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Abstract: This paper addresses the design of a state-feedback controller for a class of nonlinear
parameter varying (NLPV) systems in which the nonlinearity can be expressed as a parameter-varying
Lipschitz term. The controller is designed to satisfy a D-stability specification, which is akin to
imposing constraints on the closed-loop pole location in the case of LTI and LPV systems. The design
conditions,obtained using a quadratic Lyapunov function, are eventually expressed in terms of linear
matrix inequalities (LMIs), which can be solved efficiently using available solvers. The effectiveness of
the proposed method is demonstrated by means of a numerical example.

Keywords: Pole placement, D-stability, gain-scheduling, linear matrix inequalities (LMIs), Lipschitz
nonlinear systems, nonlinear parameter varying (NLPV) systems, controller design.

1. INTRODUCTION

Since its introduction, the linear parameter varying (LPV)
paradigm has proved to be suitable for controlling nonlinear
systems by embedding the nonlinearities in the varying pa-
rameters (Rugh and Shamma, 2000). In the last years, there
has been an important progress in the development of analysis
and design techniques for LPV systems (Rotondo, 2017). More
recently, there has been a growing interest in extending these
techniques to nonlinear parameter varying systems (NLPV),
see e.g. Larimore (2013), Cai et al. (2015), Blesa et al. (2015),
Rotondo and Johansen (2018), Lu et al. (2018), since in many
practical applications the varying part appears in a nonlinear
way.

This paper deals with a class of NLPV systems that contain a
nonlinear parameter-varying Lipschitz term. Problems related
to stabilization of Lipschitz nonlinear systems have been ad-
dressed by several works. For instance, Pagilla and Zhu (2004)
considered full-state feedback controller design, observer de-
sign and output feedback controller design. On the other hand,
Veselỳ and Körösi (2018) proposed an approach for the design
of robust PID controllers for nonlinear Lipschitz systems based
on the Bellman Lyapunov equation. Notably, design techniques
based on linear matrix inequalities (LMIs) have been also pro-
posed recently, see e.g. Zemouche et al. (2008), Zemouche and
Boutayeb (2013), Gritli and Belghith (2018).
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Among the specifications that are of interest for LMI-based
design, there is pole clustering in LMI regions, also known
as D-stability. Initially characterized by Chilali and Gahinet
(1996) using a quadratic Lyapunov function with constant ma-
trix, this idea was further developed by Peaucelle et al. (2000),
who considered uncertain systems by means of a parameter-
dependent Lyapunov function, and is still investigated nowa-
days, see e.g. the recent improvements brought by Nguyen et al.
(2017), Chesi (2017).

Since the analysis and design ofD-stable controllers is based on
LMIs, this performance was easily extended to LPV systems.
For example, Ghersin and Sánchez-Peña (2010) showed that
introducing regional pole placement into LPV controller de-
sign helped in improving the transient properties of the closed-
loop response. This idea was exploited by Colmegna et al.
(2016) to design a switched controller that could act aggres-
sively when needed and by Cherifi et al. (2015), who proposed
a D-stabilizing controller under LMI conditions for quasi-
LPV/Takagi-Sugeno model. Further development was brought
by introducing shifting pole placement, which allowed online
changes in the closed-loop transient behavior (Rotondo et al.,
2015), which was recently extended to the design of PID con-
trollers (Sánchez et al., 2018).

The main contribution of this paper is to propose a procedure
for the design of D-stable state-feedback controllers for a class
of NLPV systems in which the nonlinearity can be expressed
as a parameter-varying Lipschitz term.The design conditions
obtained using a quadratic Lyapunov function are eventually
expressed in terms of LMIs, which can be solved efficiently us-
ing available solvers. The effectiveness of the proposed method
is demonstrated by means of a numerical example.

The structure of the paper is the following: in Section 2, the
background results presented in the paper are recalled. Section



3 analyzes the D-stability of Lipschitz NLPV systems. Section
4 presents the proposed design approach. Section 5 shows
application results using a numerical example. Finally, Section
6 draws the main conclusions.

