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Abstract: Leaks in water distribution networks (WDNs) are one of the main reasons for water loss
during fluid transportation. Considering the worldwide problem of water scarcity, added to the
challenges that a growing population brings, minimizing water losses through leak detection and
localization, timely and efficiently using advanced techniques is an urgent humanitarian need. There
are numerous methods being used to localize water leaks in WDNs through constructing hydraulic
models or analyzing flow/pressure deviations between the observed data and the estimated values.
However, from the application perspective, it is very practical to implement an approach which does
not rely too much on measurements and complex models with reasonable computation demand.
Under this context, this paper presents a novel method for leak localization which uses a data-driven
approach based on limit pressure measurements in WDNSs with two stages included: (1) Two different
machine learning classifiers based on linear discriminant analysis (LDA) and neural networks (NNET)
are developed to determine the probabilities of each node having a leak inside a WDN; (2) Bayesian
temporal reasoning is applied afterwards to rescale the probabilities of each possible leak location at
each time step after a leak is detected, with the aim of improving the localization accuracy. As an
initial illustration, the hypothetical benchmark Hanoi district metered area (DMA) is used as the
case study to test the performance of the proposed approach. Using the fitting accuracy and average
topological distance (ATD) as performance indicators, the preliminary results reaches more than 80%
accuracy in the best cases.

Keywords: data-driven; leak localization; pressure measurements; water distribution networks

1. Introduction

Water scarcity, leak detection, and network efficiency are the main factors driving the
implementation of smart water solutions across the globe. Particularly, water leaks inside water
distribution networks (WDN) can cause water losses in fluid transportation, risks of bacteria, and
pollutant contamination [1]. Besides that, water leaks may also lead to increases in the consumers’
water bills, although in some countries (e.g., European and Canadian countries), higher water prices
are connected with higher investment in the WDN in order to prevent leaks [2-4].

According to the standard water balance methodology presented by INA/AWWA (International
Water Association/American Water Works Association), water leakage is an important reason of water
loss [5], as in many WDN:s, the losses due to leaks are estimated to account for up to 27% of the total
amount of extracted water [6]. In China, around 8 billion cubic meters of water was lost in 2017 [7],
and the total amount in Asia is around 29 billion cubic meters (value more than 9 billion dollars) per
year [8]. The mean value for water losses in EurEau (European Federation of National Associations of
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Water Services) member countries in the year of 2017 are 23% and 2171 m3/km/year [9]. Considering
the worldwide problem of water scarcity, added to the challenges that a growing population brings,
it is critical to minimize the water losses through the detection and localization of water leaks in the
WDN in a timely and efficient manner using advanced techniques.

In order to accurately localize the water leaks, correct and oriented monitoring of detail information
concerning system behavior is required. Among these monitoring devices, the acoustic equipment
(e.g., noise correlators and listening sticks) is efficient to localize the leaks manually through reading
abnormal behaviors at potential locations of the WDN system [10,11]. However, the expensive cost,
as well as time consuming and labour demanding features prevent the acoustic equipment being
widely used in reality. Due to that, flow and pressure meters are optional devices of reading useful
system information for leak detection and localization. Compared with flow meters, pressure meters
are easily installed and less expensive. Moreover, as discussed in [12], focusing more on using pressure
data can facilitate leak localizations and reduce the required investments as well. The key principle of
using real-time pressure measurements for leak detection and localization in WDNs is the deviation of
real-time data from the normal range of system behaviors [11].

The state-of-the-art for leak localization in WDN is filled with contributions of different
approaches. Among them, the original popular approaches rely on estimating hydraulic dynamics
using mathematical models [13,14]. For example, [15] estimates the location of a leak through building
a pressure drop surface with triangle-based cubic interpolation approach. Meanwhile, [16] infers a
leak location in WDN through creating a sensitive matrix of different pressure measurements when
a leak happens. However, the performance of model-based approaches is limited too much by the
accuracy of the mathematical models, and it is not easy to choose an appropriate model [17]. Further,
the investment requirement for a large number of sensors also slows down the development of this
method. Moreover, the high computation demand and the difficulty of parameter estimations hinder
the final usage of model-based approaches, especially for the large WDNs. During the past decades,
with the advances of online monitoring devices, data-driven approaches which focus on the knowledge
mining of available data have prevailed in the field of leak localization [11,12,18-20]. Accordingly, [18]
proposes a mixed hydraulic and data-based model that relies on pressure residual and leak sensitivity
analysis, which is based on analyzing the difference between measurements and their estimation using
a hydraulic network model. More recently, [19] presented a completely data-driven approach through
analyzing the pressure residual between a healthy WDN and a network with leakages, using [20] to
interpolate the pressure in nodes without sensor information. However, due to the graph structure of
the WDN, the accuracy of this approach is affected by the distance between the leaking and inlet node.

