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Abstract— This paper presents some results related to the
detection and isolation of cyber attacks in a recently proposed
benchmark based on a two-tank system. The benchmark
proposes some attack scenarios in which a malicious attacker
alters the signals of the water level sensors in the tanks, in
order to remain hidden while stealing water. This paper shows
the difficulty to detect cyber attacks based only on the model-
based residuals calculated using the measured variables. On the
other hand, by using the time evolution pattern analysis of the
measured sensors, it becomes possible to detect some of these
cyber attacks.

I. INTRODUCTION

In recent years, the increasing integration between control,
communication and computation (the so-called triple C) has
provided the ability for large numbers of interconnected
sensors, actuators and computational units to interact with
the physical environment [1]. The merging of cyber elements
with physical processes has led to investigate a new class of
systems, referred to as cyber-physical systems (CPSs) [2].
CPSs are characterized by a higher efficiency, but also by
bigger vulnerabilities, which can be exploited by a malicious
agent in order to perform cyber attacks, which might result
in critical damage or economical loss [3], [4]. Cyber attacks
are different from faults due to the fact that they do not affect
only the physical layer of the CPS, but the cyber one as well.
In order to make a control system resilient in face of such
attacks, attack detection and secure control techniques must
be developed [5], [6].

These attacks, usually motivated by terrorism, criminality
or sabotage, exploit the system’s vulnerabilities and result
in some kind of disturbance or damage in the physical
and cyber layers. The interconnected nature of Industry
4.0-driven operations means that cyber attacks have far
more extensive effects than ever before, and digital control
systems, computers and their supply networks may not be
prepared for this kind of risks [7], [8].

In [9], a benchmark based on a two-tank interconnected
system was proposed for testing different schemes for detec-
tion and isolation of cyber attacks. The benchmark was ob-
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tained from a previously proposed fault diagnosis benchmark
[10]-[12] by incorporating a malicious attacker who wants
to steal water from the tanks while remaining hidden through
an appropriate alteration of the measurements coming from
the level sensors of the tanks.

This paper presents the application of the classical fault
diagnosis approach based on analytical redundancy relations
(ARRs) [13], and how an analysis of the time evolution
pattern of the measured sensors can be used to improve
the ability to detect cyber attacks. ARRs are analytical
expressions in terms of the system’s input, output and
their derivatives, which allow testing the consistency of the
measured signal with the nominal model of the system. Their
generation is a problem that has attracted a lot of attention
since the late 1990s [14], and it is still of interest nowadays
[15]-[17], due to several applications of ARRs in different
fields, such as electromechanical systems [18], automotive
[19] and wind turbines [20].

On the other hand, pattern analysis uses a representation
of signal trends in order to extract features which allow
inferring the state of a process [21], e.g., whether it is
being affected or not by faults. Different approaches can be
applied to this aim, such as wavelet-based methodologies
[22], Fischer discriminant analysis [23], or cumulative sum
charts [24], [25].

This paper is structured as follows: Section II summarizes
the benchmark description while the considered scenarios
are described in Section III. The results of application of the
attack detection methods are presented in Section IV. Finally,
in Section V, the conclusions are drawn.

II. DESCRIPTION OF THE BENCHMARK

The considered benchmark consists of two coupled water
tanks, which are connected to each other through connecting
pipes controlled with an automatic valve V}, regulated by an
On-Off controller (see Fig. 1). The first tank, denoted as
Ty, receives water from the pump P;, which is controlled
by a proportional-integral (PI) controller. The second tank,
denoted as T, is equipped with an outlet electro-valve V,, to
supply water to the consumers.

The benchmark model has been derived from the one
described in [10] by incorporating a possible malicious
attacker who has the goal of stealing water from the tanks
while going unnoticed thanks to appropriate alterations of
the outputs of the sensors, which hide the attacks. In the
modified benchmark, it is assumed that the thief can extract
water from the tanks using extraction pumps with flow rates
QOyr1 and Q >, which move the water from the tanks 77 and 7>



Two-tank benchmark.

