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Abstract

The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve.
Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the
time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize
the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the
Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get
a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related
constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results
show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and
satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research
factory in Darmstadt, Germany.

Keywords: Combined heat and power systems, Profit maximization, Economic model predictive control, Mixed Integer Linear
Programming, Non-constant time-step size

1. Introduction

The energy supply in Germany is increasingly changing from
a centralized to a decentralized generation structure [1]. Be-
sides the installation of renewable energies, the use of decen-
tralized Combined Heat and Power (CHP) plants is increasing,
as they can achieve high levels of fuel utilization [2]. However,
the cost efficiency of a CHP is highly dependent on the oper-
ation strategy and, therefore, identifying an optimal operation
strategy in volatile energy markets while covering thermal de-
mands can be challenging though. To this end, optimization
algorithms are often used for scheduling the activation instants
of the CHP system, which can be determined according to the
operating constraints of both the plant and the system itself [3].

In addition to operating constraints, the optimal operation of
a CHP plant from an economic point of view is limited by the
costs of the required resources (for instance, natural gas), the
sale price of the electric power in the market, and its fluctua-
tions over time. However, to take price fluctuations on the elec-
tricity market into account when choosing an operation strategy
for CHPs, a sufficiently large optimization horizon is required.
Particularly, for an intraday optimization, this horizon is usu-
ally assumed to be about one day, which is usually modeled by
using a temporal resolution of 15 minutes that implies a high
computational cost [4]. In [5], an optimization procedure is
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proposed based on non-linear optimization techniques and it is
applied to the determination of day ahead of operation program
with a 15-minutes time step. On the other hand, in order to
maximize the revenue by selling the generated electric power
or its excess, it must be ensured that the plant actually produces
the amount of electricity traded with the electric company to
avoid economic penalties. From this fact, a higher temporal
resolution to increase the degrees of freedom during the CHP
operation, and more accurate modeling to achieve a proper rep-
resentation of CHP behavior could be required [6]. Therefore, if
both a long time horizon and a high temporal resolution are cho-
sen, the number of decision variables taken into account in the
optimization problem increases rapidly. This last issue is ag-
gravated by an increased requirement for model accuracy when
mapping the transient behavior of the plant. Thus, in order to
solve the optimization problem within a short time, the number
of considered decision variables must be kept low but in a way
that allows the required accuracy.

According to the reported literature [7], the strategies pro-
posed so far for planning and scheduling of CHP systems are
focused on achieving a low operation cost, minimization of
resources, or minimization of waste. However, most of these
strategies are designed considering energy prices and the ther-
mal and electric power demand to be constant for a long period
of time. Thus, as a consequence, the CHP system is not able to
be optimized in real-time since the current conditions of both
the system and energy market will not be updated. In [8], one
way to reduce the complexity of the problem is proposed by

Preprint submitted to Elsevier September 3, 2019



Nomenclature

Physics Constants
CHP Combined Heat and Power
CVA Canonical Variate Analysis
EMPC Economic Model Predictive Control
EMPC1 EMPC controller with non-constant time step
EMPC2 EMPC controller with constant time step
LTI Linear time-invariant
MOESP Multivariable Output Error State Space
MPC Model Predictive Control
N4SID Numerical algorithm For Subspace Identification
RBC Rule-based control
SI Subspace identification
TES Thermal energy storage
Number Sets
R Real Numbers
Z Integer Numbers
Z≥0 Positive integer Numbers
Symbols
∆t Sampling time
x̂ State estimation
Z≥0 Positive integer Numbers
u Input vector
v Measurement noise
w State noise
x State vector
y Output vector
PE Upper bound for electric power generation
QT ES Maximum thermal power in the TES
T 2 Upper bound for output temperature in the CHP
θ1 Cost by gas consumption
θ2 Depreciation cost
θ3 Switching cost
θ4 Total revenues
θ5 Difference between traded and produced electric

power
PE Lower bound for electric power generation
Q

T ES
Minimum thermal power in the TES

T 2 Lower bound for output temperature in the CHP
|x| Cardinality of vector x

AT ES Transfer area of TES
b Number of input signals
Cp Heat capacity
FG Volumetric flow of gas
FW Volumetric flow of water
fsw Switching indicator for the CHP system
Hp Prediction horizon
J Total profit
k Discrete time index
le Economic cost function
N Model order
O1 Extended observability matrix
p Number of output signals
PE Electric power
Pr,e Sale price of electric power
Pr,g Gas price
Pr,on Price of keeping the system on
Pr,s Switching price
Ptra Economic penalty in the traded power
Ptra Traded electric power
qCHP Thermal power generated by CHP
qdem Thermal power demand
qloss Energy losses with the environment
QT ES Thermal energy stored in TES
T Operation time
t Continuous time
T1 Temperature of water flow at the CHP inlet
T2 Temperature of water flow at the CHP output
tc Computational time
Ts Total simulation time
ts Controller time step
Tenv Outside temperature
TT ES Temperature in the TES
Tud Updating period for traded electric power
U Global coefficient of heat transfer
u System input
x Model state
V∗ Optimal input sequence to CHP system
V Input sequence to CHP system

dividing it into a planning problem and a fulfillment or adap-
tation (tracking) problem. The longer-term energy marketing
is considered in the planning problem and then given as a tar-
get to the tracking problem. In addition, a two-stage stochas-
tic programming model for CCHP-microgrid operation consid-
ering demand uncertainty is proposed in [9]. However, with
the introduction of the continuous intraday market, the bound-
aries between the planning and tracking phases might become
blurred. Therefore, to make the best possible use of the result-
ing optimization opportunities on the market, an approach that
combines the optimization of both problems in a single model

is required.

