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Abstract This paper presents a new framework for

how autonomous social robots approach and accom-

pany people in urban environments. The method dis-

cussed allows the robot to accompany a person and ap-

proach to other one, by adapting its own navigation

in anticipation of future interactions with other people

or contact with static obstacles. The contributions of

the paper are manifold: firstly, we extended the Social

Force model and the Anticipative Kinodynamic Plan-

ner [1] to the case of an adaptive side-by-side naviga-

tion; secondly, we enhance side-by-side navigation with

an approaching task and a final positioning that allows

the robot to interact with both people; and finally, we

use findings from experiments of real-life observations of

people walking in pairs to define the parameters of the

human-robot interaction in our case of adaptive side-

by-side. The method was validated by a large set of sim-

ulations; we also conducted real-life experiments with

our robot, Tibi, to validate the framework described

for the interaction process. In addition, we carried out

various surveys and user studies to indicate the social

acceptability of the robots performance of the accom-

panying, approaching and positioning tasks.
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Human-Robot approaching, Robot Navigation,
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1 Introduction

In order to share our environment with robots in a

comfortable manner, we need to endow them with the

cognitive functions that will enable them to assist and

collaborate with people as they go about their daily

tasks [2–4]. These collaborations will improve our qual-

ity of live by compensating our shortcomings to per-

form certain tasks. As for example: Companion robots

can allow elder people to fend for themselves or com-

plement the people abilities to do a better work. Then,

society is evolving to obtain social robots to help peo-

ple and this evolution may change the society to have

a more independent elder population. There is a mu-

tual shaping between this new technology and society,

as the robots and humans will share spaces and tasks

in cities. Therefore they will need to adapt and change

the way that robots and people will interact and solve

tasks.

Among the skills that social robots might require

include: guiding people [5–7], following pedestrians [8,

9], accompanying people [10–12], learning how to ap-

proach people and develop original ways of reaching

them [13,14], or understanding human behaviour [15,

16]. If robots are to be integrated into society in order

to assist people in their daily tasks, they first must be

able to accompany and approach us; accompaniment

is essential for performing tasks jointly, if robots are

to be accepted in society. These robot companion and

approaching skills may be useful in tasks like: shopping

assistants, [17], telepresence robots [18], social compan-

ions for the elderly or infirm, [19,11], or wheelchair au-
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Fig. 1 Real-life experiments of the user study: Left: Tibi
Robot accompanies a person in an urban environment. Cen-

ter: The pair robot-human, approaches a pedestrian in the
surroundings. Right: The three members share the personal
space while have a conversation.

tonomous systems that are able to walk side-by-side

with their care givers [20–22], joining a static or dy-

namic group in conversation, [23], or simply requesting

directions or other information [24].

This paper presents a new framework where a so-

cial robot is able to accompany a person, attempt to

approach a known pedestrian moving in the same envi-

ronment, and interact with both individuals, Fig. 1.

Therefore, our method requires that the robot ac-

complish three essential tasks: (i) accompany a human

in a way perceived as comfortable; (ii) determine the

best way of approaching a moving person while accom-

panying another; and (iii) be able to position itself ap-

propriately during the final static interaction stage.

The first task, that of walking side-by-side or accom-

panying another person, is instinctive for humans, but

this is not an easy endeavour for robots. Pedestrians

walking in groups are able to understand the spatial

situation and adjust their structure accordingly. Nor-

mally, people walk in side-by-side configurations, but

they may break this formation on occasion, in order to

cross narrow passages, avoid obstacles, and generally fa-

cilitate the navigation of other pedestrians in the envi-

ronment. To acquire this behaviour, social robots need

to be able to not only predict the peoples behaviour

within the immediate surroundings, but also infer the

motion of those being accompanied.

The second task, that of approaching a person in

the environment, is of great importance, seeing as peo-

ple constantly interact with one another while walking,

to get directions, ask a stranger to take a photograph,

etc. In this task, the most challenging aspects are rec-

ognizing the nature of the situation, determining the

best way of approaching a human while accompanying

another, and effectively predicting the motion of other

pedestrians in the area.

The third task is that of having the robot place itself

within the social group in a way that fosters interaction

between all group members. At that juncture, the robot

has to understand the situation and be able to position

itself in order to face both people and be part of the

conversation.

Additionally, the more complex dynamics of this

scenario requires that the robot be equipped with addi-

tional perception skills, such as ascertaining each per-

sons orientation, and predicting the future positioning

of the group. The challenge is further complicated by

the fact that the target person might be momentarily

hidden from view by other people or obstacles, forcing

the robot to respond appropriately to myriad uncer-

tainties.

Later sections of this paper review, the related work

in Section 2. Section 3 presents the companion frame-

work in depth, while the approaching method itself is

presented in Section 4. Section 5 describes the learning

procedure used in order to determine the parameters for

the interaction between the robot and the accompanied

person. The performance metrics used to evaluate the

tasks are given in Section 6. In Section 7, we share the

results of the synthetic experiments. The algorithm is

tested extensively in real-life experiments in Section 8,

where also the robot platforms and the experimental en-

vironments are described. A User Study of the complete

task appears in Section 9. Furthermore, the discussion

is included in Section 10. Finally, the conclusions and

future work are given in Section 11.

2 Related Work

As mentioned above, our ultimate objective is to make

robots capable of accompanying people while approach-

ing a dynamic target (in this instance, a known pedes-

trian) and successfully interaction with both people. To

perform this complex task, the robot needs to complete

various feats: perform social autonomous navigation;

accompany a person; and approach a pedestrian, while

conforming to social conventions.

2.1 Autonomous Navigation

Autonomous navigation is a required skill in social ro-

botics, given that robots are designed to share pedes-

trian spaces with people and assist them [25,26].

Early works on navigation did not take into account

the standard conventions of social navigation between

people. In [27], the researchers developed an optimised

a navigation method based on optimal time or distance

to arrive at the relevant target. Foka et al. [28] imple-

mented a planner based on POMDPs which uses motion

prediction in order to analyse the dynamic obstacles
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obstructing the path between the robot and its desired

destination.

Other authors have developed more complex navi-

gation behaviours to enable robots to handle crowded

environments. [29] implemented maximum entropy in-

verse Reinforcement learning to develop robot behavi-

ours that mimic human behaviours. Trautman et al. [30]

used a navigation algorithm based on a probabilistic

predictive model of cooperative collision avoidance, whi-

ch allowed the robot to navigate in densely crowded

areas.

In addition, several navigation approaches set out to

first determine aspects of human navigation behaviours.

Kuderer et al. [31] employed a learning method to pre-

dict pedestrian movements and applied the model to

produce a robotic behaviour that would be socially com-

pliant therewith. Luber et al. [32] presented an un-

supervised learning method to produce a set of rel-

ative motion prototypes which enabled the robot to

compute a dynamic cost map, and to plan socially ac-

ceptable avoidance manoeuvres. These trajectories op-

timised travel time, path lengths, and social comfort.

Our work applies the Anticipative Kino-dynamic

planner [1], a means which allows the robot to navi-

gate within challenging crowded environments finding

the optimal path. One approach that bore some resem-

blance to this type of planner is that developed by Sis-

bot et al. [33], which carefully considered the social rules

between humans to improve the robot’s approach, pay-

ing close attention to field of vision and accessibility to

humans.

2.2 Human-Robot Accompaniment

Walking side-by-side is a collaborative task in which

the human-robot pair shares a common goal. This de-

mands that the robot know the destination and is able

to adjust its navigation in accordance with the move-

ments of its partner. The challenge here lies in the fact

that the robot must predict and learn the persons be-

haviour, anticipate his or her movements, and respond

appropriately. Because this aspect is essential, we en-

deavoured to review previous works that addressed the

task of robot accompaniment.

As a starting point, some researchers developed stra-

tegies for robots following and guiding people. [9] used

BIRON to implement a context-aware following behavi-

our, which alternated between three basic models of fol-

lowing behaviour: direction-following, path-following, and

parallel-following.

Later, others developed hybrid approaches that co-

mbined following, guiding, and accompanying behaviours.

Ohya et al. [34] used a robot capable of following or ac-

companying a person by predicting the person’s next

position and advancing accordingly, so as to place itself

by his or her side. Pang et al. [18] developed a multi-

modal person follower that allowed a telepresence robot

to guide, follow, and walk side-by-side with a person.

Moreover, [35] introduced a following behaviour for

a robot that could be perceived by a non-expert as

merely following someone, or as a guiding companion.

Their system involved an anticipatory behaviour that

was able to follow the human from different positions:

from the front, from the rear, and from the side.

Recently, researchers have developed more complex

strategies in their work on social robots [36]. Morales

et al. [37,12] proposed a model of people walking side-

by-side which could predict the partner’s future posi-

tion, and subsequently generate a plan for the robot’s

next position. Furthermore, [38] and more recently [39]

did a side-by-side method inferring the final goal of the

person and also recorded a database of people walking

in a fixed side-by-side formation that is different from

our database, included in Section 5, which includes also

situations of an adaptive side-by-side companion be-

haviour. Kuderer et al. [40] explored the possibility of

confronting the problem by using reinforcement learn-

ing methods in order to teach a tele-operated robot to

navigate in a cooperative way while avoiding collisions

with obstacles.

