
Fault-tolerant Control of Discrete-time Descriptor Systems using
Virtual Actuators
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Abstract— This paper proposes a fault-tolerant control (FTC)
strategy based on virtual actuators for discrete-time descriptor
systems subject to multiplicative and additive actuator faults.
The goal of this FTC strategy is to reconfigure the closed-loop
system by means of a virtual actuator that allows maintaining
the use of the nominal controller without having to retune it.
To achieve this goal, we define the structure of a dynamical
virtual actuator for descriptor systems including multiplicative
and additive actuator faults. In order to use a state-feedback
controller for implementing the FTC strategy, a state observer
for descriptor systems is also defined. Under the proposed FTC
scheme, the separation principle of the virtual actuator, the
nominal closed-loop system and the state observer is established.
Therefore, all the gains can be designed separately. Finally, a
numerical example is provided to show the effectiveness of the
proposed FTC strategy.

I. INTRODUCTION

Descriptor systems [1], also known as singular sys-
tems [2], [3] or differential-algebraic equation (DAE) sys-
tems [4], appear in a wide range of fields, such as water
distribution networks [5], aircrafts [6], robotics [7], electrical
circuits [8] and biological systems [9], among others. In a de-
scriptor system, some state variables are related algebraically
and, consequently, the mathematical formulation is a set of
coupled differential and algebraic equations, which include
information on both the static and the dynamical constraints
of a plant [10]. Descriptor systems have been investigated
thoroughly during the last decades, and several results of
theoretical and practical relevance have been obtained, such
as stabilization [11], pole assignment [12], linear-quadratic
optimal control [13] and observer design [14].

Recently, the high demand of reliability, safety and fault
tolerance have motivated research in fault diagnosis and fault
tolerant control (FTC) [15], [16], [17]. Fault diagnosis of de-
scriptor systems has been performed using zonotopic fault es-
timation techniques [18], [19], multi-models approaches [20],
unknown input observers [21] and H−/H∞ observers [22],
among others. On the other hand, fewer works about FTC
of descriptor systems can be found, which include passive
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approaches, where the controller is pre-designed to be robust
against a set of faults [23], and active approaches, where
some estimated information about the fault is used online to
achieve fault tolerance [24].

In recent years, the fault-hiding paradigm has been pro-
posed as an active FTC strategy to obtain fault tolerance [25].
In this paradigm, the faulty plant is reconfigured by inserting
a reconfiguration block, when the fault occurs, named virtual
actuator in the case of actuator faults. The virtual actuator
aims at hiding the faults from the controller point of view,
such that it sees approximately the same plant as before the
fault. This active FTC strategy has been extended success-
fully to many classes of systems, e.g. linear parameter vary-
ing (LPV) systems [26], hybrid systems [27], Takagi-Sugeno
systems [28], piecewise affine systems [29] and uncertain
systems [30]. To the best of our knowledge, this approach
has not been extended yet to descriptor systems, which are
often used to model cyber-physical systems and other critical
infrastructures, such as water distribution networks [5]. To
maintain the safety of such systems, an FTC strategy is
required.

The main contribution of this paper is to propose a virtual-
actuator-based FTC strategy for discrete-time linear descrip-
tor systems. The detailed contributions are summarized as
follows:
• Partly based on the work [26], we define the novel

structure of the virtual actuator for descriptor systems
by considering both multiplicative and additive actuator
faults. The FTC strategy adds the virtual actuator re-
configuration block to the nominal closed-loop system,
which comprises the nominal state-feedback controller
and the state observer;

• We present the separation principle for the augmented
system made up by the virtual actuator and the nominal
closed-loop system, which means that the admissibility
of the virtual actuator can be analyzed on its own.

• We transform the admissibility and stability conditions
to linear matrix inequalities (LMIs), which can be
solved efficiently using available solvers.

The remainder of this paper is structured as follows. The
problem statement is formulated in Section II. The main
results including the structure of the virtual actuator for
descriptor systems and the FTC strategy are presented in
Section III. An illustrative example is provided in Section IV.
Finally, the conclusion and some future remarks are ad-
dressed in Section V.

Notation: We use Ir to denote an identity matrix with
dimension r. Note that the dimension r of I may be dropped



when it can be inferred. For a matrix A, we use rank(A),
AT and A† to denote the rank, the transpose, and the pseudo-
inverse of A, respectively. We denote He (A) = A + AT .
A � 0(A ≺ 0) denotes positive (negative) definiteness. For
two matrices E and A, we denote the set of generalized
eigenvalues as σ(E,A) = (E,A) ∈ {σ : det(σE − A) =
0}, and σ(A), obtained with E = I , denotes the set of
eigenvalues of A. For a vector z, we use diag(z) to denote
a diagonal matrix with diagonal elements given by z.