In this regard, optimization-based control strategies have
gained attention since they allow considering the energy-price
fluctuations and the system dynamics as constraints into an op-
timization problem behind the controller design. Among these
strategies, the Model Predictive Control (MPC) approach has
had a great application in the tracking stages once the planning
stages have been previously optimized [10]. In [11], a stochas-
tic MPC framework to optimally schedule and control the CHP
microgrid with large-scale renewable energy sources to reduce
the negative impacts introduced by uncertainties is proposed.
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Nevertheless, due to the need to combine both planning and
tracking problems as well as the increasing interest of improv-
ing the economic performance of the CHP systems, the Eco-
nomic Model Predictive Control (EMPC) has gained attention
during the last years with great applications in systems such as
the boiler-turbine system[12], residential building energy sys-
tems [13], and mechanical pulping processes [14]. The main
advantage of EMPC with respect to MPC is that the former di-
rectly optimizes an economic cost function of the process, from
which both market constraints and time-varying price profiles
could be considered into both the cost function and the con-
straints of an optimization problem [15, 16]. Thus, using the
EMPC approach, both the planning and fulfillment problems
could be addressed in one stage. Besides, according to the re-
ceding horizon principle [17] for the real-time implementation
of control strategies, every time that the optimization problem
is solved, the current cost/price information could be updated.

On the other hand, regarding model accuracy several ap-
proaches have been developed in the literature for the CHP
plants, which are mainly focused on phenomenological-based
models [18]. For instance, in [19], a modeling approach for
a CHP plant that considers the effect of power gradients for
depicts dynamic power changes more accurately than existing
approaches is presented, while in [20], a multi-objective opti-
mization model based on the technical, economic and environ-
mental performances is developed. However, it is well known
that phenomenological-based models require a high computa-
tional load because of the complexity of mathematical expres-
sions used for representing the main phenomena that govern
the system behavior. In addition, in most of the cases, model
parameters, constants, or variables cannot be measured, esti-
mated or determined in real environments. Consequently, data-
driven models have become a useful alternative to model com-
plex and large-scale systems [21]. Among the methods for get-
ting models based on real data sets, the Subspace Identification
(SI) algorithms were increasingly applied for the design of con-
trol strategies during the last years. The main reason for their
widespread use is due to the fact that these methods directly de-
liver a linear state-space realization, which is quite useful in the
design of control strategies [22]. In Table 1 some of the most
relevant works during the last years are presented and classified
according to the topics addressed for determining the optimal
operation of CHP systems. From this review, it is possible to
see that there is not a control strategy that integrates all the rel-
evant features in only one strategy, apart of having real-time
implementation capabilities.

Therefore, in order to solve the issues with respect to long op-
timization horizons, temporal resolution, and model accuracy,
the main contribution of this paper is the design of a predictive-
like controller based on the EMPC approach and by using a
non-constant time-step size along the prediction horizon. The
time-step width along the prediction horizon increases for time
steps that lie further in the future, since if only the most recent
time step is actually executed, model accuracy can be main-
tained while the number of decision variables is reduced. In this
regard, the general idea of the proposed controller is to predict
both the thermal and electrical power production that maximize

Table 1: Main research topics of the control strategies implemented for CHP
systems.
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Luo et al. [8] 3 3 3
Marino et al. [9] 3
Zhang et al. [11] 3 3 3 3
Aluisio et al. [5] 3 3

Costa and Fichera [4] 3 3
Zhang et al. [3] 3 3 3

Proposed strategy 3 3 3 3 3 3

the profit during the CHP operation considering both operating
and energy market constraints. Thus, the proposed controller
will be designed based on a model for the operation of a CHP
plant obtained by using SI methods and real data sets. In addi-
tion, in order to get the maximum profit regarding the sale of
the electric power generated, a soft constraint for minimizing
the difference between the generated and traded electric power
is proposed, taking advantage of the high temporal resolution
for the near future reached by using a non-constant time-step
size.

It should be noted that in [23], a predictive-like controller
was proposed using a non-constant time step as a first ap-
proximation to determine the optimal operation of cogenera-
tion plants. However, in [23], energy losses due to the heat
exchange with the environment and suitable measurements to
avoid the high switching frequency of system actuators (e.g.,
valves, pumps) were not considered into the controller design.
Thus, in contrast to the previous work, the proposed controller
in this paper considers the energy losses in the process model,
and in addition to energy market constraints and its fluctuations,
safety constraints to avoid damages in the system are proposed
in the controller design. Besides, the proposed controller is
compared with another controller using a constant time step and
more decision variables along the prediction horizon, in order
to check the suboptimality of the proposed approach.

The remainder of the paper is organized as follows. In Sec-
tion 2, the tools employed for the design of the proposed control
strategy are briefly described. Then, the problem of maximizing
profit for the operation of CHP plants is introduced in Section
3. Next, in Section 4, the proposed approach and the general
idea about the non-constant time step are both presented and
discussed. Then, a detailed description of the case study is pre-
sented in Section 5. Afterward, the obtained simulation results
for the proposed approach are reported and analyzed in Section
6. Finally, conclusions and future work are drawn in Section 7.
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2. Preliminaries

2.1. Economic Model Predictive Control
Model predictive control (MPC) is an optimization-based

control technique in which a cost function is optimized over
a prediction horizon according to a dynamic process model and
process constraints. According to [24], the main idea underly-
ing MPC is to transform a control problem into an optimization
one, in a way that at sampling time a sequence of future con-
trol values is computed. Usually, MPC is formulated using a
quadratic objective function to penalize the deviations of the
state and outputs of a system from their optimal steady-state
values over a prediction horizon [15, 10].

Although the conventional MPC approach has had a great ap-
plication, it does not allow a suitable representation of the eco-
nomic performance of the processes. According to [16], there
is an increasing number of problems for which dynamic eco-
nomic performance is crucial and the hierarchical separation of
economic analysis and control is either inefficient or inappro-
priate. Thus, in order to perform in a joint manner the process
economic optimization and process control, a new MPC scheme
has been proposed, in which the conventional tracking function
is replaced by an economic cost function and, it is called Eco-
nomic MPC (EMPC). In this regard, given that the EMPC di-
rectly optimizes the process economics, it has been widely used
in the context of the manufacturing industry with the aim to de-
termine the optimal operation of manufacturing systems from
an economic viewpoint.

According to [15], the EMPC approach is characterized by
the following optimization problem:

min
u∈S

∫ Hp

0
le (x(t), u(t)) dt (1a)

subject to

ẋ(t) = h (x(t), u(t), 0) (1b)
x(0) = x(tk) (1c)

g (x(t), u(t)) ≤ 0,∀t ∈ [0,Hp) (1d)

being u the input trajectory of the decision variables over the
prediction horizon Hp, x the predicted state trajectory, h (·) the
mathematical expressions for the nominal process model, x(0)
the initial conditions on the dynamic model, g (·) the process
constraints, and le (·) is the process economic cost function that
the EMPC optimizes through dynamic operation of the process.