The most complex approaches developed to date

have been designed for use on wheelchairs, a social ne-

cessity. Prassler et al. [20] implemented a method of

accompaniment for a wheelchair, designing a model of

collision avoidance based on velocity that incorporates

a linear prediction of collision velocities. Kobayashi et

al. [21] used a visual-laser tracking technique to carry

out a side-by-side companion task between a wheelchair

and a caregiver, demonstrating the same effect within

the context of visiting a museum. Finally, Suzuki et

al. [22] proposed a wheelchair system that navigates in

a formation which renders a more natural communica-

tion between the user and the caregiver.

While previous studies only discuss the challenge

of navigating around the person in a fixed side-by-side

formation, our algorithm allows for a more dynamic po-

sitioning around the human partner. This is to say, the

method allows the robot to position itself at front, at

lateral and at back of the person who accompanies de-

pending on the situation. Then, if no obstacle interferes

with the group’s path, the robot accompanies the per-

son in a side-by-side, but if any obstacle interferes with

the group’s path, the robot changes its position around

the person to avoid them. One of the most interest-

ing cases is when other people or obstacles interferes
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with the robot’s path for a long time. Then, the robot

surrounded the person who accompanies and position

itself in the other side, where it had free space. Further-

more, our method tries to always select as best path one

of the possible paths that allow the accompaniment in

side-by-side, as long as the person does not force the

robot to go through another path that has less space.

Using this method, the robot facilitates the group’s

navigation within dynamic environments and eases the

group’s burden of avoiding collisions with other people.

Also, the robot facilitates the navigation of other people

in the environment avoiding to interfere in their path.

Resulting in a more similar accompaniment to human

behavior when we accompany other people.

Another innovation that sets our approach apart

from others is that our method is able to render a

real-time prediction of the dynamic movements of the

partner, as well as that of other people, in a horizon

time. This kind of prediction performed within a de-

termined time window allows the robot to anticipate

people’s navigation and react accordingly.

Furthermore, our method allows that the robot and

the person who accompanies start separately. When the

robot identifies the companion, it approaches to the

companion side. Also, the robot selects the side of the

person with more free space. Now we consider that for

the person it is indifferent the side where the robot ac-

companies that one.

2.3 Human-Robot Proxemics Rules

Proxemics rules were first introduced by Hall [41]. Some

researches agree that the proxemics rules between a per-

son and a robot should be similar to the walking rules

among people [25] and we have followed this idea in this

work.

In [42], researchers studied how personality affects

personal space. They defined four personality aspects:

proactiveness, social reluctance, timidity, and nervous-

ness; and concluded that proactive subjects typically

get closer to the robot than do people who are less

confident with or around the robot. Moreover, nega-

tive attitudes towards robots and direct gazes between

a person and a robot usually implies to increase the

distance between them. Syrdal et al. [43] studied the

distances between robots and people within different

situations of interaction: verbal, physical, and no inter-

action. One of the outcomes of their research was that

females often allow the robot to come closer to them

than do their male counterparts. Some studies [44] also

shown the preferences of people with respect to the ap-

proaching side, for example, right-handed people prefer

to be approached from their right side.

More closely aligned with our research objectives,

Satake et al.[14] endeavour to have the robot approach

a person walking in a shopping mall and announce sales

or news that might be of interest.

In contrast to our work, previous researchers did not

explore different cases and situations of approximation.

The present study also stands out in that it addresses

not only the robots navigation, but also endeavours to

allow the robot to accompany a person familiar with

the target person, while respecting social norms.

2.4 Robots Approaching People

The Human-Robot approach is an important collabora-

tive task that takes place between humans and robots

in order to generate interaction; central to this task is

the ability to recognise and predict the intentions of the

other partys movements.

In the past, researchers have used different control

strategies for approaching a moving target by either

pursuing it, or trying to intercept it [45–47]. In [47],

the researchers employed a wheeled robot control tech-

nique that enabled the robot to intercept a moving tar-

get from a particular approach angle. They use a navi-

gation technique that maintain steady contact with the

target from a certain geometrical position until ulti-

mately intercepting it.

Fajen et al. [48] presented different control strategies

for approaching a moving target. Narayanan et al. [23]

used a task-based control law to enable the robot to

meet two standing persons and interact with them, by

carefully considering their respective positions and ori-

entations, and use that knowledge to calculate an opti-

mal meeting point.

Other researchers [49,24] studied human social be-

haviours in order to yield better results. [49] recorded

the different trajectories that people took when ap-

proaching other persons. They later used those trajecto-

ries to develop a reward function that allows the robot

to follow human-like trajectories. Kato et al. [24] de-

veloped a robot behaviour model for the interaction

between shopping mall staff and the customers. In [50],

the authors used proxemics rules to define the approach-

ing distance to the target person for teaching robots

proactive behaviour.

Finally, Carton et al. [13,51] presented a method

which uses Bezier curves to incorporate socio-contextual

human features into the robot’s planned path of ap-

proach.

In contrast to the previous approaches, our work

employs a prediction module based on the social force

model, which includes human-like behaviours for navi-

gating within dynamic environments, and for mapping
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out the best path for the robot to take towards a mov-

ing destination. We are also able to compute the best

meeting point between parties by considering the status

of the group, the state of the target person, and the tar-

get person’s future position. Our method also resulted

in a more accurate determination of a specific meeting

point than that yielded by other methods, which typ-

ically do not consider people’s future movements nor

imagine the myriad possible paths towards intercepting

the target person. Then, our method allows the robot

to predicts the best meeting point in situations where

the approached person is stop or walking in any direc-

tion within the environment, either towards the group

or away from it. Also, these paths and the final meeting

point take into account static and dynamic obstacles of

the environment. Also, at the same time the robot was

adapting to other person movements (the companion)

that can modify the path of the group. Furthermore,

in the final stage where the group is near of the ap-

proached person, our framework is based on human be-

haviour, wherein people who are standing up (either

static or dynamic) arrange themselves in geometric for-

mations in order to participate in a conversation.

In addition has to be mentioned that none of the

previous works implemented our three stages at the

same time: accompanying, approaching and position-

ing. Also, we search for literature that did it, but we

could not find any work about it.

3 Adaptive Human-Robot Accompaniment

Navigation

In this section, we present the adaptive Human-Robot

accompaniment navigation, which makes robot capa-

ble of navigating in an adaptive side-by-side formation

while accompanying a person in dynamic environments.

The objective of this accompaniment task is that the

group robot-person, denominated by g, reach a desti-

nation goal Dn
g, in an environment with static obsta-

cles o, and with dynamic obstacles due to other people

p that are moving (in this work we only consider the

moving people as dynamic obstacles). However, it is im-

portant to understand that is the person of the group

who selects its own destination goal Dn
g at each in-

stant of time, which is not known by the robot r, and

that we can only control the robot. This means that the

robot has always to predict the intention of the person

to know the destination goal. Also, the robot has to do

a dynamic accompaniment to avoid the static obstacles

and the dynamic obstacles by predicting the intention

of the other moving persons that can cross the group g.

To achieve this type of navigation, the robot has

to evaluate all possible paths until the final destination

and select the best one taking into account: minimum

path distance, minimum difference of orientation until

the final destination, minimum effort to avoid obsta-

cles or pedestrians, and the best formation with the ac-

companied person. Usually, the pair robot-human will

navigate keeping the side-by-side formation, but some-

times they have to modify it to pass through a narrow

passage or to avoid groups of people.

The adaptive Human-Robot accompaniment navi-

gation method described below, is composed by sev-

eral elements: inferring the person destination goal to

be used as group goal; planning the path to reach the

goal avoiding the static and dynamic obstacles; pre-

dicting the pedestrian movements to avoid the colli-

sion with them; maintaining the side-by-side formation

while is navigating; and controlling the robot to ac-

complish with the accompaniment task. For inferring

the person destination goal we have used the method

BHMIP [52] and for the planning in crowded environ-

ments we are based on the Anticipative Kino-dynamic

Planner (AKP) [1], which allows the robot to navigate

in challenging crowded environments while performs a

social acceptable navigation. In this section we will ex-

plain the new changes in the evaluation of the paths due

to the side-by-side formation and the new formulation

of the Extended Social Force model to do the adaptive

accompaniment navigation to achieve the side-by-side

navigation.

This section is divided in three parts, which repre-

sents the three steps to be solved: (i) to infer the person

destination, to plan all the paths using the AKP and

the Extended Social Force model, (ii) to evaluate all

the planned paths using an additional costs function

due to the side-by-side formation, and (iii) to extend

the social force model for the accompaniment task.