Due to the powerful capacities for pattern recognition and feature identification, a machine
learning algorithm has been proven efficient for solving leak localization problems, using support
vector machines and clustering algorithms, etc. [11,12]. However, the difficulty of using a machine
learning method is selecting the proper algorithm and designing suitable feature extractors to learn
complex features [11,12]. Among numerous machine learning approaches, the neural network (NNET)
is a method which is capable of leak localization considering the ability of processing and modelling
multiple inputs without explicit knowledge of the involved parameters. Further, linear discriminant
analysis (LDA) is another method used in statistics and machine learning which explicitly attempts to
find a linear combination of features to separate classes of objects. The high resolution of LDA makes
this method a good tool to predict locations (e.g., leaks) based on limited information [21-23].

This work proposed a data-driven approach based on limit pressure measurements to localize
a leak inside a WDN. Two different machine learning classifiers based on LDA and NNET are used
to determine the probabilities of each node having a leak inside a WDN. In order to improve the
localization accuracy, a Bayesian temporal reasoning is applied afterwards to rescale the probabilities
of each possible leak location at each time step after a leak is detected. With the aim of achieving
an accurate estimation of consumed water, the WDN has been divided into smaller sub-networks,
named district metered areas (DMAs) for management. Almost all of the previous implementations are
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applied on the DMA level [10]. Practically, the performance of the leak localization methods is highly
sensitive to the numbers of the installed sensors, as well as the placement of these sensors. In order to
ensure the optimal performance of the proposed leak localization approaches, in this paper, the sensor
placement strategies for a WDN from [24] are used directly without digging into this topic [24-27].
To estimate the nodes head where sensors are not placed, the Kriging spatial interpolation [20] with
hydraulic topology of the network is used, which also generates a perfect no-leak scenario as a reference.
Further, historical data for each leak scenario of each node are provided through simulation as training
data for the classification. As an initial illustration, the benchmark Hanoi DMA is used as the case
study to test performance of the proposed approach. Discussions about the costs and benefits of the
proposed approach are also presented, as well as the future research plan.

2. Materials and Methods

2.1. Methodology

The scheme of the proposed pressure based data-driven leak localization approach [28] is depicted

in Figure 1.
™7 7 Assumpton |
| The leak has been detected _|
Step 1

Optimal sensor placement

Step 2
Historical data from DMA Step 6 .
l, New leak information
Step 3
Kriging interpolation - Step7
Kriging interpolation
Step 4
LDA/NNET training
Step 5
LDA/NNET classifier ___|*
Step 8

Bayes temporal reasoning

Step 9
Location output

Figure 1. Scheme of pressure-based data driven approach.

A key assumption has been made initially that a leak has already been detected in a DMA. Further,
a number of pressure sensors is supposed to be installed to read pressure measurements for some
nodes. A flow sensor is also required to read the inlet flow value to the DMA.

The first step of the proposed approach is selecting of the nodes with pressure sensor installed
based on the optimal sensor placement strategy generated by [24]. Afterwards, datasets are prepared
which include historical data of DMA comprising pressure measurements with corresponding leak
location labels and flows at the inlet node. Topology information of the DMA is also needed to correctly
interpolate for the nodes without sensors. More detailed definitions about the required datasets will be
explained in the next section. After that, Kriging spatial interpolation is used in Step 3 to estimate
the pressure at the nodes which are not equipped with sensors based on hydraulic proximity [29].
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Later on, the machine learning classifiers in view of LDA and NNET are developed and trained
using the datasets created at Step 2. The fitting accuracy, Kappa coefficient [30], and the average
topological distance (ATD) are used as performance indicators for training the classifiers, and the best
classifiers are selected to be used later on in Step 5. When a leak has been detected in Step 6, equal
prior probabilities are initially set to all the nodes. Based on the limit pressure measurements from the
sensors embedded in this DMA, as well as the estimated pressure interpolated by Kriging, the trained
LDA/NNET classifiers are used to compute, in Step 5, probabilities of each node being the leak location
based on raw pressure without estimating a hydraulic model nor a reference model. In order to better
infer the leak node, the Bayes temporal reasoning rule is used at Step 8 to re-calibrate the probabilities
given by the classifiers. The final estimated location of the leak is obtained at Step 9.