2. BACKGROUND

The idea of LMI regions was first introduced by Chilali and
Gahinet (1996) in order to provide a Lyapunov-based charac-
terization of pole clustering in stable subregions of the complex
plane. Their formal definition is given as follows:

Definition 1. (LMI region) A subset D of the complex plane is
called an LMI region if there exist a matrix α = [αkl] ∈ Sm×m
and a matrix β = [βkl] ∈ Rm×m such that:

D = {s ∈ C : fD ≺ 0} (1)
with:
fD(s) = α+ sβ + s̄βT = [αkl + βkls+ βlks̄]1≤k,l≤m (2)

In other words, LMI regions are subsets of the complex plane
that are represented by an LMI in s and s̄. In Chilali and Gahinet
(1996), it was shown that LMI regions include a wide variety
of typical clustering regions, such as:

• Left-hand semiplanes Re(s) < λ:
α = −2λ, β = 1

• Disks of radius r and center (−q, 0):

α =

[
−r q
q −r

]
β =

[
0 1
0 0

]
• Conic sectors of angle φ:

α =

[
0 0
0 0

]
β =

[
sinφ cosφ
− cosφ sinφ

]
Based on the above definition, Chilali and Gahinet (1996) intro-
duced the notion of D-stability in order to describe whether the
poles of a linear time invariant (LTI) system lie within a given
LMI region or not. By means of a slight abuse of mathematical
language, Ghersin and Sánchez Peña (2002) defined the poles
of an autonomous LPV system:

ẋ(t) = A (θ(t))x(t) (3)
where x ∈ Rnx denotes the state, and θ ∈ Θ ⊂ Rnθ is the
vector of varying parameters, as the set of all the LTI systems
obtained by freezing θ(t) to all its possible values θ ∈ Θ. With
such an extension, it is quite straightforward to define an LPV
system (3) to beD-stable if all its poles lie inD. Then, by using
the Lyapunov candidate function:

V (x(t)) = x(t)TPx(t) (4)
with P ∈ Snx×nx+ , the following condition for assessing the
quadratic stability of (3) can be obtained:

Proposition 1. (Quadratic D-stability of LPV systems) Given
an LMI region defined as in (1)-(2), the autonomous LPV
system (3) is quadratically D-stable if there exists P ∈ Snx×nx+
such that ∀θ ∈ Θ (Nguang and Shi, 2006):
α⊗P + β ⊗ PA(θ) + βT ⊗A(θ)TP (5)

=
[
αklP + βklPA(θ) + βlkA(θ)TP

]
k,l∈{1,...,m ≺ 0

It can be observed that the time derivative of (4) when the LPV
system (3) is taken into account is given by:
V̇ (x(t), θ(t)) = x(t)TPA (θ(t))x(t) + x(t)TA (θ(t))

T
Px(t)

, Φ (x(t), θ(t)) + Φ (x(t), θ(t))
T (6)

and the quadraticD-stability condition (5) can be interpreted as
the following constraint on the Lyapunov function V (x(t)) and
its derivative V̇ (x(t), θ(t)):
αV (x(t)) + βΦ (x(t), θ(t)) + βT ΦT (x(t), θ(t)) ≺ 0 (7)

In fact, (7) can be rewritten as:
αx(t)TPx(t) + βx(t)TPA (θ(t))x(t) (8)

+ βTx(t)TA (θ(t))
T
Px(t) ≺ 0

and, by defining:
X(t) = diag (x(t), x(t), . . . , x(t)) (9)

one obtains that (8) is equivalent to:
X(t)T

(
α⊗ P + β ⊗ PA(θ) + βT ⊗A(θ)TP

)
X(t) ≺ 0

(10)
from which (5) is obtained.

Taking into account the above interpretation of the quadraticD-
stability constraint as (7), the next section extends this approach
to the class of nonlinear parameter varying (NLPV) systems
with parameter-varying Lipschitz nonlinearity.