3.1 Stage 1: Infering the person destination, planning

all the possible paths with AKP and formulating the

Social Force Model for the accompaniment task

First of all, the robot needs to know the final destina-

tion of the person who is being accompanied, who can

change its destination at any time. To obtain this in-

formation, we have used the Bayesian Human Motion

Intentionality Predictior (BHMIP) method [52], which

is a geometric-based long term prediction method that

uses a Bayesian classifier to compute the best prediction

to a given destination position. The BHMIP method

assumes that the set of possible destinations inside the

dynamic environment D = {D1, D2, ..., Dn, ..., Dm} are

known. These destinations are usual points where peo-

ple go, as entrances, exits or work places. In this section
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we will assume that the destination goal for the group

g is Dn
goal.

Once the robot knows the final destination, it has

to compute all the possible local paths using the AKP

local planner. This local planner uses the Social Force

Model (SFM) to analyze which trajectories are correct

and to analyze all paths at each control time, consid-

ering the static obstacles and the predicted location of

the dynamic obstacles (moving pedestrians).

Let us first formulate the accompaniment task to

reach a destination goal using the SFM considering the

group g, see Eq. 1.

Fg = α f goalg,d (Dn
goal) + (γ F ped

g + δ F obs
g ) (1)

Where α, γ and δ parameters are the weights of the

respective forces, and Fg is the resultant force of the

group, f goalg,d (Dn
goal) is the attractive force until the

final destination of the group, F ped
g and F obs

g are the

repulsive forces from pedestrians and obstacles respect

to the group.

These parameters were learned using a Markov Cha-

in Monte Carlo Metropolis-Hastings method ( MCMC-

MH ) over data extracted from simulations of the plan-

ning task, and then were validated in the real life ex-

periments. For more information about this procedure

the reader is referred to [53].

The attractive force until the final destination is de-

fined in Eq. 2. This attractive force assumes that the

group g tries to adapt its velocity within a relaxation

time k−1, but taking into account at the same time to

arrive to the final destination inferred by the BHMPI.

f goalg,d = k(v0
g(Dn

goal)− vg) (2)

v0
g(Dn

goal) is the desired velocity vector to reach

the final destination Dn
goal, which is inferred from all

the destinations of the environment using BHMIP, and

vg is the current velocity of the group. This force pushes

the group to their final destination.

To avoid pedestrians, we define the following repul-

sive force:

Fpedg =
∑
j∈P

f intg,j (3)

f intg,j = Agpe
(dgp−dg,j)/Bgpw(ϕg,j ,λgp) (4)

Agp, Bgp, λgp and dgp are the parameters of the

group-person interaction, in Section 5. Agp and Bgp de-

note respectively the strength and range of interaction

force, dgp is the sum of the radii of a pedestrian and

an entity and dg,j = rj − rg. We define how these pa-

rameters were obtained in the case of the interaction

force between the robot and the accompanied person.

For the robot and all the other people of the environ-

ment were learned these parameters in a previous [53]

work using the same procedure. Here, these interac-

tions could be between robot-person, person-person and

group-person. In the case of the group we use the value

of the parameters of the robot-person interaction, since

our model use the larger component of the group, in

our case the robot, to be able to pass through narrow

passages in one-by-one formation.

Given the limited human’s field of view, influences

might not be isotropic. This is formally expressed by

scaling the interaction forces with an anisotropic factor

depending on ϕg,j .

w(ϕg,j) =

(
λgp + (1− λgp)

1 + cos(ϕg,j)

2

)
(5)

λgp defines the strength of the anisotropic factor.

cos(ϕg,j) = −ng,j · eg (6)

The term ng,j is the normalized vector pointing

from the center of the group to person pj which de-

scribes the direction of the force, then ϕg,j is the angle

which describes the group’s motion.

Finally, the repulsive force respect to the obstacles

in the environment is defined by:

Fobsg =
∑
o∈O

f intg,o (7)

f intg,o is obtained equivalent to Eq. 4. The main dif-

ference is that now the interaction is with an object

instead of a person.

These repulsive forces are the summation of all the

repulsive forces between the group and all pedestrians

and obstacles.

3.2 Stage 2: Evaluation of the planned paths using a

new cost function for the accompaniment task

At each time t, the robot computes all possible paths

for the group g using the AKP, but only one will be the

optimal one. The robot should evaluate and select the

best one using a cost function that takes into account

the different constraints (obstacles) and optimization

criteria. In [54], there were defined a cost function that

included the minimum path distance, minimum differ-

ence of orientation until the final destination, minimum

effort to avoid obstacles or pedestrians. Because we have
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to accomplish a side-by-side formation with the accom-

panied person we have also to define a new cost function

to add to the previous ones. The equation of this cost

function is defined in Eq. 13.

Let us define the accompaniment cost function. This

cost function has to take into account the distance be-

tween the robot and the accompanied person and the

angle between them to obtain a side-by-side formation.

Fig. 2 shows the geometrical parameters and variables

to be taken into account.

Rg is the radius of the circle containing: the robot

(with radius Rr), the person (with radius Rp), and the

minimum distance between the center of the position

of the person and the center of the position of robot,

2Ri, where Ri ≥ 0.75 m. The lowest value of Ri = 0.75

m is obtained by tacking into account the radius of our

robot, 0.5 m, and the necessity of some free space be-

tween the robot and the person to allow some error

tolerance (we have set up 0.25 m). Then, the distance

between the central positions of the robot and the ac-

companied person is 2Ri = 1.5 m, this allows a real free

space between them within the range of [0.25 - 0.7] me-

ters. These distances were chosen taking into account

the radius of our robot, the standard person radius,

and a previous work [7]. Furthermore, the following two

equations must hold for Ri and Rg.

Ri ≥ (Rr +Rp)/2 (8)

Rg = Ri +max(Rr, Rp) (9)

To define a cost function, we have to consider the

distance, 2Ri, and the best angle between them, θ.
These two parameters allow the side-by-side navigation

of the group while avoiding static and dynamic obsta-

cles. To obtain the best angle, we compute the mini-

mum collision distance do, Eq. 10, between the center

of the pair and the nearest obstacle. Using the collision

distance, dw is obtained which is the shortest distance

between the center of the robot’s position and the di-

rection of movement of the group. This distance has a

maximum value of Ri when the group is in side-by-side

formation. Then, θ can be obtained using Eq. 12. To

calculate all of the collisions over the paths we use a

predefined map and laser scans.

do(t) > dw(t) +max(Rr, Rp) (10)

dw(t) = Risin(π − θ(t)) (11)

θ(t) = π − arc sin

(
dw(t)

Ri

)
, for θ(t) ∈

(
−π

2
,
π

2

]
(12)

Fig. 2 Group positioning. Computation of the Human-
Robot formation to avoid an obstacle while the robot ac-
companies the person.

Finally, the new cost Jc, denominated companion

cost, is defined as follows:

Jc(S) = η‖θ(t)− θ0‖2 (13)

Where S is the state of any entity: the robot, the

group or pedestrians. The state includes position, veloc-

ity and time, and additionally orientation for the robot

or group, see [1] for information about the states. θ0

is the best angle of companion, in our case 90◦. Then,

the minimum cost is obtained when the robot accom-

panies the person in a side-by-side formation, and this

cost increases when the robot has to break this forma-

tion to avoid obstacles. We want that the robot always

selects the path where the group can walk more time in

a side-by-side formation. The graph of the companion

cost can be seeing in [55]

This new companion cost, Jc, is added to the cost

functions defined in the AKP method, obtaining a new

cost function J(S, sgoal, U) with all the associated costs:

J(S, sgoal, U) = [Jd, Jor, Jr, Jp, Jo, Jc] (14)

Please refer to [54] to know the details of the other

cost functions. The computation of this cost function

requires three steps. First, each individual cost func-

tion is computed. Second, in order to avoid the scaling

effect of weighted-sum method, each cost function is

normalized to (−1, 1), according to the equation:

J̄i(X) = erf

(
x− µx
σx

)
(15)
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The variables µx and σx are estimated after the cal-

culation of all RRT’s possible planning paths. Finally,

third, a projection via weighted sum J : RI → R is

obtained giving the weighted cost formula (see [54] for

additional explanation):

J(S, sgoal, U) =
∑
i

wiJ̄i(S, sgoal, U). (16)

The path with the minimum cost function, named

as J(S, sgoal, U), is selected as the best path among the

possibles paths to the destination goal at each control

interval.

3.3 Stage 3: Extension of the social force model for the

companion task

In the previous subsection, we have incorporated an ac-

companiment cost function for the selection of the best

path. Now, we include a new attractive force in the

Social Force Model that takes into account the accom-

paniment factor to control the navigation of the robot.