2.2. Data Structure

The data structure required for the leak localization approach is defined in a matrix (Figure 2)
which contains: (1) The leak vector Y € R™, which is a label where the true leak was located, and
this information is assumed to be provided; (2) The time vector T € N/ in the unit of hour. The data
structure is ordered by time, which is the time elapsed from when the leak was first created. As a
leak has been detected, this information is also known; (3) The pressure vector X € R¥ (m), which can
actually either represents the head, pressure, or the residual with the reference model. The pressure
information should be the value given directly from the sensors; (4) The flow vector F € R/ in the
unit of m3/s. Flow from the inlet in the DMA, which is also the flow enters to the DMA, is the value
provided by flow sensor measurement for analyzing.

Time)

¢l T Xy - X £

K Head & Flow for scenario Ym at Ty |

Figure 2. Input data structure.

The matrix should be read taking snapshots of the DMA at any given moment. So, for the leak
scenario Y7, there is pressure X for the node k at given time T]-. The data set can be melted into a
single matrix with each Y label repeated, which will be easier manipulated by RStudio, an open source
software for R [31]. Considering there is not always a sensor at all the nodes, the pressures for the
nodes which do not have a sensor is interpolated used Kriging, as explained in [19].

Table 1 includes an example of how the dataset should look:

Table 1. Input data structure.

Leak Time Pres1 Pres 2 .. Pres n Flow
1 1 12.46 11.12 ... 12.50 211
1 2 12.64 11.53 .. 12.66 195

1 3 12.72 11.17 . 12.73 141
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2.3. Classifier

The classifiers in view of LDA and NNET are defined and tested individually with the objective
of looking for a pattern where different leaks can be segregated to predict future events according to
past historical data.

As explained in the introduction section, LDA [21] is a method to find a linear combination of
features which separates two or more classes of data. The resulting combination may be used as
a linear classifier. In this study, since there are more than two classes, multiclass LDA are used, in
which a subspace is found in order to contain all the class variability. LDA models the distribution
of the predictors (given X, in this study represents the node pressures) separately in each of the
response classes (given Y, in this study means the different leak localization labels) and uses the Bayes
theorem [32] to flip them into estimates. When these distributions are assumed to be normal, it turns
out that the model is very similar to the logistic regression. Given the high complexity of calculation,
the logistic regression in favor of LDA is omitted, which will be more efficient and deliver better
results [33].

The NNET [34] fits a single-hidden-layer neural network trained for classification. Using
cross-validation, the model has been tuned to both avoid over-fitting and setting the number of units
in the hidden layer [33]. To avoid the over-fitting in the NNET, weight decay is used to penalize the
sum of squares of the weights.

2.3.1. Cross Validation

In order to reduce over-fitting in the training set, 10-fold cross-validation is applied, which will
consequently slow down the parameter process search. However, considering that the over-fitting is
hard to removed entirely, a validation set is held out for the final estimation with expected prediction
error. The cross-validation methods are defined as:

e  Hold Out Method: Divide the training sample (70%) vs. testing sample (30%). If the error rate is
similar on both, it means that the model is not over fitted. This method requires low computing
time, however, it is prone to sample bias.

e K-Fold Cross Validation: The sample is spliced into K equal sub size samples. All of the models
used have been calculated through a 10-fold cross validation. Since the response feature is
categorical, the parameters will be tuned according to the results of accuracy. The K results can
then be averaged to produce a single estimation. The upside of this method is that how to divide
the data is less impactful, as selection bias will no longer be present.

2.3.2. Evaluation Metrics

The fitting accuracy, Kappa and ATD are the metrics being used to evaluate the classification
performance in the dataset:

e Accuracy is the percentage of correctly classified instances out of all the instances. It is a
more meaningful metric in binary classification than multi-class classification problems, since
in multi-class problems it is harder to determine how the accuracy breaks down across the
different classes.

e Kappa (or Cohen’s Kappa) is similar to classification accuracy, except that it is normalized at the
baseline of random chance of the data [30]. It is a more useful measure to use on problems that
have an imbalance in the classes. However, with the usage of simulations, this problem is negated,
as all leak scenarios appear the same amount of times. It compares how the classifier performs
against the performance of a classifier which simply guesses at random according to the frequency
of each class. Values between 0.6 and 0.8 are considered good [35] even though they supplied no
evidence to support it.
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e ATD, average topological distance, which represents the distance in nodes between the node
predicted as having the leak with the true node that has the leak. ATD is useful for node relaxation
which will assess the overall performance.