3. D-STABILITY OF LIPSCHITZ NLPV SYSTEMS

A Lipschitz LPV system is defined as a finite-dimensional time-
varying system whose state equation is composed of two terms:
a linear part described by the state matrix and a nonlinear
Lipschitz term, which are both functions of some varying
parameters θ(t) ∈ Θ ⊂ Rnθ (with Θ known closed and
bounded set), which are assumed to be unknown a priori, but
that can be measured or estimated in real-time:

ẋ(t) = A(θ(t))x(t) + f(x(t), θ(t)) (11)
where x ∈ Rnx is the state, A (θ(t)) is a matrix function
of appropriate dimensions, and f(x(t), θ(t)) is the parameter-
varying Lipschitz function, which satisfies f(0, θ(t)) = 0 and:
f(x(t), θ(t))T f(x(t), θ(t)) ≤ x(t)Tλ(θ(t))Tλ(θ(t))x(t)

(12)
for some known matrix function λ (θ(t)).

Inspired by the linear matrix inequality (LMI)-based results
obtained by Mukherjee and Sengupta (2014) for the controller
design for Lipschitz nonlinear systems, and taking into account
the discussion in the previous section, we propose the following
theorem, which proposes LMI-based analysis conditions for
assessing the quadraticD-stability of a Lipschitz NLPV system
in the form (11).
Theorem 1. (Quadratic D-stability of a Lipschitz NLPV sys-
tem). Given an LMI region defined as in (1)-(2), the au-
tonomous Lipschitz NLPV system (11) is quadratically D-
stable if there exist a scalar γ > 0 and a matrix Q ∈ Snx×nx+

such that ∀θ ∈ Θ:

Π11(θ) · · · Π1m(θ) β11I · · · β1mI Qλ(θ)T · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

Πm1(θ) · · · Πmm(θ) βm1I · · · βmmI 0 · · · Qλ(θ)T

β11I · · · βm1I −γI · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

β1mI · · · βmmI 0 · · · −γI 0 · · · 0

λ(θ)Q · · · 0 0 · · · 0 −
1

γ
I · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · λ(θ)Q 0 · · · 0 0 · · · −
1

γ
I


< 0

(13)



where:

Πij(θ) = αijQ+ βijA(θ)Q+ βjiQA(θ)T , i, j = 1, . . . ,m
(14)

Proof: Consider the Lyapunov function V (x(t)) defined in (4),
for which the D-stability constraint (7) is required. Taking into
account (11), we have:

αx(t)TPx(t) + βx(t)TP (A (θ(t))x(t) + f (x(t), θ(t)))

+ βT
(
x(t)TA (θ(t))

T
+ f (x(t), θ(t))

T
)
Px(t) ≺ 0 (15)

which, by defining x(t) as in (9) and:

F (t) = diag (f (x(t), θ(t)) , . . . , f (x(t), θ(t))) (16)

can be rewritten as:

X(t)T
(
α⊗ P + β ⊗ PA(θ) + βT ⊗A(θ)TP

)
X(t) (17)

+X(t)Tβ ⊗ PF (t) + F (t)TβT ⊗ PX(t) ≺ 0

According to the condition (12), we have that:

γ
(
X(t)Tλ (θ(t))

T
λ (θ(t))X(t)− F (t)TF (t)

)
� 0 (18)

From (17) and (18), we obtain:

X(t)T
(
α⊗ P + β ⊗ PA(θ) + βT ⊗A(θ)TP

)
X(t) (19)

+X(t)Tβ ⊗ PF (t) + F (t)TβT ⊗ PX(t)

+ γ
(
X(t)Tλ (θ(t))

T
λ (θ(t))X(t)− F (t)TF (t)

)
≺ 0

which can be rewritten in the compact form:[
X(t)T F (t)T

]
Γ (θ(t))

[
X(t)
F (t)

]
≺ 0 (20)

where:

Γ (θ(t)) =



Γ11 (θ(t)) · · · Γ1m (θ(t)) β11P · · · β1mP
...

. . .
...

...
. . .

...
Γm1 (θ(t)) · · · Γmm (θ(t)) βm1P · · · βmmP
β11P · · · βm1P −γI · · · 0

...
. . .

...
...

. . .
...