Fig. 1.

to the theft tanks Tr; and Ty», respectively. At the same time,
it is assumed that the signals provided by the sensors are sent
by wireless to the PI and On-Off controller, and the thief is
able to hack these signals and modify them. Depending on
the type of theft and the type of sensor alteration, different
attack scenarios are considered, as described in Section III.

Hereafter, the model of the benchmark is described and
Table I presents the model parameters. Additionally, the
benchmark simulator provides complementary information
about the amount of stolen water volumes Vy; and Vy, in
tanks Ty and Ty», respectively, and the real values of the
water levels hy and hy. However, these variables should be
assumed not to be available to the attack detector.

TABLE I
MODEL VARIABLES AND PROCESS PARAMETERS.

Symbol Description Value Units
Cypy Hydraulic flow coefficient of the valve V, 1.5938 % 10~* m3/2/s
Cyo Hydraulic flow coefficient of the valve V, 1.59640% 104 | m3/? /s

Ai(i=1,2) Cross-section of the cylindric tank T; 1.54-1072 m?

hi(i=1,2) Water level in the tank T; variable m

i max(i=1,2) Maximum water level in the tank 7; 0.6 m

Op max Maximum outflow from the pump P; 0.01 m’ /s

Ori(i=1,2) Flow theft from tanks 7j and 75 under attack 104 m’/s
Riref Set point of the PI level controller 0.5 m

A. Model of the interconnected tanks

The variation of V; and V,, which are the water volumes
in T and 7>, respectively, can be calculated from the balance
mass equations

‘/l( Z Qli’l l Z QOMf l

where A; denotes the cross-section area of the tank 7;, ¥ Qjy
is the sum of all the water inflows into the tank 7; and Y} Qp..i
is the sum of all the water outflows from the tank 7;.

In particular, (1) can be rewritten as

A (t) = Qp(t) — Q12 (1) —
Asha(t) = Q12 (t) — Qo(t) —

i=1,2 (1)

Ori(1) ()
Op(t) €))

with Qf]
system.

= Q> = 0 when no attack is performed on the

B. Model of the electro-valve V,

The water outflow Q, is controlled by a valve V,, which
is open in nominal regime, where C,, is the global hydraulic
flow coefficient of the valve V,,, and U, € {0, 1} is the valve
position provided by the user (0 = closed, 1 = open)

Qo (t) = Coo/ I (t)U,(t “)
C. Model of the valve V,,

The water flow Qj, through the valve V), is controlled
by an On-Off controller. The flow can be calculated using
Bernoulli’s law

Q12(t) = CopUp()sign (hy (1)

D. System measurements

NV (1) —ha(2)| (5)

It is assumed that the available measurements are given
by
Y (1) = yx(t) + &) (1) (6)

where y, € {Q),Up,h1,h2,Up,U,} are the measured vari-
ables, and €, denotes the corresponding measurement noise.
The values of the sensors noises of this benchmark! are
provided in the file init.m, located in the directory Bench-
mark Program Simulation, and are obtained as uniformly
distributed signals.

E. PI controller

The water level of the tank 77, denoted as Ay, is regulated
by a PI controller, whose output is given by

U;n(t):KP(hl,ref_hl(t))+KI/0 (hl,ref_hqn(r))d‘c (7)

where hy,r = 0.5m is the set-point for Af', while the
proportional and integral gains of the controller are chosen
as Kp=10"3m ' and K; =5-10°(m-5)"", respectively.

E. On-Off controller

The water level hy is regulated by an On-Off controller
with hysteresis with 0.09 m and 0.11 m as lower and upper
switching points, respectively.

G. Pump model

Oy is the outflow from the pump P;, which is assumed to
be proportional to the PI controller output U,. Taking into
account that the flow from the pump is limited by physical
constraints, modeled as a standard saturation nonlinearity,
then Q) is given by

Uy(t) if 0 <Upy(t) < Qpmax
0p(t)=14 0 if Up(t) <0 8
Qp.,max if Up(t) 2 Q ,max

I'The benchmark is available at the URL https://cs2ac.upc.edu/en/training-
benchmarks/cyber-attacks-benchmark-simulator



III. SCENARIOS OF CYBER ATTACKS

A number of attacks are considered, covering different
attack policies. This section presents the different kinds of
scenerios of cyber attacks.