This new force tries to maintain together the group

formed by the robot and the person while the group is

navigating toward the destination goal. The resulting

new force Fr is shown in Eq. 17. Then, the resultant

force to control the robot movement has two attrac-

tive forces, one, f goalr,d (Dn
goal), that pushes the robot to

the destination goal inferred by motion intention of the

accompanied person, and the second one, f goalr,p (Dn
f ),

that pushes the robot to maintain the adaptive side-by-

side formation with the accompanied person. Moreover
there are two repulsive forces analog to the repulsive

forces for the group in Eq. 1 but now for the robot,

one is the repulsive force due to the static obstacles of

the environment F obs
r and the second one is due to the

moving pedestrians F ped
r . In case of the existence of

other moving obstacles as vehicles, bikes, etc. another

repulsive force should have to be incorporated. The fi-

nal resulting force is:

Fr = α f goalr,d (Dn
goal) + β f goalr,p (Dn

f ) + (γF ped
r + δF obs

r )

(17)

Where α, β, γ and δ are the corresponding weights

of the forces. These weights were obtained through two

steps: a first approximation of the weights were com-

puted by means of the MCMC-MH method using data

of thousands of the simulations of the accompaniment

task, and second, these weights were refined by means

of an Interactive Learning [56] using data of the real

life experiments. For more information about this pro-

cedure the reader is referred to [53].

The computation of the f goalr,d (Dn
goal) is analog to

the attractive force to the destination goal of Eq. 2,

but using the actual robot velocity. The repulsive forces

from pedestrians and obstacles, F ped
r and F obs

r are

computed in a similar way as Eq. 3 and 7, but using

the robot center position. However, we have to take into

account that F ped
r has to be reformulated because it is

now composed by two forces,

F ped
r =

∑
j∈P

f intr,j + f intr,c (18)

where f intr,j are the interaction forces among the

robot and other people and f intr,c is the interaction force

between the robot and the accompanied person (the

computation of this force is explained in Section 5).

Finally, the new attractive accompaniment force,

f goalr,p (Dn
f ) to maintain a formation respect to the com-

panion person is computed assuming that the robot r

tries to adapt its velocity within a relaxation time k−1,

but taking into account the distance and angle to main-

tain a formation to accompany the person. Dn
f is the

position of the robot respect to the companion person

in the next step of the path. The formulation of this

force is as follows:

f goalr,p (Dn
f ) = k(v0

r(Dn
f )− vr) (19)

v0
r(Dn

f ) is the desired velocity vector to reach the

configuration position respect to the person at the next

step Dn
f , and vr is the current velocity of the robot.

This is the force that keeps the robot in the computed

geometrical configuration (robot-human) to allow the

joint navigation. It has to be mentioned that the com-

puted geometrical configuration was described in the

previous Sub-section 3.2.

The attractive force of the formation f goalr,p (Dn
f )

is applied at each propagation of the position of the

companion person along the best path, where Dn
f is

the position of the robot respect to the companion per-

son in the next step. Then, Dn
f (t + 1) = P r(t + 1) is

the next position propagated of the robot taken into

account the constraints from distance and angle (see

Fig. 2). The computation of the next position of the

robot, P r(t + 1) = (x̂r(t + 1), ŷr(t + 1)), depends on

the next position of the person which is P p(t + 1) =

(x̂p(t + 1), ŷp(t + 1)). The values (x̂r(t + 1), ŷr(t + 1))

are computed as follows,

x̂r(t+ 1) = x̂p(t+ 1) + 2Ri cos (θp − sgn (θp − θc) θ)
ŷr(t+ 1) = ŷp(t+ 1) + 2Ri sin(θp − sgn(θp − θc)θ) (20)

Where 2Ri is the distance between the robot and the

person. θp is the person orientation to the destination
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and it is obtained in Eq. 21. θc is the actual companion

angle between the person’s and robot positions. Finally,

θ is the ideal companion angle between the robot and

the person calculated in Eq. 12. Ri, θp, θc and θ are

computed in the discrete time t. Finally θp is computed

as follows,

θp = atan

(
yd − yp

xd − xp

)
(21)

(xp, yp) is the detected person position and (xd, yd)

is the position of the final destination for this person,

which is inferred amount all the possible final destina-

tions of the environment using the BHMIP method [52],

at time t. In case the final destination is unknown, the

robot predicts the person’s path to accompany her/him

using a window of time considering its previous orien-

tation.

4 Robot Approaching People

Once it has been selected the person of the group that

the robot wants to approach, the robot has to calculate

the best final position to meet the target person and

its correspondent best path to reach this dynamic goal.

The dynamic goal takes into account the propagation

of the approached person including dynamic and static

obstacles. Then, the robot calculates all possible paths

and selects the best path to arrive until the dynamic

goal, as we explained in the previous section. Also, all

the paths take into account the static and dynamic ob-

stacles of the environment. When the group, formed by

the robot and the accompanied person, and the target

person reach the same goal, the robot needs to rear-

range its position respect both persons to be part of

the interaction. Part of the approaching task was pub-

lished on [57].

This section describes two steps: the approaching

path, where the robot computes the optimal dynamic

destination Ddgoal
n (the meeting point) and uses the

AKP local planner to compute the best path until this

destination, and the proactive configuration to be able

of interact with both people.

4.1 Stage 1: Computation of the Optimal Dynamic

Goal

This subsection describes how the dynamic destination

of the group is computed, Dn
dgoal = (xdgoal, ydgoal).

The dynamic destination, Ddgoal
n , substitutes the static

destinationDgoal
n of the companion task in Eqs. 1 and 17.

Then, we use the companion method of the previous

section to calculate all the paths for the group to reach

this dynamic destination. The dynamic destination is

optimally computed using the gradient descent method,

as shown in Alg. 1. This goal optimizes the time to

execute the task, and in combination with the AKP-

companion, it also optimizes the traveled distance, the

effort of accomplishing the companion task and the ef-

fort to avoid obstacles and pedestrians.

Let us describe how Alg. 1 and Alg. 2 work. The

Alg. 1 starts at time tn = 0 and evaluates Eqs. 22

and 23. Then, the iterative part increments tn using

the value of the gradient, Eq. 23, and all people’s posi-

tions and the group’s positions are propagated until tn
using Alg. 2. d(tn) and ∂d

∂t (tn) are also computed. On

the one hand, the propagation of the target person is

used as dynamic destination, and, on the other hand,

the propagation of the pedestrians in the environment

are used to calculate the repulsive forces which affect

the trajectory of the group. The outcomes of the al-

gorithm are the minimum encounter time, tn, and the

optimal dynamic goal, Dn
dgoal. d(tn) is computed as

follows:

d =
√

(x̂g − x̂tp)2 + (ŷg − ŷtp)2 (22)

d(tn) is the euclidean distance between the group

and the person to be approached. In Eq. 22 we do not

include tn to reduce the formula complexity. (xg, yg)

and (xtp, ytp) are the positions of the group (person-

robot) and the target person, respectively. (x̂g, ŷg) and

(x̂tp, ŷtp) are the predicted positions for both, group

and target person.
∂d
∂t (tn) is the gradient of the distance and is com-

puted as follows,

∂d

∂t
=

(x̂g − x̂tp)[vgx + agxt− vtpx − atpx t]√
(x̂g − x̂tp)2 + (ŷg − ŷtp)2

+

(ŷg − ŷtp)[vgy + agyt− vtpy − atpy t]√
(x̂g − x̂tp)2 + (ŷg − ŷtp)2

(23)

Where (vex, v
e
y, a

e
x, a

e
y) are velocities and accelerations

of each entity, e = {g, p, r}. p is any person of the envi-

ronment and tp corresponds to the target person, g is

the group, and r is the robot.

In Alg. 2, all predictions until tn are computed us-

ing small time intervals. These small increments of time

allow the use of constant values of velocity and accel-

eration. This simplifies the minimization process.

All accelerations are obtained from the interaction

with static and dynamic obstacles using the extended

social force model (ESFM). The components of this

force (F exti
, F eyti

) are obtained in Eqs. 1 for the group



10 Ely Repiso et al.

Algorithm 1 Gradient Descent of Optimal Goal

1: tn−1 = 0
2: Calculate d(0), Eq. 22
3: Calculate ∂d

∂t
(0). Eq. 23

4: while d(tn−1) > 0.1 and ∂d
∂t

(tn−1) < 0 do

5: tn = tn−1 − λ ∂d∂t (tn−1)
6: (x̂p, ŷp) ← propagation(∆t, xp, yp, vpx, v

p
y , a

p
x, a

p
y)

(see Alg. 2)
7: (x̂tp , ŷtp) ← propagation(∆t, xtp, ytp, vtpx , v

tp
y , a

tp
x , a

tp
y )

8: (x̂g , ŷg) ←propagation(∆t, xg , yg , vgx, v
g
y , a

g
x, a

g
y)

9: Calculate d(tn)
10: Calculate ∂d

∂t
(tn)

11: end while

12: Dndgoal ← (x̂tp , ŷtp)
13: return (tn,Dndgoal)

Algorithm 2 Propagation of the states: propagation()

1: Inputs: (∆t, xe, ye, vex, v
e
y , a

e
x, a

e
y)

2: for t = ∆t, 2∆t, . . . , tn do

3: xeti+1
= xeti + vexti

∆t+ aexti
(∆t)2

2

4: yeti+1
= yeti + veyti

∆t+ aeyti
(∆t)2

2

5: vexti+1
= vexti

+ aexti
∆t

6: veyti+1
= veyti

+ aeyti
∆t

7: aexti+1
= m · F exti

8: aeyti+1
= m · F eyti

9: end for
10: return (xetn , y

e
tn

)

propagation and for people propagation we can use the

same formula changing the group g by the correspon-

dent person p. As we consider that all the entities have

a mass m = 1, the resulting acceleration is equal to the

resulting force.