II. PROBLEM STATEMENT

Consider the class of discrete-time linear time-invariant
descriptor systems as

Ex(k + 1) = Ax(k) +Bu(k), (1a)
y(k) = Cx(k), (1b)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote the system state,
control input and measurement output vectors, respectively.
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are the system
matrices. By definition of descriptor systems, the matrix E ∈
Rn×n is singular, that is rank(E) = r < n.

Lemma 1 ([2]): For the pair (E,A) of the descriptor
system (1),
• Regularity: the pair (E,A) is regular if det(zE−A) is

not identically zero.
• Causality: the pair (E,A) is causal if
deg (det(zE −A)) = rank(E).

• Stability: the pair (E,A) is stable if |σ(E,A)| < 1.
• Admissibility: the pair (E,A) is admissible if it is

regular, causal and stable.
In this paper, the descriptor system (1) is assumed to be

observable and matrices E and C satisfy the rank condition
rank

[
E
C

]
= n. Therefore, there exists a pair of T ∈ Rn×n

and N ∈ Rn×p such that

TE +NC = I. (2)

When actuator faults occur, the descriptor system (1)
becomes

Exf (k + 1) = Axf (k) +Bf (φ(k)) (uf (k) + f(k)) , (3a)
yf (k) = Cxf (k), (3b)

where xf ∈ Rn, uf ∈ Rm and yf ∈ Rp denote the
faulty system state, control input and measurement output
vectors, respectively. f ∈ Rm denotes the additive actuator-
fault vector. Besides, the multiplicative actuator-fault vec-
tor φ(k) ∈ Rm is embedded in Bf (φ(k)) ∈ Rn×m as

Bf (φ(k)) = Bdiag (φ1(k), . . . , φm(k)) ,

with 0 ≤ φi(k) ≤ 1, i = 1, . . . ,m.
In the following, we will consider that the additive and

multiplicative actuator faults are available using a suitable
fault estimation technique, e.g. as in [31]. We focus on
designing a virtual actuator for the reconfiguration of the
faulty system (3) and its application to FTC of the descriptor
system (3) using a nominal observer-based state-feedback
controller.

III. MAIN RESULTS

We now propose the FTC strategy based on virtual actua-
tors for the descriptor system (3). The general FTC scheme
is shown in Fig 1.
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Fig. 1. Virtual-actuator-based FTC Scheme.

Denote the nominal input and output vectors as uc ∈ Rm

and yc ∈ Rp, respectively. We consider an observer-based
state-feedback control strategy as

uc(k) = Kx̂(k), (4)

where x̂ ∈ Rn is the estimated state and K ∈ Rm×n is the
state-feedback gain.

A. Descriptor State Observer

Based on the nominal descriptor system (1), the state
observer is structured as follows:

z(k + 1) = (TA− LC) x̂(k) + TBuc(k) + Lyc(k), (5a)
x̂(k) = z(k) +Nyc(k), (5b)

where z ∈ Rn and x̂ ∈ Rn denote the observer state and the
estimated state, respectively. Besides, L ∈ Rn×p is the state
observer gain.

B. Virtual Actuator for Descriptor Systems

Based on [26], let us define

Nva(φ(k)) = Bf (φ(k))
†B, (6a)

B∗ = Bf (φ(k))Nva(φ(k)). (6b)

According to [16, Appendix B], it is noticed that B∗ does
not depend on φ(k).

Therefore, the virtual actuator structure for the fault de-
scriptor system (3) is defined in the following.

Definition 1 (Virtual actuator for descriptor systems):
Given the faulty descriptor system (3) with multiplicative
and additive actuator faults, the virtual actuator is structured
as follows:

Exva(k + 1) = (A+B∗Mva)xva(k) + (B −B∗)uc(k), (7a)
uf (k) = Nva(φ(k)) (uc(k)−Mvaxva(k))− f(k), (7b)
yc(k) = yf (k) + Cxva(k), (7c)

where xva ∈ Rn is the virtual actuator state and Mva ∈
Rm×n is the virtual actuator gain.



C. Separation principle

As shown in Fig. 1, the closed-loop virtual-actuator-
based FTC scheme is presented. A virtual actuator is set up
between the faulty system and the state-feedback controller
(with the observer). In this case, the controller can be
designed using the nominal model. The actual control input
will be compensated by the designed virtual actuator. In the
following, we first discuss the behavior of this closed-loop
system.

