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a b s t r a c t

In this paper, we study robust invariant set characterizations of discrete-time descriptor systems
and propose an active mode detection mechanism for discrete-time descriptor systems considering
multiple modes of operation. The considered class of descriptor systems assumes regularity, stability
and is affected by unknown-but-bounded disturbances. As a first theoretical result, we establish a
general framework for robust invariant sets for discrete-time descriptor systems in both causal and
non-causal cases. Particular transformations are subsequently proposed for handling causal and non-
causal descriptor systems and will be used to characterize the effects of disturbances. Based on these
set-theoretic notions and a designed input signal for active set separations, we propose an active mode
detection mechanism by exploiting the strong invariance properties.

1. Introduction

Set-invariance theory has played an essential role in automatic
control with a variety of applications to control systems, since
it is widely used for guaranteeing the stability and achieving
desired performance (Blanchini, 1999; Kolmanovsky & Gilbert,
1998). For systems affected by disturbances, different techniques
in set-invariance theory are used for the computation of robust
invariant (RI) sets. These techniques have been applied to linear
dynamical systems (Raković, Kerrigan, Kouramas, & Mayne, 2005),
linear parameter-varying systems (Seron & De Doná, 2015), and
nonlinear systems (Alamo, Cepeda, Fiacchini, & Camacho, 2009).
In particular, ultimate boundedness methods are used to com-
pute RI sets with relative low complexity (Kofman, Haimovich,
& Seron, 2007; Olaru, De Doná, Seron, & Stoican, 2010). Fur-
thermore, set-invariance characterizations are instrumental for

✩ The material in this paper was partially presented at the 56th IEEE Con-
ference on Decision and Control, December 12–15, 2017, Melbourne, Australia.
This paper was recommended for publication in revised form by Associate Editor
Denis Arzelier under the direction of Editor Richard Middleton.

∗ Corresponding author at: College of Automation, Harbin Engineering
University, No. 145 Nantong Street, Nangang District, 150001 Harbin, P.R. China.

E-mail addresses: yewang@hrbeu.edu.cn (Y. Wang),
sorin.olaru@l2s.centralesupelec.fr (S. Olaru),
giorgio.valmorbida@l2s.centralesupelec.fr (G. Valmorbida), vicenc.puig@upc.edu
(V. Puig), gabriela.cembrano@upc.edu (G. Cembrano).

control strategies, such as fault detection and isolation (Blanchini,
Casagrande, Giordano, Miani, Olaru, & Reppa, 2017; Xu, Puig,
Ocampo-Martinez, Stoican, & Olaru, 2014), fault-tolerant con-
trol (Olaru et al., 2010; Seron, De Doná, & Olaru, 2012; Stoican &
Olaru, 2013) and robust model predictive control (Mayne, Seron,
& Raković, 2005). A remarkable application of RI sets is on mode
detection of systems subject to multiple modes of operation.
Indeed, since different operating modes lead to different RI sets,
the distance between these sets can be used for monitoring and
mode detection. Due to the fact that the RI sets of different modes
may overlap, an additive input signal can be conveniently de-
signed to separate a parametrization of the RI sets, represented by
tubes of trajectories. In this case, the set-theoretic mode detection
mechanism is called active. In the literature, this mechanism is
also called active fault diagnosis (Raimondo, Marseglia, Braatz, &
Scott, 2016). A set of additive inputs are designed to guarantee
fault diagnosis outputs that are only consistent with one faulty
scenario. These additive inputs can be obtained from the solution
to a mixed-integer quadratic program or using a multi-parametric
approach (Marseglia & Raimondo, 2017).

The above described methods have been proposed for stan-
dard dynamical systems modeled only with differential/
difference equations. Due to mass, volume or energy conservation
laws, difference equations describing a dynamical system can be
coupled with a set of algebraic equations. This class of systems
described by differential/difference and algebraic equations is

https://doi.org/10.1016/j.automatica.2019.05.053
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2019.05.053&domain=pdf
mailto:yewang@hrbeu.edu.cn
mailto:sorin.olaru@l2s.centralesupelec.fr
mailto:giorgio.valmorbida@l2s.centralesupelec.fr
mailto:vicenc.puig@upc.edu
mailto:gabriela.cembrano@upc.edu
https://doi.org/10.1016/j.automatica.2019.05.053


called descriptor, singular, or differential/difference-algebraic sys-
tems (Dai, 1989; Duan, 2010). For this class of systems, set-
invariance characterizations as well as their mode detection are
still not widely developed. Instances of such systems can be found
in water distribution networks (Wang, Puig & Cembrano, 2017),
chemical processes (Biegler, Campbell, & Mehrmann, 2012), elec-
trical circuits (Riaza, 2008) and economic models (Dai, 1989).
From a theoretical point of view, descriptor systems satisfying
a well-posed property, for which a solution exists and is unique,
are called regular (Dai, 1989; Oară & Andrei, 2013). Regularity,
however, does not imply causality and models of interest in
economy are non-causal, see e.g. the Leontief model (Dai, 1989).
In terms of a control system, stability (Halanay & Rasvan, 2000)
is an important property for the analysis of boundedness and
convergence of the closed-loop trajectory. In particular, in terms
of descriptor systems, admissibility guarantees the properties of
regularity, causality and stability. The present paper aims to
revisit all these properties of descriptor systems and exploit the
underlying structural properties in a set-theoretic framework.