Other than that, in the training phase of the model, fitting accuracy is also used as the metric for
parameter tuning and for selecting the best model.

2.4. Bayes Temporal Reasoning

Bayes temporal reasoning has already been previously used to improve the diagnosis using
the residuals generated in the model-based leak localization methodologies [19]. In this study,
Bayesian temporal reasoning is used to improve the diagnosis in the proposed data-driven leak
localization approach, working with probabilities given directly by the classifier which uses the
head/pressure directly.

Due to the fact that the simulations of the dataset includes cases where a leak is created for a long
period of time and the section with a healthy state in between the leaks is ignored, real situations cannot
be fully represented. Besides that, in the healthy state, the leak localization procedure is irrelevant
since the precondition is that a leak has been detected. All the leaks are also static, meaning, once
created, it will present in the network until it is fixed.

Following this reasoning, a Bayes rule is added to re-scale the probabilities using as prior of the
probabilities for each node being the candidate leak location at previous time steps. At every time step
t, the probability of a leak occurrence is estimated as a result of the application of the Bayes rule:

Ple(x(t))lyi) P(yile(x(t - 1)))
P(c(x(1)))

where nl is the number of different leak labels, c(x(t)) is the probabilities returned by the classifier, LDA
or NNET, given the head or pressure at time step t. P(yilc(x(t))) is the posterior probability that the
instance c(x(f)) belongs to the class yi at time step t given the previous information. P(c(x(t))yi) is the
likelihood of the instance c(x(t)) assuming that the leak has been created in node yi. P(yilc(x(t — 1))) is
the prior probability for the class yi taking into account previous time steps. P(c(x(t))) is a normalizing
factor given by the total probability law:

P(yile(x(t))) = @

Ple(x(t)) = ZP(C(X(t))ryi)P(inC(X(f—1))) @

At each iteration, the prior probabilities used are considered as equal for all different labels. The
variablet =1, ..., kis the time step when a leak is first created until it is fixed, then P(yi|c(x(0))) = nl’ for
i=1,...,nl

3. Case Study

3.1. Hanoi DMA

The Hanoi DMA (Figure 3) is used as the case study to initially illustrate the performance of the
proposed approach. In this network, the reservoir acts as the inlet node of this DMA. Considering
data for all the nodes are expected to generate, all the nodes are assumed have a sensor and the real
distribution of the real sensor nodes placed inside the Hanoi network is ignored during the simulation
phase. The simulation is obtained using the simulator EPANET 2 [36], where for each leak scenario, of
the 31 nodes, a leak is simulated with one-hour time steps lasting 96 h. All the generated data from the
simulation are used for calibrating the classifier models. A perfect case without leaks has been used as
a reference.
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Figure 3. Hanoi DMA.

3.2. Sensitivity Analysis with Residual

The state-of-the-art up has been that the node which has the highest difference (residual) between
the reference model and the real time model should be the candidate which contains the leak. However,
this is not always the case, especially when there are no sensors placed in all the different nodes
inside the DMA. The following boxplots (Figures 4 and 5) provide the distribution of residuals at each
simulation time for all of the 31 leak scenarios, which shows that, the median for the node which
contains the leak is, in most cases, is higher than the other groups. A significant increase is also
observed with respect to the same node without a leak. However, other nodes which are topologically
close to the true leak location have a higher median as well. Even when the leak is far away, it seems
to obtain an increased residual compared to when there is not a leak in the network, affected by the
topology of the DMA. Since these networks are graph structures by definition, once there is a leak in
the DMA, the whole network is affected, and the network is limited in the choices to mitigate the leak.
A node “previous” to the leak, in height or structure, will also be affected since the difference in head
between its links will change, and the flow of water will modify its path accordingly. Nodes that are
“posterior” to the leak, will also change from their default state, since the leak has been created. Water
flows and pressure entering the posterior nodes will vary.

This hypothesis is further tested by checking the fringe nodes. On average, with the simulations,
using the maximum residual approach accounted for a success rate of 28.5%. Of this 28.5%, 20% came
from leaf nodes (in this case node 12 with an accuracy of 96.9% and node 21 with an accuracy of 86.5%).
These nodes ranked the highest in success rate thanks to the fact that they are at the end of the network.
Since they do not have “children” nodes, the error will not propagate along those links. However, 0%
accuracy starting with node 10 and 11 also happen.