4.2 Stage 2: Proactive configuration to interact with

both people

Once the group and the target person are nearby, the

group should face the target person. It is expected that

the group and the target person will form a triangle

formation. Some previous works use these formation

that seems to be natural for humans [58]. To achieve

this formation, first, the robot uses the cosine theorem,

Eq. 24, to calculate the expected angles of the triangle

formation: ψr is the angle of the vertex that corresponds

to the position of the robot, ψt is the angle of the target

person position, and ψc is the angle of the companion

person position.

Algorithm 3 Select goal

1: if diff a(θtr(+ψt),θtp) < diff(θtr(−ψt),θtp) then

2: xrfd = xttp + drt cos (θtc + ψt)

3: yrfd = yttp + drt sin (θtc + ψt)
4: else

5: xrfd = xtpt + drt cos (θtc − ψt)
6: yrfd = ytpt + drt sin (θtc − ψt)
7: end if

a diff() is a function that calculates the difference between
two orientations

dtc
2 = drc

2 + drt
2 − 2drcdrtcos(ψr)

drc
2 = dtc

2 + drt
2 − 2dtcdrtcos(ψt)

drt
2 = dtc

2 + drc
2 − 2dtcdrccos(ψc) (24)

Where dtc is the distance between the target per-

son and the companion person, drc is the distance be-

tween the robot and the accompanied person, and drt
is the distance between the robot and the target per-

son. Then, we only fix the distance between the two

people and the robot to 1.5 m. We calculate the angle

and distance between the two people from its detec-

tion’s, these values can be any one. Also, the triangle

formation gives to us the angles between the two people

and the robot (see Fig. 3). Moreover, as we explained

previously, we expect to have an ideal distance of 1.5

m between the robot and the two people, but this can

variate depending of the confidence between them and

the size of the robot.

Finally, the robot’s position is determined using the
Alg. 3, which allows the robot to position it self to be

able to interact with both people, as it can be seen in

Fig. 3.

where, (xrfd, y
r
fd) is the robot’s final destination to

interact with both people, (xtpt , y
tp
t ) is the current tar-

get person position, θtp is the orientation of the target

person, θtc is the orientation between the target person

and the person who accompanies the robot, and θtr is

the orientation between target person and robot.

5 ESFM parameter learning for the companion

task

In previous works [59,60] two kind of interaction forces

were considered: person with other pedestrians and per-

sons with obstacles. In [53] we added an additional

force: person with robots. In this work we have added a

new fourth force: robot with accompanied person. This

last force shown in Eq. 18 is computed as,
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Fig. 3 Triangle positioning of group and target person:

Angles and distances that are used in the cosine theorem, and
the two possible robot positions to be selected.

f intr,c = Arce
(drc−dr,c)/Brcw(ϕr,c,λrc) (25)

and the new parameters to be learned are Arc, Brc,

λrc and drc.

To learn these parameters we have created a data

base with real-life experiments of two persons doing an

adaptive accompaniment task. This means that we have

situations where people walk side-by-side and other ones

where people have to avoid obstacles while walking to-

gether and the group breaks this ideal formation. Our

method needs both situations to learn these parameters

of the interaction between the members of the group,

since the robot performs these types of accompaniment

behaviours. The experiments were done with 46 volun-

teers, which range of ages were among 20 and 75 years

old. The data-base includes more than 400 trajectories
of two people walking using an adaptive side-by-side

formation in an outdoor environment. The setting to

obtain the data-base is shown in Fig. 4. The reader can

find the database in this link: http://www.iri.upc.

edu/people/erepiso/JournalSORO2019_databasePe-

opleWalking.html

The parameters were learned using a genetic opti-

mization algorithm [61] which minimizes the error be-

tween the actual persons companion position trajectory,

xp, and the expected position for the person compan-

ion, x̂p, according to Eq. 1. This minimization function

is,

{App, Bpp, , λpp , dpp} =

arg min
{App, Bpp, λpp , dpp}

{∑
N

∑
time

‖xp(t)− x̂p(t)‖

}
(26)

The resulting parameters of the repulsive force be-

tween person-person for the companion task were:App =

Fig. 4 Setup to obtain the data-base: Four different groups
of people walking from one destination to another. The blue
ellipses are the destinations of the environment, and the ob-
stacles are a simulated door.

0.2292, Bpp = 0.2339, λpp = 0.5403 and dpp = 0.2900

with a standard deviations of stdApp
= 0.0065, stdBpp

=

0.0171, stdλpp = 0.0185 and stddpp = 0.0074. These pa-

rameters were used for computation of Eq. 25, although

we slightly modified the parameter App due that the re-

pulsive force between robot and the accompanied per-

son is higher than between two persons to allow the

robot to do not enter in the personal space of the per-

son to be accompanied.

6 Performance Metrics

In this section, the performance metrics used to evalu-

ate the robot behaviour are described. All of the metrics

are based on previous studies on humans [62] and the

proxemic rules, proposed by Hall. [41],

- Intimate distance: Distances between people inside

the interval [0-45cm].

- Personal distance: Distances between people inside

the interval [45cm-1.22m].

- Social distance: Distances between people inside the

interval [1.22m-3m].

- Public distance: Distances between people are 3 me-

ters away (> 3m).

Usually, the companion and approaching behaviours

between people are inside the area of personal distances.

However, to take into account the size of our robot and

interactions with people unfamiliar with robots, we ex-

pect that the distances between robot and people will

be inside the area of social distances. Note that all of

our distances have been calculated from the center of

the robot to the center of the person and that these

distances include the radius of both and a free space

between them.
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6.1 Performance metrics for the companion task

The companion task has been evaluated using three

types of performance metrics. The first metric, area per-

formance metric, is composed by three areas shown in

Fig. 5-left and it is used to evaluate if the robot is in

the appropriate companion area. The second and third

performance metrics serve to differentiate if the com-

panion task is failing on the distance between both or

on the ideal angle of companion, see Fig. 5-right.

The first metric takes into account the spatial 2D

relation between the robot and the person and it is de-

fined by three areas. (i) Human’s personal space C, is

the area where the robot can not be in order to avoid

invading human’s personal space and it takes into ac-

count the minimum person radius space and some free

space, correspondent to Ri (see section 3.2). (ii) Social

distance area A, is the area where the robot should be

to be socially accepted. And (iii) Human’s companion

area B, is the area where the robot has to be to accom-

pany the person. In our case, the last area is a dynamic

area inside the social distance that is computed at ev-

ery accompaniment robot position (see section 3.2). To

obtain the limit of this area we consider the double

of the robot radius, because the robot has some mar-

gin with respect to the ideal position to allow not do

S behaviour. The computation of these areas is shown

below.

A=
{
x ∈ R2 \ (B ∪ C) | 0.75 < d(x, pc) < 3

}
B=
{
x ∈ R2 \ C | d(x, rc) < 1

}
C=
{
x ∈ R2 | d(x, pi) < 0.75

}
(27)

where pc is the actual position of the person who

accompanies the robot, pi is the position of any pedes-

trian, and rc = P r(t) = (xr(t), yr(t)) is the ideal po-

sition of the robot. This position is computed using

Eq. 20. In the area A, we consider that if the distance

is greater than 3 meters, a person does not feel that the

robot is accompanying him.

Moreover, the robot has a radius of 0.5 m and can be

represented as a circle of 1 m of diameter, with center

on the robot’s position r, R = {x ∈ R2 | d(x, r) < 0.5},
whose area is |R| = π

4 .

The area metric for the companion task can be com-

puted for each human’s position pc and robot’s position

r, and is formulated as follows:

P(r, pc) =
1

|R|

∫
B∩R

dx+
1

2|R|

∫
A∩R

dx ∈ [0, 1]

(28)

The metric has the maximum performance when the

robot is in the area described by B, since it is the best

position to accompany the human in each instant of

time. Additionally, if the robot is in the area A, but

not in area B, is a partial success, since the robot is in-

side the social distance accompanying the human, but

not in the best accompaniment position. Finally, if the

robot is further than three meters from the human’s

position, then we consider that there is no companion-

ship interaction between robot and person, and there-

fore its performance is zero. Also, if the robot invade

any human’s personal space is penalized with zero per-

formance.

The functions of the distance and angle performance

metrics are displayed in Fig. 5-right. We consider that

the robot achieves a good distance performance if it

keeps its central position inside the interval of distances

[1.25 − 2] m, respect to the position of the accompa-

nied person. This margin is centered in the ideal value

of 1.5 m. This margin decreases the tolerance of 0.25

m from the ideal value; and increases 0.5 m more for

larger distances, because some times the person moves

away the robot and needs to correct its position to ap-

proach it. The equation of the distance performance

metric is shown in Eq. 29, where P2Ri means distance

performance. In terms of angle, the best angle perfor-

mance is, at most, a difference of 10◦ from the ideal

angle to accompany the person and then the angle per-

formance value is 1. Then, if the difference of the angle

increases, we penalized each increment of 10◦ with −0.1

in the angle performance, to obtain a 0 value, when the

robot has an error of 90◦ with respect to the ideal value.