It should be noted that the implementation strategy of the
EMPC is the same as for the conventional MPC, i.e., in a re-
ceding horizon fashion. Several works related to the design
of EMPC controllers, the theoretical background and stabil-
ity analysis of EMPC have been proposed in the literature.
A detailed explanation of the EMPC strategy can be found in
[16, 25]. On the other hand, some relevant applications of
EMPC in industrial environments are presented in [26] for the
building climate control in a Smart Grid, [12] boiler-turbine
systems, and [14] for the mechanical pulping processes.

2.2. Subspace identification

Subspace identification (SI) methods allow identifying the
matrices of a state-space realization of linear time-invariant
(LTI) systems based on input-output data. These algorithms are
useful since state-space realizations are convenient for estima-
tion, control and prediction tasks. Many SI methods are based
on algorithms that use both the observability and controllabil-
ity matrices to determine the model matrices from input-output
data for a real system.

Basically, SI methods start from the idea that a set of mea-
surements of b input signals (b ≥ 1) and p output signals
(p ≥ 1) satisfy an N-order state-space (unknown) realization
as follow:

x(k + 1) = A x(k) + B u(k) + w(k), (2a)
y(k) = C x(k) + D u(k) + v(k), (2b)

where k ∈ Z≥0 corresponds to the discrete-time index, x ∈
R`,u ∈ Rb, and y ∈ Rp are the state, input and output vec-
tors, while w ∈ R` and v ∈ Rp are the state noise and output
measurement noise, respectively.

Thus, in a deterministic case, in which w and v are neglected,
the SI problem consists of [27]

(a) Estimate the system order N.

(b) Estimate the system matrices A ∈ R`×`, B ∈ R`×b, C ∈
Rp×`, and D ∈ Rp×b.

According to [27], two different families of SI algorithms
have been identified and reported in the literature. The first
family uses the state estimation x̂ to determine the model ma-
trices, while the second family uses the extended observability
matrix Oi to first determine estimates of matrices A and C, and
then, to estimate matrices B and D. Some examples of the first
family of algorithms are the Canonical Variate Analysis (CVA)
and Numerical algorithm For Subspace IDentification (N4SID),
while a representative example of the second family is the Mul-
tivariable Output Error State Space (MOESP) algorithm. The
algorithms of the first family are based on the system theory,
the unifying theorem, linear algebra, and they can be general-
ized in two main steps:

1. Determine N and a state sequence x̂1, x̂2, · · · , x̂n, x̂d+1. To
this end, the data block Hankel matriz and the singular
value decomposition are employed.

2. Solve a least-squares problem to obtain the state-space ma-
trices based on state estimation x̂, and the measurements u
and y.

The last procedure is deeply explained in [28], while some of
the previously mentioned SI algorithms, and the way they are
implemented, are widely explained in [22, 27].
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Figure 1: Combined Heat and Power (CHP) system with an integrated Thermal
Energy Storage (TES) unit.

3. Problem Statement

The CHPs commonly refer to systems formed by a power
generator and a heat recovery unit to produce electricity and
useful heat at the same time. These systems are often based
on gas engines to generate electric power and thermal energy
for heating a water stream. In most cases, the heat recovered is
used to directly cover the thermal power demand of buildings,
other industrial processes, or it is transported towards a Thermal
Energy Storage (TES) unit for its later use. A typical scheme of
a CHP system with an integrated TES is shown in Figure 1.

According to Figure 1, the volumetric flow of gas FG is fed
to the CHP system for generating electric power PE , which is
usually used by the processes in the plant or injected in the local
grid point of common connection for its sale. During the com-
bustion process of FG, the heat generated as waste is recovered
by heating a cooling fluid (e.g. water) from temperature T1 to
T2 via heat transfer. Afterward, the warm fluid is pumped to-
wards the TES unit at a constant volumetric flow rate of FW ,
from which the thermal power demand qdem is covered. Thus,
the thermal power recovered during the CHP operation qCHP is
stored in the TES, from which a water stream at the temperature
of the TES TT ES is transported towards the industrial processes
that require it.

Thus, in order to maximize the profit during the operation
of a CHP system and to guarantee its proper operation, the
costs associated to the resources consumption (e.g., FG and FW )
should be minimized while complying qdem and, the operating
constraints of both the CHP system and TES unit are satisfied.
In addition, the costs associated with the systems wear caused
by high switching frequency and long operating hours of the
CHP system could also be minimized in order to take into ac-
count the depreciation of the system.

On the other hand, besides to minimize costs related to the
operation of a CHP system, incomes by the sale of the electric
power generated could be generated. On the other hand, besides
to minimize costs related to the operation of a CHP system, the
incomes generated by the sale of the electric power could be
maximized as a way to reduce the cost and take advantage of
the system outputs. In this regard, in order to improve the prof-
itability of the CHP system, the maximization of revenue could
be performed taking into account the energy-price profile and
its fluctuations in the market. Thereby, in order to determine
the economic-optimal operation of a CHP system along an op-
eration time T , the following control objectives are proposed:

3.1. Costs associated with the resource consumption

In this case, only the cost associated with the gas consump-
tion is considered since the water flow in industrial environ-
ments is generally recirculated through the system as shown in
Figure 1. Thus, the cost by gas consumption FG is defined as
follows:

θ1(k) =

T∑
k=1

FG(k) Pr,g(k), (3)

being FG ∈ R≥0 the volumetric flow of gas consumed by the
CHP system, and Pr,g ∈ R≥0 the gas price per day in suitable
units. It should be noted that, for the case in which the water
flow is not recirculated, an equation in the same way of (3)
could be defined in terms of FW .

3.2. Costs related to the CHP operation

Regarding the operation of the CHP system, two types of
costs are considered:

• Costs of system depreciation due to the long operation
hours of the CHP system, i.e.,

θ2(k) =

T∑
k=1

u(k) Pr,on, (4)

being u ∈ {0, 1} the current state (on/off) of the CHP sys-
tem, and Pr,on the cost of keeping the system turned on.

• Costs associated with the switching frequency of the CHP
system fsw, i.e.,

θ3(k) =

T∑
k=1

fsw(k) Pr,s, (5)

being

fsw(k) = |u(k) − u(k − 1)| ∈ {0, 1},

and Pr,s a constant for the cost of switching on/off the sys-
tem. In should be noted that θ3 is also a way to penalize
the high switching frequency of the CHP system to avoid
damage system and respect its inertia.