Systems modeled in a descriptor framework can be affected
by uncertainties, such as modeling errors and disturbances. Also,
faults from actuator and sensor malfunctions may change the
dynamics and constraints of the system and therefore the system
can evolve or switch to different modes of operation. For instance,
in cyber–physical systems, the system model can be changed by
faults of different nature, such as process/system faults, actuator
and sensor faults, as well as communication faults. Thus, a suit-
able mode detection mechanism is required to identify whether
the actual cyber–physical system matches with the prediction by
checking the feedback information.

The main contribution of this paper is to present a general
framework for set-invariance characterization of discrete-time
descriptor systems as well as an application to active mode detec-
tion. The proposed computation of invariant sets relies on parti-
tioning the state space for both causal and non-causal descriptor
systems under standard notations. Besides, we propose an ac-
tive mode detection mechanism based on positive set-invariance
characterizations for discrete-time descriptor systems.

The preliminary results presented in this paper have been
reported in Wang, Olaru, Valmorbida, Puig and Cembrano (2017).
Additional improvements and new contribution are summarized
as follows:

• (A detailed review of definitions and properties of discrete-time
descriptor systems) These properties prove to be useful for
the computation of RI sets.

• (A general framework for set-invariance characterizations of
discrete-time descriptor systems) This framework completes
the preliminary results in Wang, Olaru et al. (2017). In ad-
dition, the convergence time for each RI set and the results
of checking the compatible initial states are provided.

• (A novel active mode detection mechanism) The strong in-
variance properties for detecting mode of operation are
formulated.

2. Background and preliminaries

2.1. Discrete-time descriptor systems

Consider the discrete-time linear time-invariant (LTI) descrip-
tor system with additive disturbances

Ex(k + 1) = Ax(k) + Bww(k), (1)

where x ∈ Rn and w ∈ Rq denote the state vector and the
disturbance vector, respectively, k ∈ N. A ∈ Rn×n, Bw ∈ Rn×q

and E ∈ Rn×n with rank(E) = r ≤ n.

Definition 1 (Regularity). A descriptor system (1) is said to be
regular if it has a unique solution defined as an application x :

N → Rn which satisfies (1) for any disturbance realization w :

N → Rq and a compatible initial state x(0).

From the above definition, if the system (1) is regular, then it
has a unique solution for the disturbance-free case (w ≡ 0). We
also say the matrix pair (E, A) is regular.

Definition 2 (Causality). A regular descriptor system (1) is said to
be causal if x(k), ∀k ∈ N is determined completely by the initial
condition x(0) and w(j), for j = 0, . . . , k. Otherwise, it is said to
be non-causal.

Definition 3 (Asymptotic Stability). A regular descriptor system (1)
is said to be asymptotically stable for the disturbances-free case
(w ≡ 0) if limk→∞ x(k) = 0.

Definition 4 (Admissibility). A descriptor system (1) for the
disturbances-free case (w ≡ 0) is said to be admissible if it is
regular, causal and asymptotically stable.

Lemma 1 (Dai, 1989). For the matrix pair (E, A) of the descriptor
system (1), the following properties hold

• (Regularity) the pair (E, A) is regular if det(zE − A) is not
identically zero.

• (Causality) the pair (E, A) is causal if deg(det(zE − A)) =

rank(E).
• (Asymptotic stability) the pair (E, A) is asymptotically sta-

ble if |ν| < 1, ∀ν ∈ λ (E, A), where λ (E, A) denotes the
generalized eigenvalues of E and A.

In the following, admissibility is not part of the assumption,
i.e. the study concerns both causal and non-causal descriptor
systems.

Assumption 1. The descriptor system (1) (the matrix pair (E, A))
is regular and asymptotically stable in the disturbance-free case
(w ≡ 0).

We now establish suitable transformations that decompose
the descriptor system (1) into subsystems for set-invariance char-
acterizations and active mode detection.

Definition 5 (Equivalence of Descriptor Systems). Consider two
descriptor systems respectively defined by the triplets (E, A, Bw)
and (Ẽ, Ã, B̃w). If there exists a pair of non-singular matrices Q ∈

Rn×n and P ∈ Rn×n satisfying QEP = Ẽ, QAP = Ã, QBw = B̃w ,
then these two systems are called restricted equivalent under the
transformation (Q , P).