β1mP · · · βmmP 0 · · · −γI


(21)

with:

Γii (θ(t)) = αiiP + βii

(
PA (θ(t)) +A (θ(t))

T
P
)

+ γλ (θ(t))
T
λ (θ(t))

Γij (θ(t)) = αijP + βijPA (θ(t)) + βjiA (θ(t))
T
P, i 6= j

Hence, D-stability of the autonomous Lipschitz NLPV system
(11) can be assessed by checking that:

Γ(θ) ≺ 0 ∀θ ∈ Θ (22)

Let us pre- and post-multiply (22) by:
Q 0 · · · 0 0
0 Q · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · 0 I

 (23)

where Q = P−1. Hence, we obtain:

Π?(θ) ≺ 0 ∀θ ∈ Θ (24)

where:

Π?(θ) =



Π?
11(θ) · · · Π1m(θ) β11I · · · β1mI

...
. . .

...
...

. . .
...

Πm1(θ) · · · Π?
mm(θ) βm1I · · · βmmI

β11I · · · βm1I −γI · · · 0
...

. . .
...

...
. . .

...
β1mI · · · βmmI 0 · · · −γI


(25)

where:
Π?

ii(θ) = αiiQ+ βii
(
A(θ)Q+QA(θ)T

)
+ γQλ(θ)Tλ(θ)Q

and Πij , i 6= j, are defined as in (14).

Inequality (24) can be rewritten as (26) (see top of the next
page), from which, by applying Schur’s complements, (13) is
obtained, which completes the proof. �
Remark 1. Note that (13) is not an LMI due to the appearance
of both terms γ and 1/γ. However, for predefined values of γ,
(13) becomes an LMI parameterized by the parameter θ.

4. CONTROLLER DESIGN

In this section, the design process of a state feedback control for
the Lipschitz NLPV system will be presented. Let us consider
the following NLPV system, obtained from (11) by adding a
control input u ∈ Rnu which affects the system’s dynamics
through the parameter-varying input matrix B (θ(t)):

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t) + f(x(t), θ(t)) (27)
and let us use a gain-scheduled state-feedback control law given
by:

u(t) = K(θ(t))x(t) (28)
where K(θ(t)) is the controller gain to be designed. Then, the
closed-loop system is given by:

ẋ(t) =
(
A(θ(t))+B(θ(t))K(θ(t))

)
x(t)+f(x(t), θ(t)) (29)

for which the following corollary can be obtained from Theo-
rem 1.
Corollary 1. (Quadratic D-stabilization of a Lipschitz NLPV
system). Given an LMI region defined as in (1)-(2), if there exist
a scalar γ > 0, a matrix Q ∈ Snx×nx+ and a matrix function
Y (θ) ∈ Rnu×nx such that ∀ θ ∈ Θ:

Ψ11(θ) · · · Ψ1m(θ) β11I · · · β1mI Qλ(θ)T · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

Ψm1(θ) · · · Ψmm(θ) βm1I · · · βmmI 0 · · · Qλ(θ)T

β11I · · · βm1I −γI · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

β1mI · · · βmmI 0 · · · −γI 0 · · · 0

λ(θ)Q · · · 0 0 · · · 0 −
1

γ
I · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · λ(θ)Q 0 · · · 0 0 · · · −
1

γ
I


≺ 0

(30)
where:

Ψij = Qαij + βijA(θ)Q+ βijB(θ)Y (θ) (31)

+ βijQA(θ)T + βijY (θ)TB(θ)T , i, j = 1, . . . ,m

then, the controller gain K(θ) = Y (θ)Q−1 ensures the Lips-
chitz NLPV system (29) to be quadratically D-stable.

Proof: This corollary is obtained from Theorem 1 by replacing
in (13) A(θ) with A(θ) + B(θ)K(θ) and using the change of





Π11(θ) · · · Π1m(θ) β11I · · · β1mI
...

. . .
...

...
. . .

...
Πm1(θ) · · · Πmm(θ) βm1I · · · βmmI
β11I · · · βm1I −γI · · · 0

...
. . .

...
...

. . .
...

β1mI · · · βmmI 0 · · · −γI


+



Qλ(θ)T · · · 0
...

. . .
...

0 · · · Qλ(θ)T

0 · · · 0
...

. . .
...