3.3. Revenues for the sale of the electric power

For the cases in which the electric power generated PE will
be injected to the grid point common for its sale, the total rev-
enues are defined as follows:

θ4(k) =

T∑
k=1

PE(k) Pr,e(k), (6)

being PE ∈ R and Pr,e ∈ R≥0 the electric power generated and
the sale price of PE , respectively.

5



3.4. Trading of electric power
For the sale of PE to any electric company, some market con-

straints must be satisfied to avoid economic penalties. In this
regard, the amount of electric power traded with the electric
companies for a fixed time period must be satisfied with small
variations for the whole period. Thus, in order to satisfy the
traded electric power, a new control objective that considers the
energy market constraints must be included. Assuming that the
electric power traded with the electric company Ptra has an up-
dating period Tud, for which Ptra must be approximately equal
to PE , the control objective proposed to minimize differences
between PE and Ptra along Tud is defined as follows:

θ5(k) = Pr,∆P

Ptra(k : Tud) −
i=Tud∑
i=k

PE(i)

 , (7)

being Ptra(k : Tud) the traded power from the time instant k up
to the next updating period Tud, i ∈ Z≥0, Ptra ∈ R≥0, Tud < T ,
and Pr,∆P the economic penalty for not fulfilling Ptra.

It should be noted that, according to (3) - (7), FG(k), FW (k)
and u(k) refer to the inputs of the CHP system, while PE(k)
is one of the outputs resulting from feeding such inputs to the
system. Thus, according to the previous discussion, in order to
determine the optimal operation of a CHP system with an inte-
grated TES (see Figure 1), the economic cost function proposed
in this work is defined as follows:

J(k) = −(θ4(k) − θ1(k) − θ2(k) − θ3(k) − θ5(k)), (8)

being J ∈ R the total profit for the CHP operation along T ,
which corresponds to the revenues for the sale of PE (θ4) minus
the total costs (θ1, θ2, θ3, θ5) to operate the CHP system.

Thus, in order to achieve the control objective in (8), the ac-
tivation/deactivation instant of the CHP system and the opti-
mal amount of gas to feed the system should be determined.
However, to compute both the revenue and total costs, suitable
dynamic expressions are required for both relating the input
(FW ,T1, FG, u) and output (PE ,T2) variables of the CHP sys-
tem, as well as for modeling the heat transfer in the TES unit,
i.e.,

ψ(k + 1) = f1 (ψ(k), FW (k),T1(k), FG(k), u(k)) ,
PE(k) = f2 (ψ(k)) ,
T2(k) = f3 (ψ(k)) ,

(9)

being ψ ∈ R the state vector in the corresponding linear/non-
linear map f1 : {0, 1} × R 7→ R, while f2, f3 : R 7→ R are the
linear/non-linear maps that relate the states ψ with the output
variables for the CHP system.

In addition to the dynamics for the operation of the CHP
system, the dynamic for the thermal energy stored in the TES
should be modeled in order to guarantee the thermal power de-
mand qdem and satisfy operating constraints. In this regard, a
simplified model based on the energy conservation principle is
proposed considering the energy losses by heat exchange with
the environment. According to the scheme in Figure 1, at each
time that the CHP system is activated, a water stream with flow

FW is pumped from the TES towards the heat recovery unit in
the CHP system for its heating. Afterward, this warm flow is
returned to the TES where a phenomenon of heat transfer takes
place increasing or decreasing the temperature inside of TES
TT ES according to the amount of water stored and the others
input-outputs flows. One of the output flows of the TES unit
is the stream pumped to cover the required qdem. It should be
noted that, for this case, the temperature inside the tank is as-
sumed to be uniform, it means the temperature of the output
streams will be equal to the temperature inside of TES, i.e.,
T1 = TT ES . It worth noting that each flow of hot water pumped
from the TES, e.g., towards the CHP system and the building
for covering qdem, is returned to the tank after to comply with
their functions.

Thus, in terms of heat flow, the dynamic for the energy stored
in the TES unit could be defined as

QT ES (k + 1) = QT ES (k) + ∆t (qCHP(k) − qdem(k) − qloss(k)) , (10)

being

qCHP(k) = FW (k) Cp (T2(k) − T1(k)) , (11)

the heat flow per time unit recovered from the CHP system and,

qloss(k) = U AT ES (T1(k) − Tenv(k)) . (12)

the heat flow per time unit lost by heat transfer with the envi-
ronment at instant k.

In (10)-(12), qdem ∈ R refers to heat flow per time unit re-
quired by other processes, QT ES ∈ R is the heat stored in the
TES unit, T1 and FW are measured inputs, Cp is the heat ca-
pacity of water, AT ES corresponds to the transfer area of the
TES unit, U is the global coefficient of heat transfer, Tenv is the
surroundings temperature, and ∆t refers to the sampling time.
Besides, taking into account the physical constraints of the TES
unit, it must satisfy Q

T ES
≤ QT ES ≤ QT ES for all k, being Q

T ES

and QT ES the lower and upper bounds of QT ES , respectively.
Finally, in addition to the process models, other operating con-
straints such as operating ranges, among others, could be con-
sidered in order to guarantee the proper operation of the CHP
system.

4. Proposed Approach

In order to determine the optimal operation of the CHP sys-
tem from an economic point of view, the EMPC approach is
addressed to design an optimization-based controller that al-
lows maximizing the revenue while minimizing the operating
costs along a prediction horizon. From the EMPC approach, the
control problem can be transformed into an optimization prob-
lem, in which process dynamics, operating limitations, and con-
trol objectives will be considered like the constraints and cost
function of an optimization problem, respectively. It should be
noted that due to the predictive behavior of the EMPC approach,
process dynamics are required to perform the prediction of sys-
tem behavior along a prediction horizon. In this regard, the con-
troller design, the philosophy behind the use of a non-constant
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time step along the prediction horizon, and the model process
for the CHP system will be explained below.