Scenario 1 - Attackless mode: This scenario corresponds
to the normal behavior of the two-tank system when nobody
is stealing water.

Scenario 2 - Short-term water theft from 7): This
scenario is similar to a leakage fault, the only remarkable
difference being that it is cast maliciously, with the purpose
of stealing water from the tank 77. In this scenario, a pump
extracts a constant flow Q1 = 107*m?/s between t = 40s
and ¢ = 80s without any alteration of the measurements A7’
and hy'.

Note that in this scenario, the residuals behave similarly
to the case of a sudden leak in the original fault diagnosis
benchmark.

Scenario 3 - Short-term water theft from 7; with hiding
signal added to the measurement /}': In this scenario,
the thief uses a pump to extract water with a constant flow
Qg1 = 10"*m3 /s between t =40s and t = 805 while adding
a signal to the output of the level sensor in tank 7; so that the
introduced signal hides the theft. Thanks to the introduced
signal, the water level in tank 77 seems to remain constant,
and the PI controller works as if nothing had happened
providing almost the same value U, as in Scenario 1. In
particular, the modified value of A" is given by

1 t
WO =hi(6) + e () + - /O 0n(mdt (9

Scenario 4 - Long-term water theft from 77 with hiding
signal added to the measurement /7': This attack scenario
is similar to Scenario 3, but the theft duration is extended
from 40s to 120s. Due to the large quantity of stolen water,
the plant exhibits some physical functioning problems, since
the tank 77 is emptied out, affecting the tank 7, due to the
interconnection, and the consumption of water Q,, which
becomes zero.

Scenario 5 - Long-term water theft from 77 with small
signal added to the measurement A7': In this scenario,
the thief will steal water as in the previous scenarios while
adding a signal that deceives the PI controller to force more
water to be pumped inside the system while making harder
to detect the theft. In particular, the modified value of A7 is
given by

1 t
(0 = (e) e (1) + 5 /0 0.50/(t)dt  (10)

Scenario 6 - Short-term water theft from 75: This attack
scenario is similar to Scenario 2, but it affects 75 instead of
Ti.

Scenario 7 - Short-term water theft from 7, with hiding
signal added to the measurement /7': This attack scenario
is similar to Scenario 3, but it affects 75 instead of 77. In this
case, the thief uses a pump to extract water with a constant
flow Qpr = 1074 m3 /s while adding a signal to the output of
the level sensor in tank 75, which forces the On-Off controller

to act on the interconnecting valve V; as if nothing had
happened. In particular, the modified value of /3 is given
by

1 1
h’z”(t):hg(t)—kshz(t)—i-A—z/O Op(dt (1)

Scenario 8 - Long-term water theft from 7> with hiding
signal added to the measurement /7': This scenario is
similar to Scenario 4, but the pump corresponding to Q>
is used by the thief instead of the one corresponding to Q.

Scenario 9 - Long-term water theft from 7, with small
signal added to the measurement /7': This scenario is
similar to Scenario 5, but the thief steals water from the
tank 7> and the introduced signal is meant to deceive the
ON-OFF controller instead. In this case, the modified value
of 1y is given by

1 t
B0 =ha(0) +(0) + - /0 0.50p(Mdt (12)

Scenario 10 - Replay attack: In this scenario, the thief
steals water when the plant has reached its steady-state.
However, before doing so, he/she records the measurements
coming from the sensors without stealing water from the
tanks. Then, in a subsequent phase of the attack, the thief
steals water while replacing the real data with the recorded
one. More specifically, the water is stolen from ¢ = 160s to
t = 200s, while measurements recorded in the 50s previous
to the attack are used to deceive the controller and the
supervision system. At time ¢ = 200s, the replay attack ends
and the controller and the supervision system are able to see
the real data coming from the system.

IV. RESULTS OF TWO METHODS FOR CYBER ATTACK
DETECTION

This section presents two methods to detect the cyber
attacks of this benchmark. One of the method is based
on model-based fault diagnosis using analytical redundancy
relations: the well-known ARRs [13] and the second method
relies on extracting some features from the time response of
the sensors.