0 · · · 0


γI · · · 0

...
. . .

...
0 · · · γI


λ(θ)Q · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · λ(θ)Q 0 · · · 0

 ≺ 0 (26)

variables K(θ)Q = Y (θ) to avoid the product of unknown
variables K(θ) and Q in the term B(θ)K(θ)Q, which would
generate a bilinear matrix inequality (BMI) instead of an LMI.
�

It is necessary to mention that the LMI (30) implies satisfying
an infinite number of conditions, which leads to a computa-
tional issue. In order to reduce the number of conditions from
infinite to finite, the most common way to solve this problem is
to use the polytopic framework. The NLPV system (27) is said
to be polytopic if it can be represented by state-space matrices
A(θ(t)) and B(θ(t)) which range over a convex set:

ẋ(t) =

N∑
k=1

µk(θ(t))
(
Akx(t)+Bku(t)

)
+f(x(t), θ(t)) (32)

where µk are the non-negative coefficients of the polytopic
decomposition such that:
N∑

k=1

µk(θ(t)) = 1, µk(θ(t)) ≥ 0 ∀k = 1, ..., N, ∀θ ∈ Θ

(33)
and if the matrix function λ (θ(t)) can be expressed as:

λ(θ(t)) =

N∑
k=1

µk(θ(t)λk (34)

It follows that:

A(θ(t)) =

N∑
k=1

µk(θ(t))Ak B(θ(t)) =

N∑
k=1

µk(θ(t))Bk

(35)
Then, the controller gain can be chosen to be polytopic as well,
which leads to:

K(θ(t)) =

N∑
k=1

µk(θ(t))Kk ⇒ Y (θ) =

N∑
k=1

µk(θ)Yk (36)

However, the reduction of (30) to a finite number of conditions
is not trivial, due to the fact that:

B(θ)Y (θ) =

N∑
k=1

µk(θ(t))

N∑
l=1

µl(θ(t))BkYl (37)

which leads to the problem of verifying the negativity of a
double polytopic sum.

A possible approach to address this issue is the application
of Polya’s theorem on positive forms in the standard simplex.
This procedure, proposed by Sala and Arino (2007) leads to
a set of sufficient conditions to assess the positiveness of
double sums, which are progressively less conservative when
a complexity parameter increases. However, in order to keep
the mathematical complexity simpler, we provide the following
corollary for the special case in which the input matrix is
constant, such that (32) becomes:

ẋ(t) =

N∑
k=1

µk(θ(t))Akx(t) +Bu(t) + f(x(t), θ(t)) (38)

Corollary 2. (Polytopic conditions for controller design) Given
an LMI region defined as in (1)-(2), if there exist a scalar γ > 0,
a matrix Q ∈ Snx×nx+ and matrices Yk ∈ Rnu×nx such that
∀ k = 1, . . . , N :

Ψ11,k · · · Ψ1m,k β11I · · · β1mI QλTk · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

Ψm1,k · · · Ψmm,k βm1I · · · βmmI 0 · · · QλTk
β11I · · · βm1I −γI · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
β1mI · · · βmmI 0 · · · −γI 0 · · · 0

λkQ · · · 0 0 · · · 0 − 1

γ
I · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · λkQ 0 · · · 0 0 · · · − 1

γ
I



≺ 0

(39)
where:

Ψij,k = Qαij + βijAkQ+ βijBYk (40)

+ βijQA
T
k + βijY

T
k B

T , i, j = 1, . . . ,m

then, the controller gain (36), with Kk = Y (θ)Q−1 ensures the
Lipschitz NLPV system (38) to be quadratically D-stable.