For the descriptor system (1), we now present two stan-
dard restricted equivalent forms that are of interest (Duan, 2010,
Chapter 2).

Consider the descriptor system (1) with rank(E) = r . There
always exists a transformation (Q , P) yielding

QEP =

[
Ir 0
0 0

]
,QAP =

[
A1 A2
A3 A4

]
,QBw =

[
Bw1
Bw2

]
, (2)

with A1 ∈ Rr×r , A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×r , A4 ∈ R(n−r)×(n−r),
Bw1 ∈ Rr×q and Bw2 ∈ R(n−r)×q.

Lemma 2 (Dynamics Decomposition Form (Duan, 2010)). The de-
scriptor system (1) is causal if and only if there exists a transforma-
tion (Q , P) yielding (2) with a non-singular block matrix A4.



Based on the above lemma, an equivalent causal descrip-
tor system in a standard dynamical form is presented in the
following.

Lemma 3 (Equivalent Causal Descriptor System). A causal descriptor
system (1) with rank(E) = r can be transformed into the following
form

x̃(k + 1) = Ãx̃(k) + B̃ww̃(k), (3)

where

Ã =

[
A1 − A2A−1

4 A3 0
−A−1

4 A3
(
A1 − A2A−1

4 A3
)

0

]
, (4a)

B̃w =

[
Bw1 − A2A−1

4 Bw2 0
−A−1

4 A3
(
Bw1 − A2A−1

4 Bw2
)

−A−1
4 Bw2

]
. (4b)

and A1, A2, A3, A4, Bw1, Bw2 are defined in (2) and

x̃(k) =

[
x̃1(k)
x̃2(k)

]
= P−1x(k), w̃(k) =

[
w(k)

w(k + 1)

]
, (5)

with x̃1(k) ∈ Rr , x̃2(k) ∈ R(n−r).

Proof. See the proof of Wang, Olaru et al. (2017, Lemma 3). □

Remark 1. In Lemma 3, w(k + 1) only appears in the algebraic
equation of the descriptor system (1), which is used to compute
x̃2(k + 1).

The regular descriptor system (1) also allows the transforma-
tion in the so-called Kronecker canonical form.

Lemma 4 (Kronecker Canonical Form (Dai, 1989)). The descriptor
system (1) is regular if and only if there exists a transformation
(Q̄ , P̄) yielding

Q̄ EP̄ =

[
Ip 0
0 N̄

]
, Q̄ AP̄ =

[
Ā 0
0 I

]
, Q̄ Bw =

[
B̄w1

B̄w2

]
, (6)

with Ā ∈ Rp×p, B̄w1 ∈ Rp×q, B̄w2 ∈ R(n−p)×q. Moreover, N̄ ∈

R(n−p)×(n−p) is a nilpotent matrix (that is there exists a scalar s > 0
such that N̄ s

= 0 and N̄ s−1
̸= 0, s ≤ n − p) and p ≤ r = rank(E).

Computationally efficient and numerically stable methods ex-
ist to obtain these transformations as reported in Gerdin (2004)
and Varga (2017).

Lemma 5 (Causality (Dai, 1989)). The descriptor system (1) trans-
formed in the Kronecker canonical form (6) is causal if and only
if N̄ = 0.

2.2. Background of set-invariance theory

We now introduce set-theoretic notions for discrete-time de-
scriptor systems. For a regular and stable descriptor system (1),
we consider that the additive disturbances are unknown but
bounded in a known set

w(k) ∈ W =
{
w ∈ Rq

: |w| ≤ w
}
, ∀k ∈ N, (7)

with w ∈ Rq and elementwise inequality.
As a consequence of boundedness of the disturbances and

the stability of the dynamics, the system trajectories eventually
converge to a bounded region of the state space (Kolmanovsky
& Gilbert, 1998) for the forward trajectories. Given an initial
state x(0) and the unique solution to (1) (note that the discrete-
time domain of the solution may include negative values for
backward propagations), the following definitions are introduced
in terms of the set-theoretic analysis.

Definition 6 (RI Set). A set Ω ∈ Rn is said to be robust invariant
(RI) with respect to the system (1) if x(0) ∈ Ω implies x(k) ∈ Ω ,
∀w(k) ∈ W and ∀k ∈ Z.

Definition 7 (RPI Set). A set Ω ∈ Rn is said to be robust positively
invariant (RPI) with respect to the system (1) if x(0) ∈ Ω

implies x(k) ∈ Ω , ∀w(k) ∈ W and ∀k ∈ N.