A. Results based on analytical redundancy relations

Based on the available sensors and replacing the equations
of the model described in Section III, four possible analytical
redundancy relations (ARRs) can be derived replacing the
physical variables by the real measured signals and using the
perfect matching approach [17]. These ARRs allow deriving
the residual expressions as follows



ri(t) =—CywU,' (t)sign (K (t) — h5' (1)) |h’|"(t) —hy (1) ‘ (13)

B dnm
+ Qp (l) _Al T;
ry(t) =Cyp Uy (t)sign (' (1) — 15 () \/ | (1) — h3 (1) 14)
i
—Cyor/ HE (1)U (1) fAzd—j
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Uy (1) if 0 <UZMt) < Qp,max
ra(t) =0y (t)—q O if U (t) <0 (16)
Qp,max if U;n (l) > Qp,max

The residuals (13)-(16) are expressed in discrete-time by
applying an Euler discretization with sampling time 7; = 1s.

Figs. 2-5 show the results of the residual r; for Scenarios
2, 3, 4 and 5 in order to detect an attack in the tank 77. The
threshold has been calculated as three times the standard
deviation of the residual in Scenario 1 (i.e., the attackless
scenario).

Clearly, in Scenarios 2 and 4, the attacks can be detected
analyzing the residual | but, in Scenarios 3 and 5, the resid-
ual r| appears to be insensitive, such that the corresponding
attacks cannot be detected.
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Fig. 2. Residual r(¢) in Scenario 2.

B. Results based on some features of the temporal pattern
of the sensors

A possible approach to improve the detectability of the
cyber attacks consists in analyzing the signals coming from
the sensors in the scenarios where the analytical residuals are
inefficient for this task, as Scenarios 3 and 5. Fig. 6 presents
the time evolution of the measured level in tank 77 during
Scenario 1 (attackless) and the real evolution of the water
level during Scenario 3. The difference between the real and
measured level y; in the tank 77 is due to the water stolen
during this attack. On the other hand, the fast oscillation of
h' without any attack is due to the fast switching On-Off of
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Fig. 3. Residual r(¢) in Scenario 3.
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Fig. 4. Residual r(¢) in Scenario 4.
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Fig. 5. Residual r;(¢) in Scenario 5.



the interconnected pipe to maintain the level in the tank 7>
around 0.09 and 0.11 meters (see Fig. 7).

However, the oscillation of A]' in Scenario 3 is much
slower due to the lower difference between the levels of tanks
T1 and T, such that more time is necessary to refill the tank
T». This feature of the signals A" or i)' could be exploited
to detect an attack. In particular, analyzing the frequency
oscillation of /5 in Fig. 7, the time to detect a misbehavior
(an attack in this scenario) can be shortened significantly.
The same situation is found in Scenario 5 (see Fig. 8) and
the interesting feature is that the smaller oscillations of these
signals start when the attack is developed and remains at
this low oscillation frequency until the end of the scenario
because of the water theft and the low level in tank 7.

Table II shows the difference in the oscillation frequency
of iy for the Scenarios 1, 3 and 5. Clearly, this feature is an
interesting and complementary information that can be used
in order to detect these attacks.

TABLE 11
OSCILLATION OF THE /' IN SEVERAL SCENARIOS.

Scenario 1 3 5
Freq. oscillation /15 | 1/12Hz | 1/49 Hz | <1/35 Hz
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Pattern time evolution of the measured water level /' in Scenarios

V. CONCLUSIONS

This paper has presented some results related to the detec-
tion and isolation of cyber attacks using a recently proposed
benchmark based on a two-tank system. The benchmark
has proposed some attack scenarios in which a malicious
attacker alters the signals of the water level sensors in the
tanks, in order to remain hidden while stealing water. Results
in five of these scenarios have been presented showing the
difficulty to detect cyber attacks based only on the model-
based residuals calculated using the measured variables, and
how using the time evolution pattern analysis of the measured
sensors, it becomes possible detect some of these cyber
attacks. As future research, the remaining five scenarios will
be considered.
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