The equation of the angle performance metric is shown

in Eq. 30, where Pθdiff
means angle performance and

θdiff = (θ(t) − θr(t)), and θ(t) means the ideal angle

of companion and θr(t) is the real companion angle be-

tween the robot and the person.

P2Ri
=



0 if 2Ri < 0.75m

−2(2Ri) + 3
2 if 0.75m ≤ 2Ri < 1.25m

1 if 1.25m ≤ 2Ri ≤ 2m

(2Ri) + 3 if 2m < 2Ri ≤ 3m

0 if 2Ri > 3m

(29)

Pθdiff
=


1 if 0◦ ≤ θdiff ≤ 10◦

− 1
80 (θdiff ) + 9

8 if 10◦ < θdiff ≤ 90◦

0 otherwise

(30)
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Fig. 5 Metrics of area, distance and angle performance for the companion task. Left: Diagram of the areas for the
evaluation of the area performance metric. The performance has value of 0.5, when the distance between the robot and the
accompanied person is in the interval of [0.75-3] meters. If the robot is inside the area of 1 meter around the ideal position
to accompany the person, the performance increase to 1. This ideal position is obtained with the distance between them 2Ri,
fixed at the ideal value of 1.5 m, and the ideal angle θ, obtained with Eq. 12. Right: Performance metrics for distance and
angle. Top: plot of the metric of performance in distance and Bottom: plot of the metric for the angle performance. The value
of performance equal to 1 is considered the best value.

6.2 Performance metrics for the approaching task

Our goal is to evaluate the approaching behaviour be-

tween the group and the person. We expect that the

distance between the group and the target person de-
creases during this part of the whole task. Also, the dis-

tance of the computed global path of the robot has to

decrease. Then, the evaluation of the approaching task

was done by imposing two conditions: One that shows

the distance between the group and the target person,

and other that shows the distance of the global path un-

til the dynamic destination. An example of these graphs

can be seen in Fig. 9.

6.3 Metrics of Performance for the Final Positioning

The final position of the robot respect to both peo-

ple has been evaluated using three type of performance

metrics. One related with proxemics, based on several

areas of performance, see Fig. 6-left. And two metrics

that serves to differentiate if the final positioning task

of the robot is failing in the distance between the target

person or in the ideal angle between the target person

and the robot, see Fig. 6-right. Remember, that the dis-

tance and angle between the robot and the companion

person were evaluated on the performance for the com-

panion task.

For the first performance, two of the previous areas

are used, A and C. Furthermore, one new area must be

defined: E , which is the best robot’s position of the final

positioning task. The area E is centered in a position

where the robot performed a triangle formation with

both people, to be an active part of the final group.

Also, we have to duplicate area A and C to the cen-

ter of each person position: accompanied person, areas

A1 and C1, and target person, areas A2 and C2. The

computation of E is,

E =
{
x ∈ R2 \ C|d(x, ra) < 1

}
(31)

Where ra = (xrd, y
r
d) is the desired final position of

the robot to be in a triangle formation with both peo-

ple, the target and the companion person. This position

is obtained using the cosine theorem of the Alg. 3. The

limits of the areas are analog to the case of the perfor-

mance metrics for the companion task.

The area performance for the final positioning task

is analog to Eq. 28, but now, it has the maximum per-

formance value inside the area described by E , since
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Fig. 6 Metrics of area, distance and angle performance for the final positioning task. Left:. Metric of area performance:
The performance has value of 0.5, when the distances between both people and the robot are in the interval of [0.75-3] meters.
If the robot is inside its position of the triangle, calculated with the cosine theorem of the Alg. 3, the performance increases
to 1, but always outside of the personal space of all of the people. Right : Metrics of performance in distance and angle. Top:

plot of the metric of performance in distance. Bottom: plot of the metric of performance in angle. The value of performance
equal to 1 is considered the best value.

it is the best position to face the target person while

the robot is positioned to have equal distance to both

people. Additionally, when the robot is inside the area

A1 ∩A2, it is a partial success, since the robot is inside

the social distances of both people, but not in the E
area. Finally, if the robot is further than three meters

of the final positioning, we consider that the robot is

not doing the task correctly, because people can feel

that the robot is not part of the group, and therefore

its performance is zero. Also, if the robot invades any

human’s personal space is penalized with zero perfor-

mance.

The performance of distance and angle of the final

positioning task are similar to the performances of the

companion task Fig. 5 and Eq. 29 and 30. We consider

that the robot makes a good performance if it keeps its

central position inside the interval of distances [1.25−2]

m, with respect to the position of the target person.

Furthermore, for the orientation angle, we have consid-

ered a good performance when the orientation of the

group differed as much as 15◦ from the orientation to

face the center of the group. Finally, we obtained that

the robot reduces the difference of orientations between

the two people if it is oriented to the center of the group,

and both people feel that the robot is part of the final

group.

7 Synthetic Experiments

A complex dynamic simulation environment was devel-

oped to reproduce real-life situations. The simulation

environment consists of a set of static obstacles and also

includes the motion of several pedestrians. These simu-

lated human’s used the ESFM to obtain a more realistic

navigation behaviour and a random velocity inside the

interval [0-1] m/s. Furthermore, the simulated environ-

ment includes the Tibi robot model which uses our com-

panion, the approaching and final positioning methods.

The simulated robot is non-holonomic and has a max-

imun velocity of 1m/s, and it adapts to the velocity

of the accompanied person. In addition, the accompa-

nied person uses the same navigation and dynamic goal

computation as the robot, to obtain a quite similar hu-

man behaviour in the accompaniment and approaching

tasks. This behaviour includes the avoidance of static

obstacles and dynamic people in a more realistic way.

More than 4,700 simulations were performed to test

and validate our model. The method was tested in a

dynamic uncontrolled situations, where we had static

and dynamic obstacles at the same time. Also, we in-

cluded a large number of people that walks randomly

towards any destination. In addition, the orientations

and speeds of the approximation between the group and
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Fig. 7 Synthetic experiments: Simulation environment to
test and evaluate the companion, approaching and final po-
sitioning tasks. The black rectangles are the static obstacles
and the green cylinders are several people. Furthermore, the
environment has the Tibi’s model, the accompanied person
in blue, and the person that they want to approach in red.

the target person were changed, to represent as many

real-life cases as possible. With these simulations, we

covered a great range of real-live situations, for exam-

ple, we included different person crosses, static and dy-

namic passage ways and multiple interactions with sev-

eral people and static obstacles at the same time. These

situations manifest the good performance of the rear-

rangement of the group while navigates in dynamic en-

vironments, moreover the computation of the dynamic

goal takes into consideration the avoidance of dynamic

and static obstacles and test the robustness of our al-

gorithm in complex situations. Fig. 7 presents the sim-

ulation environment.

The reader can see the results of the companion and

final positioning task in Table. 1 and in Fig. 8-left and

Fig. 8-right, respectively. The results are expressed in

a scale between 0 and 1, where 1 is the best value. The

value between brackets is the standard error of each

mean value. Also, we have to take into account that

the area performance is more restrictive than the dis-

tance and angle performances, because we expect that

all the area of the robot will be inside the correct area

to accompany the person.

Regarding the approaching task for all the simula-

tions, we obtained several graphs similar to Fig. 9. No-

tice how the distance between the group and the target

person decreased in each iteration, Fig. 9-left, or how

the distance of global path until the dynamic destina-

tion also decreased, Fig. 9-right. These results exhibit

a good performance of the approaching task.

During the simulations, we saw several behaviours

that seems an intelligent robot. As for example: in most

of the cases the robot surrounded the person to avoid

other people and went to the other side, where it had

free space. These behaviours were not explicitly imple-

mented but emerge naturally, where the robot tries to

find the position next to the accompanied person that

has more free space. Also, we found several temporal

local minima in simulations, when we had high density

of random people, that blocked the path of the pair.

Besides, in these situations the simulation environment

and our algorithm showed a very realistic behaviour,

where the group stopped momentarily and waited until

the other pedestrians continued their way to their des-

tinations and left some free space, and then the group

continued the walk until met the target person. This

behaviour was represented in the results obtained for

the approaching task in Fig. 9-right. In this graph, we

had some points, where the distance of the global path

until the dynamic destination remain constant for a

while and after some time continue decreasing, this also

means that the distance between the group and the tar-

get person remained standing for a while an after that,

the distance between them decreases again.