Definition 8 (mRPI Set). An RPI set Ω∞ ∈ Rn is said to be minimal
RPI (mRPI) with respect to the system (1) if it is contained in every
closed RPI set.

Definition 9 (L-steps RNI Set). A set Ω ∈ Rn is L-steps robust
negatively invariant (RNI) with respect to the system (1) if x(L) ∈

Ω implies x(L + k) ∈ Ω , ∀w(k) ∈ W and ∀k ∈ Z[−L,0].

3. Robust invariant set characterizations of discrete-time de-
scriptor systems

In this section, we formulate explicit expressions of several
RI sets and approximations of minimal RI sets for discrete-time
descriptor systems in both causal and non-causal cases. Further-
more, the convergence time for each RI set is provided.

For an admissible descriptor system (1), the set analysis will
be performed using the dynamics decomposition form. From
Lemma 3, there exists a transformation (Q , P) leading to (2)
and (3)–(5). We consider a partition of the matrix P as P =

[P1, P2] with P1 ∈ Rn×r and P2 ∈ Rn×(n−r). The structure of the
mRPI set of the admissible descriptor system (1) is characterized
in the following theorem.1

Theorem 1 (mRPI Set of Admissible Descriptor Systems). Consider an
admissible descriptor system (1) with the dynamics decomposition
form in (2) and w(k) ∈ W , ∀k ∈ N. The mRPI set Ωc is given by
Ωc

= P1Φ1 ⊕ P2Φ2, where

Φ1 =

∞⨁
i=0

Ã1B̃w1W, (8a)

Φ2 =
(
−A−1

4 A3Φ1
)
⊕

(
−A−1

4 Bw2W
)
, (8b)

with Ã1 = A1 − A2A−1
4 A3 and B̃w1 = Bw1 − A2A−1

4 Bw2.

Proof. With the transformation (Q , P), the descriptor system (1)
is equivalent to a dynamical system including two subsystems as
in (4). On the one hand, from (4) we have

x̃1(k + 1) = Ã1x̃1(k) + B̃w1w(k). (9)

The admissibility of (1) implies the matrix Ã1 is Schur. Then,
the characterization of the mRPI set for x̃1 can be obtained as
in (8a) using the standard LTI notions (Kolmanovsky & Gilbert,
1998). On the other hand, from (2) we obtain x̃2(k) = −A−1

4 A3x̃1
(k)−A−1

4 Bw2w(k), which is an algebraic equation. Thus, we obtain
the mRPI set Φ2 by a linear projection image of the set Φ1 in (8a),
which leads to (8b). By definition in (5) and using the Minkowski
addition of the sets obtained via the linear mapping defined by
the matrices P1 and P2, we can determine the mRPI set Ωc

=

P1Φ1 ⊕ P2Φ2. □

Remark 2. For invariant approximations of the mRPI set Ωc in
Theorem 1, several approaches can be applied to the LTI part of
the dynamics leading to an approximation of Φ1 (see e.g. Olaru
et al., 2010; Raković et al., 2005) while the approximation of
Φ2 is a projection involving the approximation of Φ1 and W .

1 The Minkowski sum is denoted by ⊕.



Furthermore, by applying the iterative approximation approach
in Olaru et al. (2010), arbitrarily close approximations can be
obtained Ωc

0 ⊇ · · · ⊇ Ωc .

Based on the above results, we present a practical condition of
the compatibility check for any initial state x(0).

Corollary 1. Consider an initial state x(0) for the admissible
descriptor system (1) in (3)–(5). If

x̃2(0) /∈
(
−A−1

4 A3ζ
∗Φ1

)
⊕

(
−A−1

4 Bw2W
)
, (10)

where x(0) = P1x̃1(0) + P2x̃2(0) and ζ ∗
= min{ζ ∈ R : x̃1(0) ∈

ζΦ1}, then x(0) is not a compatible initial state for (1) and it is
independent of any disturbance realization w(0) ∈ W .

Proof. Based on the mRPI set Ωc , if x(0) is compatible, then
it holds x̃2(0) ∈ Φ2, ∀w(0) ∈ W . On the other hand, for a
scalar ζ ∗, if the condition (10) does not hold, then x(0) is not
compatible. Note that the set in (10) is not an RPI set but it
represents a constraint for the descriptor part of states whenever
this constraint is violated, leading to the incompatibility of the
algebraic equations. □

Remark 3. By Definition 6 and its characterization in Theorem 1,
the consistency in terms of initial state x(0) with the descriptor
model (1) can be tested. In presence of the disturbance w(0) ∈ W ,
x(0) may not be a compatible initial state. This shows that x(0)
should be understood as an implicit function of w(0), i.e. x(w(0)),
by means of the solution of algebraic equations.