Theorem 1: Consider the faulty descriptor (3), the state-
feedback controller in (4), the state observer in (5), and the
virtual actuator in (7), and define the new variables x1(k) =
xva(k), x2(k) = xf (k)+xva(k) and x3(k) = x̂(k)−xf (k)−
xva(k). Then, the closed-loop behavior is given by

Eva

x1(k + 1)
x2(k + 1)
x3(k + 1)

 = Ava

x1(k)x2(k)
x3(k)

 , (8)

where

Eva =

E 0 0
0 E 0
0 0 In

 ,
Ava =

A+B∗Mva (B −B∗)K (B −B∗)K
0 A+BK BK
0 0 (TA− LC)

 .
Proof: Considering the defined new variables, it follows

xva(k) = x1(k),

xf (k) = −x1(k) + x2(k),

x̂(k) = x2(k) + x3(k).

Taking into account the dynamics of the virtual actuator
in (7), we have

Ex1(k + 1) = (A+B∗Mva)x1(k) + (B −B∗)Kx2(k)
+ (B −B∗)Kx3(k).

Together with the dynamics of (3), we derive

Ex2(k + 1) = Exf (k + 1) + Exva(k + 1)

= (A+BK)x2(k) +BKx3(k).

With T and N satisfying (2), the dynamics of the descrip-
tor observer (5) can be reformulated as

x̂(k + 1) = (TA− LC) x̂(k) + TBuc(k)

+ Lyc(k) +Nyc(k + 1).

Therefore, we derive

x3(k + 1) = x̂(k + 1)− xf (k + 1)− xva(k + 1)

= z(k + 1) +NCxf (k + 1) +NCxva(k + 1)

− xf (k + 1)− xva(k + 1)

= z(k + 1)− TExf (k + 1)− TExva(k + 1)

= (TA− LC) x̂(k) + TBuc(k)

+ L (yf (k) + Cxva(k))

− T (Exf (k + 1) + Exva(k + 1))

= (TA− LC)x3(k).

By reformulating the closed-loop behaviour of controller,
observer and virtual actuator in a augmented form, we
obtain (8).

From the closed-loop behavior in Theorem 1, we now
present the separation principle for the design of the virtual
actuator, the state-feedback controller and the state observer
of the descriptor system (3).

Theorem 2 (Separation principle): Consider the closed-
loop descriptor system (8), the pair (Eva, Ava) is admissible
if and only if the pairs (E,A+B∗Mva) and (E,A+BK)
are admissible and the matrix (TA− LC) is Schur stable.

Proof: From (8), Ava is a upper-triangle block matrix.
Regularity is satisfied since det(zEva − Ava) = det(zE −
(A+B∗Mva))det(zE− (A+BK))det(zI − (TA−LC)))
is not identically zero due to the hypothesis of admissibility
of the pairs (E,A+B∗Mva) and (E,A+BK). Regarding
causality, since zEva − Ava also leads to a upper-triangle
block matrix and it satisfies deg (det(zEva −Ava)) =
rank(Eva) = 2rank(E) + n. Furthermore, the set of
generalized eigenvalues σ(Eva, Ava) of the reconfigured
closed-loop system (8) consists of the set of generalized
eigenvalues σ(E,A + B∗Mva) of the virtual actuator (7),
the set of generalized eigenvalues σ(E,A + BK) of the
nominal closed-loop system (1)-(4), and the set of eigen-
values σ(TA− LC) of the state observer, that is,

σ(Eva, Ava) = σ(E,A+B∗Mva) ∪ σ(E,A+BK)

∪ σ(TA− LC).

Thus, the admissibility of (Eva, Ava) is stated based on
Lemma 1.

D. Closed-loop Design

Based on the separation principle proposed in Theorem 2,
the gains Mva, K and L can be designed separately such
that the admissibility of the reconfigured closed-loop system
can be guaranteed.

Lemma 2 ([3]): Given an autonomous descriptor sys-
tem Ex(k + 1) = Ax(k), the pair (E,A) is admissible if
and only if there exist matrices P ∈ Rn×n � 0 and Q ∈
Rn×(n−r) such that

ATPA− ETPE +He
(
QSTA

)
≺ 0, (9)

where S ∈ Rn×(n−r) is any matrix with full-column rank
satisfying ETS = 0.

Proof: The proof of this sufficient and necessary
admissibility condition of discrete-time descriptor systems
can be found in [3, Theorem 2.4].

Based on Lemma 2, we now present the admissibility
conditions for the virtual actuator (7) and the nominal
controller (4).