4.1. Controller design
Based on the receding horizon philosophy [17] and consid-

ering a fixed prediction horizon Hp, the general idea is to pre-
dict the input sequences of the system v(k) = [u(k) FG(k)]T that
maximize the profit taking into account both the operating con-
straints and the time-varying price profiles. Thus, according to
the defined control objective in (8), sequences for J and system
inputs v along Hp can be defined as follow:

J(k) , {J(k|k), . . . J(k + Hp − 1|k)}, (13a)

V(k) , {v(k|k), . . . v(k + Hp − 1|k)}, (13b)
(13c)

with J ∈ RHp and V ∈ {0, 1}Hp × RHp . Thereby, the economic
predictive-like controller is based on the following open-loop
optimization problem:

min
V(k)

J(k) (14a)

subject to (9) - (10) and

FW (k|k) = Fw u(k|k), (14b)
u(k|k) ∈ {0, 1}, (14c)

QT ES (k|k) ∈
[
Q

T ES
,QT ES

]
, (14d)

T2(k|k) ∈
[
T 2,T 2

]
, (14e)

the logical conditions:

u(k|k) = 1⇐⇒ FG(k|k) ∈
[
FG, FG

]
, (14f)

u(k|k) = 1⇐⇒ PE(k|k) ∈
[
PE , PE

]
, (14g)

u(k|k) = 0⇐⇒ PE(k|k) = 0, (14h)
u(k|k) = 0⇐⇒ FG(k|k) = 0, (14i)

and the following safety constraints to avoid the chattering ef-
fect and to smooth the behavior of system actuators:

∆u(k|k) = 0⇐⇒ 0 ≤ ∆FG(k|k) ≤ ε, (14j)
∆u(k|k) = 1⇐⇒ 0 ≤ ∆FG(k|k) ≤ µ, (14k)

being ∆u(k|k) = |u(k|k)−u(k−1|k)|, ∆FG(k|k) = |FG(k|k)−FG(k−
1|k)|, Fw the constant flow of water to recover the heat pro-
duced by the CHP system, PE the electric power generated, ε
the maximum variation allowed in FG when the system remains
on, µ the maximum variation allowed in FG when the system
switches on, and PE , PE ,T 2,T 2, FG, FG, and Q

T ES
,QT ES the lower

and upper bounds for PE ,T2, FG and QT ES , respectively. Thus,
taking into account the nature of variables to be optimized, the
optimization problem in (14) is a mixed-integer linear program-
ming (MILP) problem, for which suitable solvers should be

Figure 2: Control scheme for the optimal operation of CHP system with an
integrated TES.

chosen in order to solve the problem with a low computational
burden.

Assuming that the optimization problem defined in (14) is
feasible, i.e., V(k) , ∅, the optimal sequence V∗(k) exists and,
according to receding horizon approach, the first component
v∗(k|k) = [u∗(k|k) FG

∗(k|k)]T is sent to the plant. Then, this
procedure is repeated for the next instant k + 1 once measure-
ments of input signals and estimation of the required informa-
tion about the plant are updated for the next iteration. In order
to obtain suitable estimations of model states for the next itera-
tions, an state estimator could be required. The proposed con-
trol scheme in real time to determine the optimal inputs along
Hp is presented in Figure 2.

According to Figure 2, the optimization problem in (14) is
solved in real time into the controller module in order to deter-
mine the optimal sequence V∗(k). Next, the first components,
i.e., u∗(k|k), FG

∗(k|k), are sent to both the plant and the state
estimator. Then, from these signals as well as the real mea-
surements from the CHP system, the current estimation of the
model states ψ̂(k) is performed by the estimator and fed back
to the controller for the next iteration. Thereby, to estimate the
states of the CHP system, a Kalman filter based on the real mea-
surements of the outputs of the CHP system will be designed.

It should be noted that since the electricity trading is usually
accounted for and fulfilled every 15 minutes, an unfulfillment
of electrical power at the beginning of this time slot/window
could be compensated at the end of such time window. Thus,
at every time step, the system inputs can be adjusted in order
to reduce the difference between the amount of energy traded
Ptra and produced PE . Taking into account that the way of this
restriction is satisfied is one of the contributions of this paper,
the trajectory of the prediction model should be updated at time
slots lower than a quarter of an hour with the aim to have more
degrees of freedom along Tud. This last requirement is satisfied
using a non-constant time-step size along Hp considering time
slots lower than 15 minutes during the first part of Hp, and then
increasing the step size to avoid increasing the computational
load.

Thus, assume that at each time instant k an optimal sequence
is found along Hp and the predicted PE from k up to Tud is
sold to the electric company. Then, for next iteration k + 1, the

7



Figure 3: Scheme for the approaches of both constant and non-constant time-
step sizes along Hp.

objective in (8) is minimized in order to guarantee that the sold
electric power Ptra can be achieved at instant Tud, considering
the PE produced from k up to k+Tud. Next, when k = Tud, a new
amount of electric power to be sold is predicted and updated to
the electric company, and the process is repeated once again.
Thereby, θ5 is considered only along the first 15 minutes of Hp

since Ptra for this time period has already sold while for the rest
of Hp new targets can be defined according to the variations of
the energy market.

4.2. Non-constant time-step size

Due to the high computational cost for solving optimization
problems with a large number of variables and the need to solve
them fast enough for their implementation in real time, in this
paper a non-constant time-step size along Hp is proposed. The
general idea is to reduce the number of decision variables along
Hp by using a shorter time-step size at the beginning of Hp and
increasing the time-step size towards the end of Hp. That means
a greater number of decisions will be considered in the near
future while fewer decision variables are considered in the far
future. It is worth noting that, the time-step size does not refer
to the sampling time ∆t, which is defined by sensing devices
and used in the model identification. In contrast, the controller
time step, called henceforth ts, corresponds to the time instants
along Hp in which the controller makes decisions, with ts ≥ ∆t.
A representation of the proposed approach is shown in Figure
3.

Thus, for a given ∆t, which can be established according to
the data acquisition devices in the plant or in the modeling pro-
cedures, the proposed approach considers using a non-constant
ts along Hp greater than ∆t. Therefore, according to Figure 3,
the controller can only make decisions at the time instants cor-
responding to the time steps ts3 � ts2 � ts1 ≥ ∆t and not
at each ∆t. It should be noted that, in the strict case ts > ∆t,
an internal loop is required, e.g., if ∆t = 0.1s and ts = 1s, ten
iterations for the process model should be implemented. This
procedure is commonly known as blocking [17].