To complete the study of admissible descriptor systems, the
computation result of the convergence time for discrete-time
admissible descriptor systems is provided based on the result
in Seron et al. (2012, Appendix A). This is equivalent to an upper
bound for the total number of steps necessary for the system
trajectories to reach the set Ωc from a given initial state.

Theorem 2 (Convergence Time for Admissible Descriptor Systems).
Consider an admissible descriptor system (1), w(k) ∈ W , ∀k ∈ N
and an approximation of Ωc

0 ⊇ Ωc with Ωc
0 = P1Φ̂1,0 ⊕ P2Φ2.

For a compatible initial state x(0), the system trajectory x(k) belongs
to Ωc

0 , that is, x̃1(k) defined in (5) belongs to Φ̂1,0, for k ≥ Tca ,
where Tca is the convergence time corresponding to (1) and depends
on x(0) and ε̃.

Proof. Based on Lemma 3, x̃2(k) has no dynamics and is a linear
mapping of x̃1(k) and w(k). By directly applying the result in Seron
et al. (2012, Appendix A) to x̃1(k) with its dynamics x̃1(k + 1) =

Ã1x̃1(k) + B̃w1w(k), we can obtain the convergence time Tca . □

In case that the descriptor system (1) is regular and stable but
not causal, there might exist a unique solution at each time (Dai,
1989). We now consider a non-causal and stable descriptor sys-
tem (1) and use the Kronecker canonical form in (6) for the RPI
characterization.

From Lemma 4, a non-causal descriptor system (1) can be
transformed in (6) with a nilpotent matrix N̄ satisfying N̄ ̸= 0.
As introduced in Dai (1989, Chapter 8), for a regular matrix pair
(E, A), there exists a suitable transformation (Q̄ , P̄) with P̄ =[
P̄1 P̄2

]
, P̄1 ∈ Rn×p, P̄2 ∈ Rn×(n−p) yielding to (6).

For the transformed system in the Kronecker form, we use the
following partitioning form

x̄(k) =

[
x̄1(k)
x̄2(k)

]
= P̄−1x(k), Q̄ Bw =

[
B̄w1

B̄w2

]
, (11)

with x̄1(k) ∈ Rp, x̄2(k) ∈ R(n−p).

Based on the Kronecker canonical form in Lemma 4, we have
that

x̄1(k + 1) = Āx̄1(k) + B̄w1w(k), (12a)

N̄ x̄2(k + 1) = x̄2(k) + B̄w2w(k). (12b)

The structure in (12) highlights the fact that the non-causal
descriptor system (1) is stable if and only if the matrix Ā is Schur.
We now formulate the mRPI set of discrete-time non-causal
descriptor systems.

Theorem 3 (mRPI Set of Non-causal Descriptor Systems). Consider
a non-causal descriptor system (1) with the Kronecker canonical
form in (6) and w(k) ∈ W , ∀k ∈ N. The mRPI set Ωn is given by
Ωn

= P̄1Θ1 ⊕ P̄2Θ2, where

Θ1 =

∞⨁
i=0

ĀiB̄w1W, (13a)

Θ2 =

n−p−1⨁
i=0

(
−N̄ iB̄w2W

)
. (13b)

Proof. The non-causal descriptor system can be decomposed in
two subsystems, where (12a) is an ordinary difference equation.
Hence, the mRPI set of x̄1 can be constructed as in (13a). On
the other hand, from (12b), the anti-causal state x̄2(k) can be
propagated as follows: x̄2(k) = N̄ x̄2(k+ 1)− B̄w2w(k), x̄2(k+ 1) =

N̄ x̄2(k+2)− B̄w2w(k+1), and after the (n−p)-step iterations, we
can obtain

x̄2(k) = N̄ (n−p)x̄2(k + n − p) −

n−p−1∑
i=0

N̄ iB̄w2w(k + i). (14)

Since N̄ is a nilpotent matrix with N̄n−p
= 0, we know that

for k > n − p, N̄k
= 0. Therefore, (14) becomes x̄2(k) =

−
∑n−p−1

i=0 N̄ iB̄w2w(k + i). With w(k) ∈ W , ∀k ∈ N, the set for x̄2
can be computed by Θ2 =

⨁n−p−1
i=0

(
−N̄ iB̄w2W

)
=

(
−B̄w2W

)
⊕(

−N̄B̄w2W
)
⊕· · ·⊕

(
−N̄n−p−1B̄w2W

)
. Finally, we derive the mRPI

set Ωn
= P̄1Θ1 ⊕ P̄2Θ2. □

Remark 4. Theorem 3 builds on the assumption that the time
domain of solution to the system (1) is N. The existence of this
infinite-time trajectory leads to a positive invariance property
although the system is not causal. Theorem 3 should be reconsid-
ered in case that the trajectories are defined only for a finite-time
window.