In these boxplots, it is clear to conclude that, leak localization is very dependent on the amount of
nodes with sensors. A good result can be expected with sensors at all the nodes with respect to how
the residual is much higher in the node which has the leak.

Finally, this approach is still reliant on Kriging to interpolate the pressure in nodes which do not
have sensors placed. However, by the very definition of the problem, the assumption in which the
variance of the field is stationary is at risk [37]. The creation of a leak inside the model will create
an irregular event in which it is difficult to justify a stationary variance. The unknown evolution of
the leak, and how irregular the variance will become once added to the model. With respect to the
mean absolute percentage error, average errors are higher than 50%, except in the optimal four sensor
placement, which is almost zero. Besides, after Kriging the amount of observations which surpassed
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three standard deviations was around 35% which indicates that the Kriging might not be working as
well as we intended in this data.
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Figure 4. Distribution of the residuals for leak scenario at node 2 when all nodes have sensors.
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Figure 5. Distribution of the residuals for leak scenario at node 2 when the nodes with sensors are 12,
16, 21 and 27.

3.3. Sensitivity Analysis with Pressures

After the previous sensitivity analysis with residual, it is doubtful that the residuals are that useful
at predicting the true leak location. A simpler approach using directly the pressure instead of the
residual is taken. As explained in the methodology, only interpolate using Kriging once to obtain
the head/pressure for all the nodes on the online model, omitting the reference model and residual
calculations is considered.

Principal Component Analysis (PCA) [38] has been performed on the case with sensors at every
node (Figure 6), and the non-perfect-information case (Figure 7), in which there are only four sensors
placed inside the network (12, 16, 21, and 27) [24]. Removing time and flow features to see the structure
of the data, a sort of rainbow effect can be detected, whereby thanks to the linear combination of
pressures, it is able to differentiate where the different leak locations are. This, in turn, should translate
to better and easier classification results when add to the flow.
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Figure 6. Structure of the pressure values in the Hanoi DMA simulations with sensors at all nodes.

0.051

0.08 -

0.00 0.02
PC1 (99.81%)

.
ey
e
L]
"
L] LY
L

Leak

@ N OO A N2

©

4 2 a a4
m oA W NS

L T T T R T T R T S T
a
o

-
o

Leak

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

e el - - . - 1 - a7
. & £ -. . - 2 = 18
A I = 3 = 19
0.04 s e g~ & -4 - =20
S FIYEY iy -5 e
- - * - 3" - -
. ) _& -! o & 22
= - T - L - 7 e 23
= . - ¥} = BT 3°
= .= &g-= -3 - 8 - 24
= > o > “ - - -
EE g & -ZLe = ‘ ! -7 ‘;‘ =) 25
_i. - l[‘: : g. s 7 % - 10 = 26
L A e - 11 = 27
1 > e . o2 * = 12 = =28
0.00 - ew "= 2. o - . e,
- 3 c -8 - - - 13 e« 29
- g &~ Lo =° - = - 14 = 30
Gt -* T he g
€ > =2 - . a5 e 31
-

0.04 -

PC1 (99.91%)

16

9of 14

Figure 7. Structure of the pressure values in the Hanoi DMA simulations when the nodes with sensors

are 12, 16, 21, and 27.

3.4. Results

Following the method explained above, two different classifiers based on LDA and NNET are
applied using R. The 72-h simulation from each leak scenario is used to train the model, and the 10-fold
cross-validation is used to tune the parameters and to select the model with the best accuracy. Once
trained, the resulting classifier is validated using the remaining 24 h to get accurate results of the

evaluation metrics. Bayes time reasoning is also recursively applied on this validation data set.

Results in Tables 2—4 show how the NNET, when applied with posterior Bayes time reasoning,
can result in around 70% accuracy in the average case. However, when there are five sensors placed in
the network, very bad results are produced in both LDA and NNET. This might be due to the Kriging,
in which the average error in this case was the worst compared to all the other sensor placement. This
is not a new result, as it is known from posterior works that the placement of the sensors will produce
very different results [39].
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Table 2. Average evaluation metrics for LDA using pressure.