Finally, since the optimization problem in (14) explicitly
considers models for the generation of both electric and thermal
power (9), suitable expressions for characteristic maps f1, f2
and f3 in (9) are required. Taking into account the complexity

of these systems, this paper proposes the identification of data-
driven models by using SI methods. The procedure followed to
identify the model of the CHP system is explained in the next
section.

4.3. Model of a Combined Heat and Power System

Although the expressions for the dynamics that take place in
the TES unit are given in (10)-(12), suitable expressions for
modeling the CHP system will be determined based on real
data. In this paper, the SI methods have been selected for model
identification as they allow to obtain a state-space representa-
tion from input-output data [29, 21, 22]. Thus, a linear approx-
imation for the dynamics of the CHP system (i.e., maps f1, f2
and f3) is considered.

According to Section 2.2, in order to determine the model
matrices and the order N, this paper focuses on the N4SID
algorithm to get proper expressions for maps f1, f2 and f3
due to its great application and implementation in software
[22, 28]. Therefore, to obtain a suitable state-space represen-
tation, proper experiments should be performed for getting in-
formation about the real system behavior at different operat-
ing conditions. Thus, according to the process shown in Figure
1, suitable tests were performed feeding different values of FG

and T1 to the CHP system in order to get its dynamic response
and its corresponding outputs. It should be noted that for this
case, changes in the water flow were not considered since this
flow is considered constant always the CHP system is turned
on. However, for those cases in which FW can be modulated,
experiments changing this flow could also be required in order
to represent the real behavior of the system. Besides, when FW

can take different values, it can be added as a decision variable
into the optimization problem (14) considering the associated
costs.

5. Case study

The system to be considered in this paper is based on a
real CHP system with an integrated TES unit, which is in the
ETA research factory at Technische Universität Darmstadt, Ger-
many. As shown in Figure 1, although the CHP system is
formed by different devices, in this paper, the model for each
component of the CHP system is not addressed separately. In-
stead of that, all elements are considered as a joint system, i.e.,
the CHP. Following this idea, the CHP system will have three
inputs, namely, T1, FW and FG, which feed the system to pro-
duce the outputs PE and T2. Although the direct output of the
CHP system is T2, from this variable, the heat flow recovered
qCHP can be computed by using (11).

The CHP system considered has a maximum electric power
capacity PE,max = 6 kW when the maximum flow of gas
FG,max = 2.4 m3/h is fed to the system. Thus, when the system
is turned on, the produced PE is sold to the power grid in order
to maximize revenue and mitigate the cost associated with the
thermal power production qCHP, which is the main objective of
the CHP system in the ETA research factory. It should be noted
that a pump with a constant flow rate of FW = 2753.4 L/h is
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Figure 4: Daily energy price profile for the sale of PE .

assumed, and since the fluid is recirculated through the system
the associated costs are neglected. The maximum capacity of
the TES unit in terms of energy is equal to QT ES = 1000kW.

On the other hand, in order to get real data, the CHP system is
equipped with several sensing devices that provide information
in real time about its inputs and outputs. Due to the nature of
these systems, their settling times, and the number of variables
to be sensed, a sampling time equal ∆t = 10s was chosen to
provide data about the real system operation. This information
will be useful for both model identification and its validation.

In addition, a prediction horizon of Hp = 24hours was es-
tablished to test the proposed approach for one operation day.
It means a simulation time of Ts = 24hours. Thus, taking into
account the energy market fluctuations, the daily energy sale
price profile presented in Figure 4 was considered into the opti-
mization problem to compute the revenue achieved for the sale
of PE .

6. Simulation results

6.1. Model identification

According to Section 4.3, the process model for the analyzed
CHP system was identified by using the routine n4sid of the
System Identification ToolboxTM provided by Matlab R©. Thus,
according to real-data sets from the CHP system in the ETA
factory, different values of model order N were tested, and then,
the model matrices A, B,C, and D were identified with the aim
to achieve a high fit degree between the measured and mod-
eled outputs. The model validation for the system outputs is
presented in Figure 5.

From the results in Figure 5, it is possible to see that the ob-
tained model properly represents the behavior of both thermal
and electric power productions in a suitable way. According to
the state-space representation in (2), the identified model matri-
ces are presented in the Appendix.

6.2. Proposed control scheme

Based on the case study presented in Section 5 and the pro-
posed control approach in Section 4, a non-constant time-step
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Figure 5: Validation of the CHP model obtained by using SI methods.

size ts along Hp is proposed for reducing the computational bur-
den. Thus, given that ∆t = 10s and considering Hp as one day,
with a traditional predictive control approach a total of 1440
decision variables along Hp should be computed for each input
variable (u and FG). However, the proposed approach states the
following decision distribution along Hp:

• From t = 0 to t = 30 minutes, ts = 5 minutes and then six
elements of the sequences V(k) are computed.

• Then, from t = 30 to t = 60 minutes, ts = 15 minutes is
fixed and two elements of V(k) are computed.

• After one hour, ts = 1 hour and the rest 24 elements of
V(k) are computed.

Finally, |V(k)| = 32, which corresponds to Hp = 24 hours.
On the other hand, since the model for the CHP system runs
each ten seconds based on the real data, as explained in Sec-
tion 4.2 a faster internal loop with an adaptive length that is
updated according to the current value of ts was included in the
controller design. In this sense, the proposed controller will be
executed every five minutes by using a prediction horizon of
one day ahead and including the prediction of both the model
dynamics and the operation cost according to the current en-
ergy market conditions. Then, according to the execution time
of the controller, the optimal activation/deactivation sequence
of CHP is computed every five minutes taking into account the
update of information required by the controller such as the cur-
rent state of the CHP system and energy market. It means that
at every five minutes new optimal scheduling is computed for
the next 24 hours.

Thus, given the mixed-integer linear programming nature of
the optimization problem in (14), and the need to solve this
problem fast enough to react in real time, simulations were de-
veloped in Matlab R© using the solver IBM ILOG CPLEX Op-
timization Studio [30] and YALMIP toolbox [31] for stating
the optimization problem in the specific format of the solver.
Besides, simulations were performed using a processor Intel R©

CoreTM i7-5500U CPU 2.40GHz and RAM of 8.0 GB and the
parameters in Table 2, in which the costs are presented in eco-
nomic units (e.u.).
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Table 2: Simulation parameters for the CHP system operation.