For a non-causal descriptor system (1), we also present the re-
sults of the compatibility check for any initial state x(0) and con-
vergence time. The proofs are similar to the ones of Corollary 1
and Theorem 2.

Corollary 2. Consider an initial state x(0) of a non-causal descriptor
system (1). If x̄2(0) /∈ Θ2 where x(0) = P̄1x̄1(0)+P̄2x̄2(0), then x(0) is
compatible for (1) irrespective of any disturbance realization w(0) ∈

W .

Theorem 4 (Convergence Time for Non-causal Descriptor Systems).
Consider a non-causal descriptor system (1) affected by disturbances
w(k) ∈ W , ∀k ∈ N and let the set Ωn

0 ⊇ Ωn with Ωn
0 = P1Θ̂1,0 ⊕

P2Θ2. For a compatible initial state x(0), the system trajectory x(k)
converges to Ωn

0 in Tcn iterations, that is, x̄1(k) defined in (11)
belongs to Θ̂1,0, for k ≥ T cn , where T cn is the convergence time
corresponding to (1) and depends on x(0) and ε̄.



As an extension for a non-causal descriptor system (1), we
now focus on trajectories defined only on a finite-time window,
that is x(k), k ∈ Z[0,L] with L > 0. The dynamics of a non-causal
descriptor system (1) obey the equivalent subsystems in (12) but
the set-invariance characterization needs to be relaxed in order
to consider the finite number of dynamical constraints as well
as the structural particularities (algebraic equations) related to
anti-causality.

The difficulties are related to a combination of causal and
anti-causal dynamics in (12a) and (12b). For (12a), the positive
invariance will be the appropriate concept while for (12b), the
negative invariance offers the suitable framework in a predefined
finite-time window L.

Theorem 5 (L-steps RNI Set). Consider the anti-causal subsys-
tem (12b). A set Υ is L-steps RNI if

Υ ⊇ N̄Υ ⊕
{
−B̄w2W

}
⊇ · · · ⊇ N̄LΥ

L−1⨁
i=0

{
−N̄ iB̄w2W

}
. (15)

Proof. From (12b), we have x̄2(k) = N̄ x̄2(k + 1) − B̄w2w(k).
For a finite time window L > 0, x̄2(L) ∈ Υ . By the backward
propagations of x̄2(k + L) ∈ Υ for any k ∈ Z[−L,0], we can
derive (15). □

Corollary 3. Given L1- and L2-step RNI sets Υ1 and Υ2 with L1 ≥

L2 ≥ n − p satisfying Υ1 ⊇ Υ2, then N̄ lΥ1
⨁l−1

i=0

{
−N̄ iB̄w2W

}
⊇

N̄ lΥ2
⨁l−1

i=0

{
−N̄ iB̄w2W

}
, ∀l ≥ 0.

Proof. The relationship (15) holds for l = 0 as Υ1 ⊇ Υ2.
Suppose N̄ lΥ1

⨁l−1
i=0

{
−N̄ iB̄w2W

}
⊇ N̄ lΥ2

⨁l−1
i=0

{
−N̄ iB̄w2W

}
holds

for some l ≥ 0. Then, by pre-multiplying with N̄ and Minkowski
summing the set

{
−B̄w2W

}
on both sides, we obtain N̄ l+1Υ1

⨁l
i=0{

−N̄ iB̄w2W
}

⊇ N̄ l+1Υ2
⨁l

i=0

{
−N̄ iB̄w2W

}
. The proof is completed

by induction. □

Remark 5. The set Θ2 in (13b) is L-steps RNI with respect
to (12b), ∀L > 0.

Remark 6. Consider the set Θ2 as in (13b). An L-steps RNI set
with respect to (12b) can be constructed iteratively starting from
Υ0 = Θ2 and for i ∈ Z[1,L], the recursive construction is given by

Υi =
{
x ∈ X2 : ∃w ∈ W, N̄x − B̄w2w ∈ Υi−1

}
, (16)

and X2 ⊆ R(n−p) is a pre-defined set of state constraints for x̄2.

Theorem 6 (L-steps RNI Set of Non-causal Descriptor Systems).
Consider a non-causal descriptor system (1) in with the Kronecker
form in (6). The set

Ω = P̄1Θ1 ⊕ P̄2Υ , (17)

guarantees that x(k) ∈ Ω , ∀k ∈ Z[0,L] if x̄1(0) ∈ Θ1 and x̄2(L) ∈ Υ .