8 Real-Life Experiments

The proposed method was also tested in real-live exper-

iments, with Tibi, the robot of the Institut de Robot-

ica i Informatica Industrial (IRI). The maximum robot

speed was set up to 1 m/s due to security reasons,

but it can adapt to the velocity of the accompanied

person. For allowing the robot to adapt to people ve-

locity, we imposed 0.8 m/s as the maximum speed of

people. We used different dynamic urban environments

that will be presented on Sub-sec. 8.1. Also, the robot

platform is described in Sub-sec. 8.1. We made three dif-

ferent blocks of experiments: to evaluate the companion

task Sub-sec. 8.3, to evaluate the entire task with com-

panion, approaching and final positioning at the same

time Sub-sec. 8.4, and an user study of the whole task

Sec. 9. In addition, the reader can find several videos

of the real experiments in this link: http://www.iri.

upc.edu/people/erepiso/JournalSORO2019.html

8.1 The Robot Platform

To carry out all the real-life experiments we used the

Social robots Tibi and Dabo, Fig. 10-Left. They are the

two semi-humanoid social robot’s of the IRI, developed

in the URUS project [63].

These robots were developed to share dairy tasks

with people in urban areas. To do it, they have nice
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Fig. 8 All performance for the companion and final positioning tasks. Left: Performance’s of the companion task. Right:
Performance’s of the final positioning task. Inside the two graphs, the first column is the distance performance, the second is
the angle performance and the third is the area performance. These columns show the average and the standard deviation of
performance for all simulations. The performance value equal to 1 is considered the best value.

Performance of Companion Performance of Final Positioning
Mean of Distance Performance 0.91 (± 0.01) 1 (± 0.0078)
Mean of Angle Performance 0.86 (± 0.015) 0.9 (± 0.016)
Mean of Area Performance 0.82 (± 0.0073) 0.84 (± 0.011)

Table 1 Performance results of the simulation experiments for the tasks: companion and final positioning. The performance
value equal to 1 is considered the best value and the values between brackets are the standard errors of each mean value.

Fig. 9 Performances for the approaching task. Left: Graph of the difference in distances between group and target person.
Right: Graph of the distance of the global path until the dynamic destination. In both graphs we see the reduction of the
distances in each iteration. In the graph of the global path we see how the distance of the path remained standing for a while
an after that decreases again. These situations are done because other people block the path of the group in several points
during a small periods of time.

appearance and multiple sensors to be able to interact

with people.

They have a two-wheeled Segway RMP200 platform

to move around the environment. They have several

sensors to perceive its surroundings, as two Hokuyo

UTM-30LX 2D laser range sensors (front and back-

ward), to build maps, to be localized in the environ-

ment, to detect obstacles and to track people.

Also, the robots have different visual sensors as the

lady bug and the bumbelbee stereo cameras, to detect

objects and track people of the environment. Further-

more, the robots have different social interaction ele-

ments as a tactile screen to receive commands through

a menu or visualize results, a speaker to get spoken in-

teraction, two mobile arms to perform non verbal com-

munication and LED’s in their faces to represent face

expressions. All the programs that control the robot be-

haviours were executed inside two onboard computers

(Intel Core 2 Quad CPU @ 2.66 and 3.00 GHz) and its

power is supplied by two sets of batteries, one for the

Segway platform and one for the computers and sen-

sors. We used a laptop to monitor the robot behaviour
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Fig. 10 Robotic platforms and environments. Left: Tibi
and Dabo the two humanoid robots of the Institut de Robot-
ica i Informtica Industrial (IRI). Right: The upper images
correspond to the Barcelona Robot Lab (BRL) situated at
UPC North campus, and lower image correspond to the Fac-
ultad of Matemtiques i Estadstica Lab (FME) at the UPC
South Campus.

in all of the experiments. We used Ubuntu-linux Op-

erating System with several algorithms coded on C++

and use ROS as a middleware. The companion system

run at 5Hz that allowed the robot to react quickly to

different situations and changes in the environment.

These robots could do several interactions or col-

laborations with humans, such as: find pedestrians or

things, recognize humans, navigate alone or together,

follow, guide or accompany people.

8.2 The Experimental Environments

The real experiments were carried out in two outdoor

urban areas: Barcelona Robotics Laboratori

(BRL, Fig. 10-Upper Right) and the Facultad of Mate-
matiques i Estadistica Lab (FME, Fig. 10-Lower Right).

The BRL is situated at the UPC North Campus in

Barcelona. This environment is a University campus

area of over 10, 000m2 that includes several buildings,

squares, staircases, ramps and narrow passages, as well

as multiple static and dynamic obstacles like: flower-

pots, waste bins, banks, trees, bicycle stands and peo-

ple. The FME is situated at the UPC South Campus in

Barcelona and is a free area of 15x15 meters delimited

by a stairs, two walls and a street.

8.3 Companion Task Real-Life Experiments

The experiments of the companion task were done by

Tibi robot in the square yard of the FME. Several

volunteers were accompanied to different destinations,

while the group had to avoid static and dynamic obsta-

cles. In these experiments, the method was evaluated

with the performance metrics for the companion task.

FME
Performance of
Companion

Mean of Distance Performance 0.91 (± 0.0094)
Mean of Angle Performance 0.73 (± 0.0018)
Mean of Area Performance 0.63 (± 0.012)

Table 2 Performance results of the real-life experiments car-
ried out in the FME to test the companion task. The perfor-
mance value equal to 1 is considered the best value and the
values between brackets are the standard errors of each mean
value.

We developed five sets of experiments that include

a huge range of real situations. First, in a free area

without any kind of obstacles. Second, some static ob-

stacles were included to increase the difficulty. If the

robot was able to pass throw a door with the person it

accompanies, also was able to avoid an obstacle in one

of the person sides. Third, we included the avoidance

of several groups of pedestrians. Four, the robot nav-

igated in an environment with obstacles and pedestri-

ans. Last, a crowded environment with many obstacles

was considered in order to increase the difficulty of the

experiments.

The results of the companion task are shown in Ta-

ble. 2. Notice that the results are expressed in a scale

between 0 and 1, where 1 is the best value. The value be-

tween brackets is the standard error of each mean value.

Also, we have to take into account that the area perfor-

mance is more restrictive than the distance and angle

performances. Finally, we obtained an acceptable per-

formance in spite of the difficulty of the task in the real-

life experiments. Images of the experiments are show in

Fig. 11-Top.

8.4 Companion, Approaching and Final Positioning

Tasks Real-Life Experiments

The whole task was tested on real-life experiments in

the FME with Tibi. The whole task included: com-

panion, approaching and final positioning of the robot.

In these experiments we assumed that the two people

knew each other and they wanted to get closer to inter-

act. Also, we expected that the robot knew previously

both people and knew which person had to accompany

and to which person had to approach. Then, we se-

lected exactly the person to accompany and the person

to approach, because the autonomous recognition and

differentiation from other people is out of the scope of

the work. All people were detected using a laser leg

detector and tracked using a multi-hypothesis tracker,

published in [64].
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Fig. 11 Real-life experiments. Top: The images show different moments of the real experiments for only the companion
task. Bottom: The images show several moments of the real-life experiments for the full task: accompany, approach and final
positioning. In both cases the robot has to perform the task while avoids other people and obstacles.

We developed the same five sets of experiments of

the companion case, but this time the final destination

was dynamic, it corresponded to the movement of the

target person that the group wanted to approach. Fur-

thermore, for each one of the five sets, we developed a

significant set of different meeting orientations between

the group and the target person. After all, we obtained

a huge range of possible companion, approaching and fi-

nal positioning interactions. We can see three represen-

tative images of these experiments in Fig. 11-Bottom.

The reader can see the results for the companion

and final positioning tasks of the FME in Table. 3. The

results are expressed in a scale between 0 and 1, where

1 is the best value. The value between brackets is the

standard error of each mean value. For the results of

the approaching task we obtained similar graphs to the

ones obtained in the simulations, Fig. 9, where we could

see how the distance between the group and the target

person decreased during time.

9 User Study

To develop the user study, we performed 72 real-life

experiments: 36 using our method and 36 controlling

the robot by teleoperation. The method and the tele-

operation has the same limit of maximum velocity of

1 m/s. The teleoperator used the following rules: do

not disturb the accompanied person or other pedestri-

ans in the environment, perform a side-by-side accom-

paniment, approach to the target person, try to imi-

tate human side-by-side behavior and approaching be-

haviour. These experiments were made in the North

Campus with Tibi. The participants were 72 inexpert

users. The average and standard deviation of the ages

of the participants was (M=27.21, SD=11.72), and the

range of ages were between [15-76] years old. The 25%

were women and 75% men, mainly university students

and some workers of the university campus, see Fig. 1.

The level of knowledge in the robotics field was included

in the surveys and was ranged between 1 to 7. 65% of

the participants had the lowest level of knowledge in

robotics (1, 2 and 3), 18% had the intermediate level

of knowledge in robotics (4 and 5) and 17% had the

highest level in knowledge of robotics (6 and 7). Then,

we can conclude that the highest amount of the partic-

ipants were potential users not related with robotics.