Parameter Value Parameter Value
Pr,g 0.0218 e.u./kWh Pgas 11.384 kW/m3

Pr,on 5 e.u./kWh Pr,s 5 e.u./kWh

QT ES 1 MW Q
T ES

2 kW

Cp 4.180 kJ/kmol K ρ 1000 kg/m3

T 2 25 ◦C T 2 80 ◦C

FG 0.5 m3/h FG 2.4 m3/h

PE 3000 W PE 6000 W

ε 0.3 m3/h µ 2.4 m3/h

The proposed control approach (EMPC) was compared with
a typical rule-based control (RBC) implemented in these sys-
tems. The underlying idea from RBC is that every time that the
system searches one of the operating bounds, the system will be
switching on/off depending on the bound achieved. It should be
noted that since the RBC does not have predictive behavior, the
control objective related to the trading of PE (θ5) was not con-
sidered when the total operating costs were computed. For the
rest of the control objectives, the comparative was performed
using the same operating constraints and measurements of the
temperature of T1.

In Figure 6, the optimal sequences for the activation of the
CHP system, and both the water and gas flow fed to the CHP
system are presented. From these results, it is possible to ob-
serve that RBC has a higher switching frequency than EMPC,
which increases the wear of systems and therefore the associ-
ated costs. Besides, for each activation of the CHP system, the
optimal value found for FG using the EMPC approach presents
some small variations that allow modulating the qCHP produced
without decrease significantly the generation of PE . This last
fact could be a consequence of the trade-off between the con-
trol objectives of maximizing revenue for the sale of PE and
compensate for the total costs. Then, according to the optimal
input sequences, in Figure 7, the corresponding outputs of the
system are shown. Thus, based on these results, in order to
maximize the sale of PE , the optimal sequence of FG was set
near its upper bound with some small variations to avoid vio-
lating the operating range of the TES unit and satisfying qdem.

In addition, from Figure 7 it should be noted that the pro-
duced qCHP is always higher than qdem when the CHP system is
turned on. That means the excesses in the thermal power pro-
duction are stored in the TES for their later use when the sys-
tem is turned off or even for supplying an unexpected demand.
However, for the case in which the EMPC is implemented, the
modulation in the values of FG allows that the upper bound of
QT ES will be achieved in greater time than when the RBC is
implemented. From this fact, it is possible to keep the system
turned on along a long time avoiding turning off the system
when reaching its bounds.

On the other hand, in Figure 8, the temperature profiles of
the measured T1 inside the TES unit, and the obtained T2 using
both EMPC and RBC are presented. According to the results
shown in Figure 8 and the obtained values of FG for each ap-
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Figure 6: Optimal sequences for the CHP system activation (a), gas flow (b)
and water flow (c) for both control strategies.
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Figure 7: Generated electric power (a), production of thermal power (b), and
thermal power level in TES (c) for both control strategies.
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Figure 8: Temperature profiles of both the water inside the TES (T1) and of FW
at the output of the CHP system (T2).

proach, it is possible to see that higher values of T2 are achieved
using the RBC. This fact is given since for the RBC approach,
the gas flow cannot be modulated and is always pumped at the
maximum admissible value.

According to the control objective for the sale of PE in the
market and the energy trading constraints, Figure 9 shows a
comparison between the generated PE and the traded Ptra at
each 15 minutes. From these results, it is possible to conclude
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Figure 9: Comparison between PE and Ptra using the proposed approach (a),
and its corresponding error (b).

that a high fitting degree between PE and Ptra can be achieved
with an error percentage near 0.8% when the proposed control
strategy is implemented. Thus, by using the proposed EMPC
approach, it is possible to minimize the differences between PE

and Ptra due to the degree of freedom of the controller for ad-
justing the difference every five minutes before to reach the next
Tud. It should be noted that results are only shown for EMPC
strategy because by using the RBC it is not possible to get a pre-
diction of electric power generation, and therefore, economic
penalties cannot be avoided. Thus, including θ5 into the op-
timization problem, the economic penalties can be reduced or
even avoided if a suitable analysis of deviations between these
values is performed and reported to the electric company.

Afterward, taking into account the importance to solve the
optimization problem fast enough for the implementation in
real time of the proposed approach, in Figure 10 the computa-
tional time tc spent by iteration along Ts is presented. It worth
noting that for each iteration, a Hp = 24 hours is considered
with the suitable update of price profiles and thermal power de-
mand. Thus, from obtained results, it can be observed that even
for a great number of decision variables and long prediction
horizons, values of tc lower than five seconds could be achieved
when the proposed controller with a non-constant time-step size
is implemented. Then, since the time spent on solving the op-
timization problem is always lower than ten seconds, and ac-
cording to the controller design the optimal inputs are found
and sent to the CHP system at every five minutes, the proposed
control strategy is suitable for its implementation in real time.
This last fact is a direct consequence of the use of the non-
constant time-step size along the prediction horizon proposed
in this paper.

Finally, in Table 3 the operating costs, revenue, and the real
cost for one day of operation using both the proposed EMPC
and RBC strategies are reported. From these results, it is possi-
ble to see that even if the economic penalties by the difference
between PE and Ptra are neglected when the RBC is used, cost
reductions per day around 11.3% can be achieved when the pro-
posed EMPC is implemented. Besides, it should be noted that
more revenue can be achieved by selling the electric power gen-
erated when the proposed controller is implemented since the
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Figure 10: Computational time by iteration along Ts.

Table 3: Total costs in economic units for one operation day by using both
control strategies.

Approach Operating costs Revenue Real costs
RBC 1 151.73 e.u. 3.86 e.u. 147.87 e.u.
EMPC 137.06 e.u. 5.23 e.u. 131.80 e.u.

fluctuations of energy prices are considered and updated every
five minutes into the optimization problem. Thus, according to
the price profile, the controller makes the decision to produce
more or less PE . However, it should be noted that the sale of
electric power to the grid point is only a strategy to take ad-
vantage of one of the outputs of the CHP system and is not the
main objective of this proposal. Therefore, the real costs for the
operation of the CHP system in Table 3 were computed as the
total operating costs minus the income achieved by the sale of
PE .

