
optimization, by iterating until convergence,

Jk = [Jrk
c Jrk

T], b =
∑
k

J>k rk, H =
∑
k

J>k Jk (22)

∆x = −H+b (23)
x← x + ∆x (24)

where x = (c,T), and H+ is the pseudo-inverse of H.

D. Online calibration process
Online incremental self-calibration can be easily achieved

by repetitively solving the problem as new factors are incor-
porated. In order to speed-up operation, the solver is set to
escape after a small number of iterations. As factors get old,
they gradually accumulate more optimization iterations. Very
old factors are removed from the graph, effectively discard-
ing previous information, thus creating a fixed window W
of factors being evaluated. The overall algorithm is depicted
in Algorithm 1.

One key advantage of the incremental, windowed algo-
rithm is that it allows to deal with dynamic variations of
the estimated parameters. Indeed, in case of changes in the
parameters to estimate, the different factors cannot reach a
good consensus on the states, and the overall cost increases,

F (t) =
∑

i∈W (t)

r>i ri (25)

By monitoring this cost, we are able to detect these changes,
and act on the length of the window W appropriately. A

5

0 50 100 150 200

time (steps)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
c
a

lib
ra

ti
o

n
 p

a
ra

m
e

te
rs

 c
l

 c
r

 c
d

(a) Evolution of the vehicle kinematics calibration
parameters (simulation).

0 50 100 150 200
-0.05

0

0.05

0.1

0.15

0.2

0.25

time (steps)

s
e
n
s
o
r

e
xt

ri
n
s
ic

s
 (

 x
,
 y

)

50 100 150 200
-0.1

-0.05

0

0.05

0.1

s
e
n
s
o
r

e
xt

ri
n
s
ic

s
 (

 θ
)

(b) Evolution of the sensor extrinsic parameters
(simulation).

(c) Integrated odometry before and after calibration -
respectively red and blue (real robot).

Fig. 4. Evolution and effects of the batch calibration.

trivial strategy is to reset the window after a consequent
cost increase. Favored strategies simply reduce the window
length dynamically. Reducing W has a double effect: on one
hand, the factors related to the old values are rapidly removed
from the problem, thus canceling their adverse effect; on the
other hand, shorter windows allow for faster convergence, at
the cost of reduced accuracy. Increasing the window length
gradually after observing a recovery in the cost allows to
dynamically control the trade-off between convergence speed
and accuracy.

IV. EXPERIMENTS

We evaluate our batch calibration method both on simu-
lated and real data. For the simulation experiment, we use
the Robot Operating System [14] simulator Gazebo and the
publicly available simulation of the TIAGo1 robot. The robot
is a mobile manipulator, with a differentially driven base
equipped with a SICK LMS561 LRF sensor and encoders on
each wheel. The real experiment is conducted on a TIAGo-
base2 robot, the mobile-base of the aforementioned TIAGo
robot. Finally, the online calibration proposal is evaluated in
simulation.

a) Batch calibration experiment: For this experiment,
the simulated robot is manually driven along a non-specific
path, sufficiently diverse in motions to cover its kinematic
space. The motion (∆̂S) is tracked using a LRF by means of
a laser scan matcher algorithm [13]. The precise kinematics
parameters are known beforehand, we thus are able to
initialize the calibration far from the nominal values and
test the viability of the method. From the robot technical
specifications we know all parameters,

rl = rr = 0.0985m, d = 0.4044m

Tx = 0.202m,Ty = 0m,Tθ = 0rad ,
(26)

and initialize them to nominal values c = [0.1, 0.1, 0.4] and
T = [0.22, 0.1,−0.1].

The results are shown in Fig. 4 where the plots show the
time evolution of the calibrated parameters. The method is
capable of very accurately recovering the vehicle kinematic

1http://wiki.ros.org/Robots/TIAGo
2http://wiki.ros.org/Robots/TIAGo-base

parameters

r∗l = 0.0985m, r∗r = 0.0986m, d∗ = 0.4064m ,

as well as the LRF extrinsics, which converge to

T ∗x = 0.2005m, T ∗y = 0.0019m, T ∗θ = 0rad .