In the experiments, Tibi was accompanying one of

the participants and both met another person. Different

approach directions were performed during the experi-

ments. In addition, the final positioning was improved

avoiding unnecessary movements of the robot. Now, the

robot does a more human-like behavior, by positioning

itself in the free space of the triangle closest to its po-

sition. After that, the robot turns towards the center

of the group. This behavior assumes that both peo-

ple will be turned towards the center of the group, as

humans normally do. Furthermore, other pedestrians

were walking around the campus or watching the ex-

periment, but none interfered directly in the way of the

group. In cases where we only had an inexpert person,

he or she accompanied Tibi and one of our technicians

played the role of person who would meet the group.
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FME BRL FME BRL
Performance of Companion Performance of the Final Positioning

Mean of Distance Performance 0.87 (± 0.03) 0.84 (± 0.024) 0.84 (± 0.019) 0.87 (± 0.029 )
Mean of Angle Performance 0.68 (± 0.04) 0.7 (± 0.022) 0.97 (± 0.0025) 0.84 (± 0.022)
Mean of Area Performance 0.73 (± 0.067) 0.65 (± 0.039) 0.84 (± 0.017) 0.83 (± 0.025)

Table 3 Performance results of the real-life experiments carried out in the FME and the BRL of the whole task. Here, we
show the results of companion and final positioning. The results of the approaching task are similar to Fig. 9. The performance
value equal to 1 is considered the best value and the values between brackets are the standard errors of each mean value.

Survey’s Questions

Robot’s Intelligence Scale

How intelligent did the robot behave?
How well did the robot anticipate to your’s and
other’s movements?
Robot’s Sociability Scale

How natural was the robot’s behaviour?
How interactive was the robot’s behaviour?
Robot’s Comfortableness Scale
How comfortable did you feel near the robot?
How safe did you feel around the robot?
How well the robot conserve your physical space?

Table 4 Questionnaire. Survey questions asked of each par-
ticipant. All questions were asked on a 7-point scale from
”Not at all” to ”Very much”.

One example of the real-life experiments of this section

is shown in Fig. 1.

The results of the real-life experiments for the Com-

panion and Final Positioning tasks in the BRL are shown

in Table 3. These results demonstrate that the robot is

able to approach people while accompanies a pedes-

trian. A user study was also conducted to determine

whether the use of the ESFM enhances the base-line

model, this is, an expert moved the robot using teleop,

and we should highlight that people perceived a differ-

ence between these two approaches.

Participants were asked to complete a variety of sur-

veys. It was randomly selected if whether the robot

autonomously accompanied a person and approached

another pedestrian or if it was moved using teleop.

Social Scales. Participants were asked a set of ques-

tions, as shown in Table 4, following their encounter

with the robot in each mode of behaviour. To analyze

their responses, we grouped the survey questions into

three scales: the first measured the robot intelligence,

while the second and third evaluated robot’s sociability

and comfortableness felt by the volunteers. Both scales

surpassed the commonly used 0.72 level of reliability

(Cronbach’s alpha).

Each scale response was computed by averaging the

results of the survey questions comprising the scale.

ANOVAs were run on each scale to highlight differences
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Fig. 12 User study results. Left: Robot’s Intelligence. Cen-

ter: Robot’s Sociability. Right: Robot’s Comfortableness.

between the two robot behaviours, plotted in Fig. 12.

For the robot’s intelligence score, plotted in Fig. 12-

Left, pairwise comparison with Bonferroni demonstrates

no statistical difference between the two kind of naviga-

tion approaches, p > 0.5. In terms of robot’s sociability

and comfortableness the volunteers also perceived a dif-

ference between the two navigation’s, p < 0.01 in both

cases.

Therefore, after analyzing these three components

in navigation terms, we may conclude that if the robot

has the ability to socially navigate and respect human

conventions using our ESFM, it has the largest accep-

tance as people perceived the robot to be more com-

fortable and more sociable.

People perceived our method as better than the tele-

operator, because the method kept a comfortable dis-

tance for inexperienced people, since the robot tried

to keep a free space between him and the person of

0.7 m, (it is an exact distance of 1.5 m between the

center of the robot and person positions, tacking into

account that the Tibi’s radius is 0.5 m and a normal

person radius is 0.3 m) that is inside the interval of

personal distance in proxemics, and many people feel

uncomfortable when the robot was more close to them.

Few people complained about the larger distance of our

method, only people more extroverted or who liked the

robots considered that Tibi kept too much distance be-

tween them. We select that distance based on the ra-

dius of the robot, the person’s radius and a study in a

previous work [7]. To use the findings of this previous

work, we take into account that our method performs
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an adaptive side-by-side that allows the robot to posi-

tion itself at front, at lateral and at back of the person

who accompanies depending on the situation. In the

triangle of the final positioning, the perception of the

people was also better for the method because it was

more conservative quipping the exact distance and ori-

entations of the triangle formation that they perceived

as more comfortable and natural behaviour.

10 Discussion

The findings presented in the previous section reinforce

the notion that the robots ability to collaborate with

people by approaching and accompanying them is an

important skill, and one that is necessary for engender-

ing better collaborations between people and robots.

In general, some participants were surprised to find a

robot on the campus premises, while others who were

familiar with Tibi were happy to see it again. Addi-

tionally, most people were very impressed when Tibi

was able to respond to their behaviour by turning at

appropriate moments or stopping suddenly in response

to human stopping movements.

Volunteers seemed to favour our method over the

teleoperation method, because they feel more comfort-

able to the exact distance conserved by the method

and this behaviour seems to them that the robot reacts

quickly to its movements, creating a better experience

of human-robot interaction.

We also had success demonstrating the method’s

suitability within dynamic urban environments during

the accompanying and full task experiments of the FME,

wherein Tibi was able to accompany a person while

avoiding static and dynamic obstacles and responding

spontaneously to unexpected situations. These partic-

ipants were familiar with Tibi and its behaviour, but

could still appreciate the robot’s agility in anticipating

their movements or reacting to unexpected situations.

In terms of the full task performance, Tibi was able

to gauge the meeting point in advance and anticipate

the human’s movements and actions accordingly, ulti-

mately carrying out the planned interaction with two

people.

We observed that in larger spaces, Tibi’s speed lim-

itations seemed to be excessive, and younger partici-

pants had to slow their pace in order to be accompanied

by the robot. Also, many volunteers suggested that it

would be interesting to incorporate additional social in-

teractions into the accompaniment task, such as talking

or making gestures. These remarks will be considered

in our future research endeavours.

Also, we found some differences between people of

different cultural backgrounds. Then, we suggesting that

robots might also need to learn to adapt and modify

their behaviour to more suitably interact with the peo-

ple it encounters in a way that meets their cultural

preferences or expectations.

11 Conclusions and Future Work

In this work, we present a new framework for how au-

tonomous robots approach and accompany people in

urban environments. The method discussed allows the

robot to accompany a person and approach to other

one, by adapting its own navigation in anticipation of

future interactions with other people or contact with

static obstacles. The major contributions of this paper

are manifold:

Firstly, the model for how a robot accompanies a

person is based on the SFM (Social Force Model), where

we have introduced new forces to cope with this task.

Two new forces have been introduced in the accompa-

niment task, one attractive to maintain the adaptive

side-by-side formation and one repulsive to maintain

the security distance between the robot and the human

in this task. The new attractive force uses a dynamic

virtual goal to keep the adaptive companion position

around the accompanied person, that serves to accom-

pany in a side-by-side formation and change this forma-

tion when the group needs to avoid dynamic and static

obstacles.

With this new model, we have extended the Antici-

pative Kinodynamic Planner for the side-by-side forma-

tion in complex environments, allowing not only to be

applied to one robot and one person, but also to many

robot and many persons.

Secondly, the model for how a robot approaches an-

other person, and interacts with both, is also based on

the SFM (Social Force Model) and in the results of the

previous accompaniment method, but now we have in-

troduced a dynamic destination goal and adapted to

our necessities the triangle formation for the approach-

ing of the group to the target person.

In these two new results, we have make extensive use

of dynamic virtual destinations in the attractive forces,

which we already introduced in our previous work. It is

important to comment that this dynamic virtual des-

tination open the door and extend the ESFM to new

types of interactions among robots and humans.

Finally, we have created a database of peoples tra-

jectories that can be accessed and used by other re-

searchers. Using this database we obtain the interaction

parameters for the robot and the companion person.

The results of the real life experiments shows that a

social robot is able to successfully accomplish the com-

panion, approaching and final positioning tasks. The
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method was extensively and rigorously tested in a real-

life environments in Barcelona, with non-trained vol-

unteers. Our user study showed that the method was

generally acceptable to laypeople with no expertise in

the subject.

In order to continue the work presented in this pa-

per, we plan to develop new techniques to customise the

robot’s accompaniment task, and adjust its approach

in accordance with human preferences. This entails al-

lowing the robot to learn different values for the dis-

tance/velocity of different people with diverse person-

alities or skill sets, during the accompanying task. Us-

ing this knowledge, the robot could recognise the kind

of person interacting with it, and adjust its behaviour

in accordance with his or her preferences. By enabling

this level of customisation, we aim to respond to some

of the problems we encountered during the user study,

wherein different kinds of people favoured different dis-

tances or speeds while interacting with the robot.
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