6.3. Comparative assessment
In this section, the proposed EMPC controller with non-

constant ts (henceforth associated to EMPC1) is compared
with another EMPC controller but considering a constant ts

(EMPC2). The underlying ideas behind this comparative as-
sessment are to evaluate the performance of the proposed con-
troller when disturbances take place and to study the lost of op-
timality due to the reduction in the decision variables in EMPC1
with respect to EMPC2. In order to test both controller designs
under the same operating conditions, a new scenario was de-
signed considering disturbances during the CHP operation.

Thus, the general idea is to show the advantages of using a
non-constant time-step size (EMPC1) defined with shorter time-
step sizes at the beginning of Hp, and, based on the obtained
results, to compare the performance of the proposed controller
with respect to the conventional EMPC2. This last fact is given
since the total number of decision variables along Hp is reduced
even when more degrees of freedom are considered for the near
instants when EMPC1 is used. In this regard, the EMPC2 was
designed using a constant time step ts,2 = 30 minutes along the
whole Hp, i.e., |V(k)| = 48. It should be noted that ts,2 has been

1It should be noted that in this case, economic penalties by not satisfying
the trading of electric power are not included.
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Figure 11: Optimal sequences for the inputs of the CHP system by using
EMPC1 and EMPC2.
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Figure 12: Optimal sequences for the outputs of the CHP system by using
EMPC1 and EMPC2.

selected larger than ts,1 since for lower values of ts,2 it was not
possible to finish the simulation due to the high computational
load.

Two disturbances to simulate a fault in the valve that pro-
vides the gas flow (FG) to the CHP system were simulated.
Thus, from t = 60 minutes up to t = 120 minutes, a reduc-
tion of 5% in the optimal value of FG fed to the CHP system
was considered. Afterwards, in the same way as the first distur-
bance, from t = 1000 to t = 1120 minutes a reduction of 3%
in FG regarding its optimal value was included. The obtained
results for both control strategies are shown in Figures 11 and
12. In addition, the error between the traded and produced PE

(see control objective θ5) for each one of the controllers tested
is presented in Figure 13.

Based on the results in Figures 11 and 12, it is possible to ob-
serve that even when the proposed EMPC1 takes into account
fewer decision variables than the EMPC2, both the optimal se-
quence V as well as the CHP system outputs have similar be-
havior in both cases. However, the main difference between
both approaches could be better appreciated in Figure 14, where
the computational time spent at each iteration is shown for both
controllers. According to these results, it is possible to con-
clude that even when fewer decision variables are considered
by using EMPC1, the proposed approach is a suitable strategy
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Figure 13: Comparison between PE and Ptra by using EMPC1 and EMPC2.
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Figure 14: Computational time spent by iteration using EMPC1 and EMPC2.

to reduce the computational load without loss of optimality. Be-
sides, it worth noting that, according to results in Figure 14, the
EMPC using a constant time-step size is not suitable for its im-
plementation in real time since the time required to solve the
optimization problem is quite large.

It should be noted that, since EMPC1 does a prediction of Ptra

for the next 15 minutes and EMPC2 only can do the prediction
each 30 minutes due to the value of ts, the obtained results using
the proposed EMPC1 was organized to compute the differences
between PE and Ptra at each 30 minutes. Thus, according to re-
sults in Figure 13 and Table 4, differences between PE and Ptra

could be reduced up to 2% for some time intervals (30 minutes)
if the proposed EMPC1 is implemented. This behavior is given
that by using EMPC1 it is possible to define more decision vari-
ables in the near future, which brings more flexibility to the
controller to be able to achieve the control objectives while sat-
isfying the constraints. Besides, by using shorter ts in the near
future along Hp, the smaller execution time for the controller
could be implemented than when EMPC2 is used. From this
fact, the real behavior of the CHP system can be updated more
frequently and, based on this, either disturbances or non-desired
behaviors can be properly managed by the controller. Finally,
in Table 4 the operating costs, revenue, and total costs for a sim-
ulation day are presented, from which it is possible to see that
both strategies achieve similar optimal points.

12



Table 4: Total costs for one operation day by using EMPC1 and EMPC2.

Approach Operating costs Revenue Real costs
EMPC1 137.12 e.u. 5.90 e.u. 131.22 e.u.
EMPC2 132.12 e.u. 5.87 e.u. 131.25 e.u.

7. Conclusions

A predictive-like controller has been designed considering a
non-constant time-step size along the prediction horizon and
a soft constraint to include the energy-market constraints with
the aim to reduce the computational time and minimize the to-
tal costs during the operation of the cogeneration plants. In this
sense, a lower time-step size has been defined for near instants
with the aim to include more decision variables and be able
to satisfy the electric power traded and reported to the elec-
tric company. Besides, by including energy-market constraints
into the optimization problem, the agreements of trading elec-
tric power with the electric companies could exist and allow
reducing operating costs avoiding the economical penalties and
getting revenues for the sale of the electric power.

Based on the obtained results, a lower computational cost for
long prediction horizons with a great number of decision vari-
ables was achieved without loss of the optimality. In addition,
significant cost reductions per day can be achieved while the
economic penalties by the differences between the generated
electric power and the traded electric power are avoided. In this
regard, taking into account that the proposed control strategy is
fast enough regarding the energy price updating, a stage of co-
design for the implementation of the proposed control strategy
in the real system could be developed.

On the other hand, the proposed control strategy could be
tested for more complex systems, e.g., a microgrid with two
or more different CHP systems and only one TES unit, with the
aim to validate its performance. Besides, in order to test the per-
formance of the proposed control strategy and the technique of
model identification, scenarios in which disturbances and noise
in both the model and measurements take place should be con-
sidered.
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APPENDIX

The matrices obtained by using the System Identification
ToolboxTM provided by Matlab R©, and corresponding to the
discrete-time identified state-space model, are the following:

A =


0.7718 0.5131 −0.2202 0.1384
0.1625 0.9777 0.3117 0.2257
0.224 0.1613 0.691 −4.852 × 10−4

−0.4279 −0.4365 −0.08312 0.6417

 ,

B =


0.2625 0.0002352 −0.005585
−0.04581 −9.191e − 05 −0.003041

0.1334 0.0003315 −0.01392
−0.1721 −0.0002933 0.02044

 ,
C =

[
1720 −8822 −2238 −2876
46.48 −36.18 −0.08659 −3.471

]
,

and D = 0.
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