Proof. From (13a), the set Θ1 is RPI for the dynamics of x̄1(k). If
x̄1(0) ∈ Θ1, then it follows x̄1(k) ∈ Θ1, ∀k ∈ Z[0,L]. Meanwhile,
the set Υ is L-steps RNI for x̄2(k) as discussed in Theorem 5. If
x̄2(L) ∈ Υ , then it follows x̄2(k) ∈ Υ , ∀k ∈ Z[0,L]. Thus, we
obtain Ω by a linear mapping of Θ1 and Υ as in (17). □

Proposition 1. Consider a non-causal descriptor system (1) in the
restricted equivalent form (6) and define a finite-time trajectory x(k)
for k ∈ Z[0,L] with L > 0. If x(0) ∈ Ω0 for L > s = n−p with N̄ s

= 0
and N̄ s−1

̸= 0, then x(k) ∈ Ω0 for k ∈ Z[0,L−s] and x(k) ∈ Ωk−(L−s)
for k ∈ Z[L−s,L], where Ωi = P̄1Θ1 ⊕ P̄2Υi with Υi in (16).

Proof. For k ∈ Z[0,L−s], from (14), x(k) is contained in the RI
set Ω0 = Θ2 as defined in (17). On the other hand, for k ∈

Z[L−s,L], the anti-causal component is contained in Υi, which can
be propagated by using (16) leading to the confinement of the
finite time trajectories for L − s < k < L. □

4. Active mode detection for discrete-time descriptor systems

In this section, we propose an active mode detection mech-
anism based on the RPI set characterizations for systems with
multiple modes of operation and no switch between different
modes. The objective is the identification of the current operating
mode in a finite time with any initial state x(0). This operating
mode will be detected from a (finite) predefined set of modes of
operation. The algorithmic procedure is able to detect the current
operating mode based on the offline design of active detection
input and online monitoring.

4.1. Problem formulation

Consider a family of discrete-time descriptor systems corre-
sponding to multiple modes of operation as

Eσ x(k + 1) = Aσ x(k) + Bσu(k) + Bσ
ww(k), (18)

where Eσ
∈ Rn×n with rank(Eσ ) ≤ n, Aσ

∈ Rn×n, Bσ
∈ Rn×m,

Bσ
w ∈ Rn×q, and σ ∈ Σd = {1, . . . , d} denotes the constant mode

index and u(k) ∈ Rm denotes an additive input vector at time
instant k. It is assumed that the descriptor system (18) is regular
and stable for any σ ∈ Σd, then it follows that matrices (Eσ

− Aσ )
are non-singular.

In order to check the compatibility of any state x(k), based
on the Kronecker canonical form in Lemma 4, let us denote the
partitioning form x = [x⊤

1 x⊤

2 ]
⊤, where x1 ∈ Rp is the dynamical

part corresponding to the dynamics (12a) and x2 ∈ R(n−p) is
the algebraic part corresponding to the algebraic equation (12b).
Based on this notation, we also denote Bσ

= [Bσ
1

⊤ Bσ
2

⊤
]
⊤

and Bσ
w = [Bσ

w1
⊤ Bσ

w2
⊤
]
⊤.

Let us also denote the transformation
(
Q̄ i, P̄ i

)
for the descrip-

tor system (18) at mode i ∈ Σd such that Q̄ iE iP̄ i and Q̄ iAiP̄ i

satisfy the Kronecker canonical form in (6). From the RPI set
characterizations in Section 3, the RPI set P̃ i composed of P̃ i

=

P̄ i
1Φ

i
1 ⊕ P̄ i

2Φ
i
2 with P̄ i

= [P̄ i
1 P̄ i

2].

Theorem 7. A state x(k) = [x1(k)⊤ x2(k)⊤]
⊤ is compatible with

respect to the descriptor system (18) in an operating mode i ∈ Σd
only if x2(k) satisfies

x2(k) ∈ P̄ i
2Φ

i
2. (19)

Proof. Based on the Kronecker canonical form in (6), with
the transformation

(
Q̄ i, P̄ i

)
in mode i ∈ Σd, for a compatible

state x(k), the corresponding algebraic equation (12b) should be
satisfied. Thus, the condition (19) could be used for checking the
operating mode i ∈ Σd. □

Based on the above theorem, we state the following corollary
without proof.

Corollary 4. For an initial state x(0) =
[
x1(0)⊤ x2(0)⊤

]⊤, if x2(0) ̸∈

P̄ i
2Φ

i
2, then the initial operating mode set Σd(0) = Σd \ {i}.