A similar setup is used to calibrate the real robot. The
nominal values are initialized accordingly to (26). The robot
is manually driven along a path (absolute length ∼ 46.5m)
that covers its kinematic space. The motion (∆̂S) is again
tracked using [13]. The calibration results are,

r∗l = 0.0986m, r∗r = 0.0978m, d∗ = 0.4084m ,

T ∗x = 0.1975m, T ∗y = 0.0024m, T ∗θ = −0.0108rad .

Fig. 4(c) shows the integrated odometry of the robot along
a trajectory in an office-like environment before and after
calibration. The true initial and final pose of the robot are
mingled and mark with a green star in Fig. 4(c). While the
trajectory integrated before calibration clearly drifts, with
sections of it going through walls and obstacles and its final
pose far from the initial one, the trajectory integrated after
calibration is much better, with a final pose very close to the
initial one.

b) Online calibration experiment: For this experiment,
the simulated robot moves along a trajectory. During its
course, the wheels radii slightly decrease to simulate the
effect of loading and unloading a freight heavy enough to
squeeze the rubber tires. Moreover, the freight is not perfectly
centered on the robot, leading to an asymmetrical change of
the wheels radii. This change in the differential drive model
compels the online adaptation of the calibration parameters c
for the reported odometry to remain correct. The simulation
runs over 500 time steps; the freight loading and unloading
take place respectively at iteration 200 and 300. During
this interval, the left and right wheel radii are decreased
respectively by 1% and 0.6%, so that

rl = 0.0975m, rr = 0.0979m, d = 0.4044m .

Results are reported in Fig. 5 and show an adaptation of the
calibration as the freight is loaded then unloaded. The online
calibration scheme described in Section III-D is applied
both with a fixed size window of 50 factors (Fig. 5(a))
and a dynamically sized window (Fig. 5(b)) triggered by an

6

time (steps)

0.0975

0.098

0.0985

0.099

0.0995

0.1

 r r

 r l

 d

0.35
0.36
0.37
0.38
0.39
0.4
0.41
0.42

1000 200 300 400100 500

0
0.5

1
1.5

F

1000 200 300 400100 500

Freight
load

Freight
load

W
he

el
 ra

di
i r

l, r
r (m

)

W
he

el
 s

ep
ar

at
io

n
d

(m
)

(a) Window size = 50.

time (steps)

W
he

el
 ra

di
i r

l, r
r (m

)

W
he

el
 s

ep
ar

at
io

n
d

(m
)

0
0.5

1
1.5

F

0.0975

0.098

0.0985

0.099

0.0995

0.1

 r r

 r l

 d

Freight
load

0.35
0.36
0.37
0.38
0.39
0.4
0.41
0.42

1000 200 300 400100 500

1000 200 300 400100 500

Freight
load

(b) Dynamic window size.

Fig. 5. Comparison of the evolution of vehicle kinematic parameters and the aggregated cost factor F for a fixed window size and a dynamic one.

increase in the cost (25). Apart for highlighting the benefit of
a quicker transition of the dynamically sized window method,
this comparison allows to better visualize the evolution of c
and how it effectively changes toward the true value as older
factors escape the window.

V. CONCLUSIONS

We have presented a method to jointly self-calibrate
the extrinsic parameters of an exteroceptive sensor able
to observe ego-motion, and the intrinsic parameters of a
differential drive kinematic motion model. An incremental
online variant of the method allows to self-calibrate the
motion model while it is subject to physical change. We
evaluated our proposal in simulation and shown that it
converges toward the true values of the parameters. We also
shown that it greatly improves the estimated odometry on a
real robot. Moreover we shown that the online variant is able
to quickly estimate changes of the motion model parameters.

The abstraction of the IMU pre-integration theory has
allowed us to apply it to a simpler case, 2D odometry,
obtaining easily self-calibration. This abstraction allows us in
future work to apply it to different motion models and other
self-calibration problems, including in 3D. Furthermore, we
plan on integrating the pre-integration scheme presented in
this paper to a complete SLAM algorithm.