Case Nodes with Sensors Accuracy (%) Kappa ATD
1 12,21 44.01 0.42 1.33
2 12,21,27 62.67 0.61 0.67
3 12,16, 21,27 86.06 0.85 0.30
4 12,13, 16,21, 27 14.40 0.11 3.10
5 1,12, 13,16, 21, 27 22.12 0.19 2.17
6 1,3,12,26,28,29 50.81 0.49 0.99
7 1,12, 13,16, 21,27,31 30.99 0.28 1.81
8 1,12, 13,16, 21, 26, 27 41.82 0.39 1.34
9 1,12,13,16,17, 21,26, 27 40.44 0.38 1.41
10 1,3,6,12, 16,20, 21, 25, 26, 28, 29, 31 54.38 0.52 0.84
11 All 55.30 0.53 0.86

Table 3. Average evaluation metrics for NNET using pressure.

Case Nodes with Sensors Accuracy (%) Kappa ATD
1 12,21 48.73 0.47 1.15
2 12,21, 27 66.71 0.66 0.54
3 12,16, 21,27 84.10 0.84 0.20
4 12,13, 16, 21, 27 15.21 0.12 3.01
5 1,12,13,16, 21,27 26.15 0.24 1.91
6 1,3,12,26,28,29 58.06 0.57 0.77
7 1,12, 13,16, 21, 27, 31 36.29 0.34 1.57
8 1,12, 13,16, 21, 26, 27 44.59 0.43 1.27
9 1,12,13,16,17, 21, 26, 27 47.00 0.45 1.19
10 1,3,6,12,16, 20, 21, 25, 26, 28, 29, 31 57.03 0.56 0.73
11 All 60.48 0.59 0.79

Table 4. Average evaluation metrics for NNET with Bayes Time Reasoning using pressure.

Case Nodes with Sensors Accuracy (%) Kappa ATD
1 12,21 65.32 0.64 0.48
2 12,21,27 86.98 0.87 0.18
3 12,16, 21,27 96.31 0.96 0.04
4 12,13, 16, 21,27 16.82 0.14 217
5 1,12,13,16,21,27 4412 0.42 1.02
6 1,3,12,26,28,29 79.61 0.79 0.31
7 1,12,13,16,21,27,31 51.38 0.50 0.92
8 1,12,13,16,21, 26,27 70.62 0.70 0.41
9 1,12,13, 16,17, 21, 26, 27 75.69 0.75 0.29
10 1,3,6,12, 16,20, 21, 25, 26, 28, 29, 31 70.16 0.69 0.36
11 All 75.35 0.75 0.32

10 of 14

For the validation data set, the evolution over time of the Bayes time reasoning is plotted in

Figure 8, which provides an accuracy boost in less than 5 h with a significant increase. ATD below 1 in

most cases was obtained in less than 3 h (Figure 9).
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4. Conclusions

A new data-driven solution to the leak localization problem in WDNs based on limit pressure
measurements has been presented in this study. The proposed approach has been explained or referred
to, and an example is presented using the Hanoi DMA as case study.

After reviewing the results, the use of a reference model to calculate the residual is put into
question. The main reason for this is that it hinders the data structure of the residuals by adding bias
thanks to a not adequate Kriging estimation. As stated before, in the average case, the mean absolute
percentage error is higher than 50% when applied to the interpolation. This fault is attributed to the
Kriging assumptions, which do not hold in the network structure inherent to WDNSs, as well as the
intrinsic variability which a leak brings to the network.

As is common in the field, the number of sensors, and moreover the placement of these sensors
affect the performance of both the classifier and the data interpolation. By directly tackling the data
interpolation problem it is possible to have a better knowledge of both the state of the network and
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the optimal sensor placement. Making further improvements in the interpolation will in turn make
the classification problem easier for future algorithms. It is necessary to look further into a better
interpolation technique suitable for networks.

The case study applied herein demonstrates that using the raw pressures instead of the residuals
when using LDA or NNET for classification purposes can achieve better results. The same can be
said in the average case when using Bayes temporal reasoning. It can be seen that a classifier made
vast improvements over a simple heuristic, such as selecting the biggest residual. However, it is
still far from perfect. Even when simulated with perfect data, assuming sensors are installed at all
nodes, significantly better results still could not be obtained. This suggests over-fitting when using the
classifier or careful selection of which nodes are used for the classifier.

The main drawback here is in supervised learning itself, which needs previous historical data
in which leaks for all leak scenarios have been found. The classifier model will deteriorate quickly
when there is no information concerning a leak scenario. However, this problem can be mitigated with
node relaxation. More data and case studies are needed before adequately referring to this model as a
proper solution to any DMA. In the simulations of this study, many types of uncertainty present in the
real world have not been accounted for.
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