Theorem 3: Given the faulty descriptor system (3), the
pair (E,A+B∗Mva) of the virtual actuator (7) is admissible
if there exist matrices P1 = PT

1 ∈ Rn×n with P1 � 0, Q1 ∈
Rn×(n−r) and Mva ∈ Rm×n such that[

Ψ1 (A+B∗Mva)
TP1

P1(A+B∗Mva) −P1

]
≺ 0, (10)



where Ψ1 = −ETP1E+He
(
Q1S

T (A+B∗Mva)
)

and S ∈
Rn×(n−r) with full-column rank satisfies ETS = 0.

Proof: Consider the system Ex(k + 1) = (A +
B∗Mva)x(k). Based on Lemma 2, the pair (E,A+B∗Mva)
is admissible if there exist matrices P1 ∈ Rn×n � 0, Q1 ∈
Rn×(n−r) and Mva ∈ Rm×n such that

(A+B∗Mva)
TP1(A+B∗Mva)− ETP1E

+He
(
Q1S

T (A+B∗Mva)
)
≺ 0.

By applying the Schur complement to the above inequality,
we thus obtain (10).

Theorem 4: Given the nominal descriptor system (1), the
pair (E,A + BK) of the nominal controller is admissible
if there exist matrices P2 ∈ Rn×n � 0, Q2 ∈ Rn×(n−r)

and K ∈ Rm×n such that[
Ψ2 (A+BK)TP2

P2(A+BK) −P2

]
≺ 0, (11)

where Ψ2 = −ETP2E + He
(
Q2S

T (A+BK)
)

and S ∈
R(n−r)×n with full-column rank satisfies ETS = 0.

Proof: Similar to the proof of Theorem 3, by using
the Schur complement, we use the result in (9) for the
pair (E,A + BK) to obtain the admissibility condition
in (11).

Since the dynamics of the state observer is given in a
standard dynamical form, we propose the LMI condition of
the asymptotic stability of the state observer as follows.

Theorem 5: Given the nominal descriptor system (1), ma-
trices T and N satisfying (2), the state observer in (5) is
asymptotically stable if there exist matrices W = WT ∈
Rn×n, G ∈ Rn×n and Y ∈ Rn×p such that[

−W ATTTGT − CTY T

GTA− Y C W −G−GT

]
≺ 0. (12)

Proof: Consider the system x(k + 1) = Ãx(k) with
Ã = TA − LC. Based on the Lyapunov stability theory,
this system is asymptotically stable if there exists a matrix
W =WT ∈ Rn×n such that W � 0 and

ÃTWÃ−W ≺ 0. (13)

Refer to [32, Theorem 1], the above stability conditions are
equivalent to (12). That is, by pre-multiplying

[
In, −AT

]
and post-multiplying its transpose to (12), we thus ob-
tain (13) by introducing Y = GL.

By satisfying (12), the gain of the state observer (5) can
be computed by L = G−1Y .

IV. NUMERICAL EXAMPLES

A. Example 1

In order to illustrate the proposed virtual-actuator-based
FTC strategy, we first use an example introduced in [3,
Example 3.2]. Consider the nominal descriptor system (1)

with

E =

1 0.8 0
0 1 0
0 0.4 0

 , A =

1.2 0.64 0
0 0.8 0.3
0 0.32 1

 ,
B =

1 1.3 2
0 1 0.24
0 0.4 0.8

 , C =

[
1 0 0
0 1 1

]
,

and the faulty descriptor system (3) with f = 0 and Bf =
Bdiag ([φ1, φ2, φ3]), where three faulty scenarios are taken
into account as follows:

1) Actuator 1 totally lost: φ1 = 0, φ2 = 0.6 and φ3 = 0.3.
2) Actuator 2 totally lost: φ1 = 0.8, φ2 = 0 and φ3 = 0.3.
3) Actuator 3 totally lost: φ1 = 0.8, φ2 = 0.6 and φ3 = 0.
The design has been carried out in MATLAB with

YALMIP toolbox [33]. We use the PEMBMI solver [34]
to design the virtual actuator and controller by solving the
matrix inequalities in (10) and (11), respectively, and the
MOSEK solver [35] to design the observer by solving (12).
Matrices T and N are selected satisfying condition (2) as
follows:

T =

 0.0135 −0.2162 0.5135
−0.1081 0.7297 0.8919
−0.6486 −0.6216 0.3514

 , N =

0.9865 0
0.1081 0
0.6486 1

 .
The obtained virtual actuator designs for the different sce-
narios are
(i) Scenario 1:

Mva =

−0.1049 −0.2530 0.9299
0.1363 −0.9687 −0.5400
−0.5861 0.4142 −0.1095

 ,
|σ(E,A+B∗Mva)| = {0.1112, 0.0087},

(ii) Scenario 2:

Mva =

−1.6359 0.7190 1.0057
−1.9488 2.1347 0.3841
1.4731 −2.0120 −0.7290

 ,
|σ(E,A+B∗Mva)| = {0.0180, 0.8},

(iii) Scenario 3:

Mva =

−0.4354 0.2930 0.3993
0.2533 −0.8465 −0.7258
−0.5994 0.0603 0.2084

 ,
|σ(E,A+B∗Mva)| = {0.0920, 0.0015}.

The designs of K and L are not affected by the actuator
faults. Thus, by solving (11) and (12) for the nominal system,
the obtained results are

K =

−1.1640 0.3546 1.0359
0.0117 −0.8153 −0.5260
−0.0255 0.0326 −0.1815

 ,
L =

 0.0388 0.2565
−0.1140 0.9777
−0.7297 −0.2484

 ,
with |σ(E,A+BK)| = {3.7888 × 10−5, 0.0012},
|σ(TA− LC)| = {0.2130, 0, 3.818× 10−5}.



From the obtained results above, we can see that the eigen-
values/generalized eigenvalues of the observer, the virtual
actuator and the nominal controller are all inside a unit circle
in all three scenarios.

B. Example 2

With the proposed FTC strategy, we would like to show
the closed-loop behaviors in simulations. Thus, consider the
following descriptor system (1) with

E =

1 0.8 0
0 1 0
0 0.4 0

 , A =

2 1.2 0
0 1.5 0.3
0 0.6 1

 ,
B =

1 1.3 2
0 1 0
0 0.4 0

 , C =

[
1 0 0
0 1 1

]
,

and the actuator-fault matrix is given by Bf =

B

0 0 0
0 0.6 0
0 0 0.3

. The initial state is set to be x(0) =

[5, 3, 3.5]
T . We have carried out the closed-loop simulation in

three scenarios: (i) no actuator-fault; (ii) actuator-fault with-
out using the virtual actuator; (iii) actuator-fault using the
virtual actuator. The actuator fault (with Bf ) is introduced
into the system at the sample k = 5. With a delay period,
we enable the virtual actuator at the sample k = 8. We also
choose T and N by satisfying the condition in (2) to obtain

T =

0.5 0 1
0 1 1
0 −1 1

 , N =

0.5 0
0 0
0 1

 .
With the same tools used in Example 1, we obtain the

gains for the observer, the virtual actuator and the nominal
controller for this system as follows:

Mva =

−0.8631 −4.5332 0.1009
0.0734 −1.1160 −0.0104
−0.6735 2.1113 −0.0351

 ,
K =

−1.3348 0.7187 −3.9558
0.0009 −1.6001 −0.0072
−0.3841 0.0408 1.9893

 ,
L =

 1.6278 1.0278
−0.3167 0.9833
1.3722 1.1722

 .
Now, we simulate the closed-loop system for 20 samples.

The closed-loop simulation results are shown in Fig. 2-4.
From the sample k = 1 to k = 5, since there is no fault
occurred inside the system, the state trajectories of three
cases are the same. From the sample k = 5 to k = 8, the
actuator faults are inserted in the closed-loop systems. Since
the virtual-actuator-based FTC strategy is not enabled, the
closed-loop state trajectories in the cases without and with
virtual actuator are driving away from the equilibrium points
and the closed-loop system becomes unstable. Starting from
the sample k = 8, the virtual actuator based FTC strategy is
enabled. Therefore, the closed-loop state trajectories return
to the equilibrium point again. As a result, the closed-loop
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system is stable and converges again towards the origin of
the state space.

V. CONCLUSION

In this paper, we have proposed a virtual-actuator-based
FTC strategy for discrete-time descriptor systems. The pro-
posed FTC strategy includes an observer-based nominal
state-feedback and a virtual actuator. The separation principle
of the closed-loop FTC system has been established. The
design of the virtual actuator, the nominal state-feedback
controller and the state observer can be done in a inde-
pendent manner. The closed-loop admissibility is guaranteed
by using the admissibility conditions to design the virtual
actuator and the nominal state-feedback controller, and the
asymptotic stability condition to design the state observer.
Some numerical examples have been used to illustrate the
proposed approach. As a future work, the proposed FTC
strategy will be extended by adding a virtual sensor to handle
sensor faults in descriptor systems.
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