Proof: It follows from the basic property of matrices that
any linear combination of negative definite matrices with non-
negative coefficients, of which at least one different from
zero, is negative definite. Hence, using the linear combination
brought by (33), (39) leads to (30). �

5. SIMULATION RESULTS

Let us consider a Lipschitz polytopic NLPV system as in (38)
with matrices given by:

A1 =

[
−53.7037 16.6296
−185.9630 55.7037

]
A2 =

[
−0.6667 1.0000
−102.7778 2.6667

]
A3 =

[
−0.4000 0.2000
−509.8000 2.4000

]
A4 =

[
−36.4286 16.5714
−90.5714 38.4286

]
B = [1 0]

T

which depends on two varying parameters θ1(t), θ2(t) ∈ [0, 1],
such that:

µ1 (θ(t)) = (1− θ1(t)) (1− θ2(t))

µ2 (θ(t)) = (1− θ1(t)) θ2(t)

µ3 (θ(t)) = θ1(t) (1− θ2(t))

µ4 (θ(t)) = θ1(t)θ2(t)



and for which the Lipschitz nonlinearity is given by:

f(x(t), θ(t)) =

[
θ1(t) sinx1(t)

0

]
which satisfies:

θ21(t)sin2x1(t) ≤ θ21(t)x21(t) (41)

such that:

λ(θ(t)) =

[
θ1(t) 0

0 0

]
(42)

Let us note that it is straightforward to check that the open-
loop NLPV system is unstable, since it is composed by the
interpolation of four unstable time-invariant systems with state
matrix’s poles located at [1 + 10j, 1 − 10j]. Indeed, if an LMI
region D is chosen to be completely contained in the left-
hand part of the complex plane, the application of Theorem 1
does not provide a feasible solution. This fact can be further
exemplified by plotting the free response starting from a non-
zero initial condition, as shown in Fig. 1 for the particular
varying parameter trajectory given by:

θ1(t) =
1

2
+

1

2
sin (1.7t) (43)

θ2(t) =
1

2
+

1

2
sin (2.3t) (44)

At this point, let us apply Corollary 2 to solve the design
problem for an LMI region chosen as the conic sector with
angle φ, hence described by matrices:

α =

[
0 0
0 0

]
β =

[
sinφ cosφ
− cosφ sinφ

]
For such a choice of the region D, the LMIs (39) become:

Ψ11,k Ψ12,k sinφI cosφI −QλTk 0
Ψ21,k Ψ22,k − cosφI sinφI 0 −QλTk
sinφI − cosφI −γI 0 0 0
cosφI sinφI 0 −γI 0 0

−λkQ 0 0 0 − 1

γ
I 0

0 −λkQ 0 0 0 − 1

γ
I


< 0

(45)
where

Ψ11,k = AkQ sinφ+BYk sinφ+QAT
k sinφ+ Y T

k B
T sinφ

Ψ12,k = AkQ cosφ+BYk cosφ−QAT
k cosφ− Y T

k B
T cosφ

Ψ21,k = QAT
k cosφ+ Y T

k B
T cosφ−AkQ cosφ−BYk cosφ

Ψ22,k = AkQ sinφ+BYk sinφ+QAT
k sinφ+ Y T

k B
T sinφ

Figs. 2-3 show the closed-loop state trajectories and the control
input for simulations starting from the initial condition x(0) =

[15 −5]
T , obtained with the controllers designed using angles

φ = π/2 (blue), φ = π/2.1 (red) and φ = π/3 (green),
and a prefixed value of γ = 1. In Chilali and Gahinet (1996),
the conic sectors of angle φ are used to control the minimum
damping ratio and the maximum undamped natural frequency.
This in turn bounds the maximum overshoot, the frequency of
oscillatory modes, the delay time, the rise time, and the settling
time. As we can see that in Fig 2, by decreasing the angle φ, the
overshoot oscillations can be reduced significantly.
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Fig. 1. Free response of the open-loop system.
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Fig. 2. Closed-loop state trajectories.
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Fig. 3. Control input to the system

6. CONCLUSIONS

This paper has proposed a state-feedback controller design ap-
proach for a class of nonlinear parameter varying (NLPV) sys-
tems in which the nonlinearity can be expressed as a parameter-
varying Lipschitz term. The controller has been designed to
satisfy a D-stability specification that imposes constraints on



the closed-loop pole location. The design conditions have been
obtained using a quadratic Lyapunov function that allow obtain-
ing the linear matrix inequalities (LMIs), which can be solved
efficiently using available solvers. The effectiveness of the pro-
posed method has been demonstrated by means of a numerical
example.
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