APPENDIX I
JACOBIANS

All Jacobian blocks are 3× 3 unless otherwise stated. See [11]
for general formulae of Jacobians in SE(2). The Jacobians of the
motion arc bk in (6) and (7) are,

J
bk
δψk

=

 clrl
2

crrr
2

0 0
− clrl
cdd

crrr
cdd

 ∈ R3×2 , (27a)

Jbk
c =

 δψl,krl
2

δψr,krr
2

0
0 0 0

− δψl,krl
cdd

δψr,krr
cdd

− δθk
cd

 . (27b)

The Jacobian of the current delta δk (8) is computed from the
Jacobian of Exp(b), which for b = (u, v, θ)> ∈ se(2) is,

J
Exp(b)
b =

 sin θ
θ

cos θ−1
θ

θu+v−v cos θ−u sin θ
θ2

1−cos θ
θ

sin θ
θ

−u+θv+u cos θ−v sin θ
θ2

0 0 1

 . (28)

The Jacobians J
∆ik
∆ij

,J
∆ik
δk

of (9) and JU
T ,J

U
∆̂S ,J

L
∆,J

L
T of (16) are

computed from those of the SE(2) composition Ta �Tb,

J
Ta�Tb
Ta

=

[
R>b R>b [1]× pb
0 1

]
, J

Ta�Tb
Tb

= I , (29)

for Ti = (pi, θi) and Ri = R(θi). Finally in (17) we have

Je
U = I , Je

L = −I . (30)

REFERENCES

[1] J. Borenstein, “UMBmark: a benchmark test for measuring odometry
errors in mobile robots,” Proc. SPIE, vol. 2591, pp. 113–124, 1995.

[2] A. Kelly, “Fast and easy systematic and stochastic odometry calibra-
tion,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 4, Sendai,
Sep. 2004, pp. 3188–3194.

[3] A. Martinelli and R. Siegwart, “Estimating the odometry error of a
mobile robot during navigation,” in Proc. 1st Eur. Conf. Mobile Robots,
Radziejowice, Sep. 2003.

[4] A. Martinelli, N. Tomatis, and R. Siegwart, “Simultaneous localization
and odometry self calibration for mobile robot,” Auton. Robots, vol. 22,
no. 1, pp. 75–85, Jan. 2007.

[5] A. Censi, A. Franchi, L. Marchionni, and G. Oriolo, “Simultaneous
Calibration of Odometry and Sensor Parameters for Mobile Robots,”
IEEE Trans. Robotics, vol. 29, no. 2, pp. 475–492, apr 2013.

[6] R. Kummerle, G. Grisetti, C. Stachniss, and W. Burgard, “Simultane-
ous parameter calibration, localization, and mapping for robust service
robotics,” in Proc. IEEE Workshop Adv. Robotics Soc. Impacts, Half-
Moon Bay, CA, Oct. 2011, pp. 76–79.

[7] M. D. Cicco, B. D. Corte, and G. Grisetti, “Unsupervised calibration of
wheeled mobile platforms,” in Proc. IEEE Int. Conf. Robotics Autom.,
Stockholm, May 2016, pp. 4328–4334.

[8] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions,”
IEEE Trans. Robotics, vol. 28, no. 1, pp. 61–76, 2012.

[9] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Trans.
Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[10] D. Atchuthan, A. Santamaria-Navarro, N. Mansard, O. Stasse, and
J. Solà, “Odometry based on auto-calibrating inertial measurement unit
attached to the feet,” in 2018 European Control Conference (ECC),
June 2018, pp. 3031–3037.

[11] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” Institut de Robòtica i Informàtica Industrial,
Barcelona, Tech. Rep. IRI-TR-18-01, 2018.

[12] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. MIT press, 2011.

[13] M. Jaimez, J. G. Monroy, and J. González-Jiménez, “Planar odometry
from a radial laser scanner. A range flow-based approach,” in Proc.
IEEE Int. Conf. Robotics Autom., Stockholm, May 2016, pp. 4479–
4485.

[14] M. Quigley, B. Gerkey, K. Conley, T. F. J. Faust, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating
system,” in Proc. IEEE ICRA Workshop Open Source Soft. Robot.,
Kobe, 2009.