The objective of the mode detection is to decide which mode
σ ∈ Σd is active in (18) by monitoring the current state x(k) and
without prior knowledge on w(k) ∈ W . The initial state x(0) is
assumed to be known and we make use of the RPI sets of (18) of
each mode σ ∈ Σd as P̃σ when u ≡ 0. For a state x(k) of (18),



Fig. 1. A passive mode detection example . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

∀k ∈ N, in the mode i ∈ Σd, we split x(k) = x̄i(k) + x̃i(k) with the
nominal and perturbed dynamics

E ix̄i(k + 1) = Aix̄i(k), (20a)

E ix̃i(k + 1) = Aix̃i(k) + Bi
ww(k), (20b)

where x̄i ∈ Rn and x̃i ∈ Rn.
The basic passive mode detection mechanism (u ≡ 0) can be

summarized as follows:

Proposition 2. Consider the compatible initial state x(0) = x̄i(0)+
x̃i(0) satisfying x(0) − x̄i(0) ∈ P̃ i, and let the set of viable modes
be initialized as Σ(0) = Σd. Given the state measured at time k,
if x(k) /∈

{
x̄i(k) ⊕ P̃ i

}
, then the mode i is not the current operating

mode, that is, Σ(k) = Σ(k) \ {i}.

Proof. The error dynamics x̃i(k) = x(k) − x̄i(k) satisfy (20b) and
the initialization ensures x̃i(k) ∈ P̃ i. If the system (18) is operating
in mode i, then the positive invariance of P̃ i is guaranteed
using (20b). Whenever x(k) /∈

{
x̄i(k) ⊕ P̃ i

}
, the positive invariance

is violated and the mode i cannot represent the current operating
mode. □

Remark 7. Assuming Σd(k) = Σd(k − 1) \ {i}, ∀i ∈ Σd
such that x(k) − x̄i(k) ̸∈ P̃ i, then Card (Σd(k)) is monotonically
decreasing as time k increases. However, one cannot guarantee
Card (Σd(k)) → 1.

Example. Consider three modes of operation in (18). As shown
in Fig. 1, from an initial state x(0), the mode shown in blue sets
is detected after several steps. As time k increases, the modes
in red and green sets are discarded. Note that the system state
trajectory x(k) may always stay in the intersection of three sets
during propagations. Thus, we cannot discard any mode.

This passive mode detection does not guarantee the mode
identifiability regardless of the initial conditions. Indeed,

⋂
σ∈Σd

P̃σ
̸= ∅ and thus there exists at least a realization w(k), ∀k ∈ N,

which does not allow to decrease the cardinality of Σd(k) and
eventually identify the current mode of operation. The active
mode detection is intended to enhance the monitoring process
by the injection of an excitation signal.

4.2. Design of active detection input

For any two different modes i, j ∈ Σd, the active detection
input denoted by u(k) is designed to guarantee P i(k) ∩ P j(k) =

∅ for some k ∈ N, where P i(k) and P j(k) denote the tube of

trajectories parameterized by u(k). From (18), the system (18) in
modes i and j can be formulated as

E ix(k + 1) = Aix(k) + Biu(k) + Bi
ww(k), (21a)

E jx(k + 1) = Ajx(k) + Bju(k) + Bj
ww(k). (21b)

Recall that for u(k) = 0 in (21), it follows P i(k) = P̃ i

and P j(k) = P̃ j.
Similar to (20), assuming the system (18) in mode i ∈ Σd, we

split x(k) = x̄i(k) + x̃i(k) with

E ix̄i(k + 1) = Aix̄i(k) + Biu(k), (22a)

E ix̃i(k + 1) = Aix̃i(k) + Bi
ww(k). (22b)

With an active detection input u(k), ∀k ∈ N, the state x(0)
has to be decomposed as x(0) = x̄i(0) + x̃i(0) (for instance in
mode i ∈ Σd) to satisfy the algebraic equations in the descriptor
model (18). Based on this observation, we introduce the following
proposition to check whether the initial state x(0) is compati-
ble by testing the satisfaction of algebraic equations in (18) for
different modes.

Proposition 3. Given the set of modes Σd. For any i ∈ Σd such
that rank(E i) < n, if Bi

2 ̸= 0, then ∃u(0) such that

x(0) ̸∈ P̃ i. (23)

Proof. From (22b), we know x(0) = x̄i(0) + x̃i(0) and x̃i(0) ∈ P̃ i.
Based on the nominal descriptor dynamics (22a), x̄i(0) is also
constrained by u(0) at time k = 0. If Bi

2 ̸= 0, then x̄i(0) ̸= 0.
Considering the boundedness of P̃ i and the fact that x(0) = x̄i(0)+
x̃i(0), there exists u(0) acting on x̄i(0) that satisfies (23). □

The result in Proposition 3 shows that descriptor systems
have structural advantages in view of mode detection, that is,
the algebraic equations in a descriptor systems must hold. When
an additional detection input signal is applied, by checking (23),
some modes can be discarded.

We now present the procedure to design a constant active
detection input ū ̸= 0 that can be applied to the system (18)
with a finite detection time NT as

u(k) =

{
ū, if k ≤ NT − 1,
0, otherwise.

With this constant input ū, (22) becomes

E ix̄i(k + 1) = Aix̄i(k) + Biū, (24a)

E ix̃i(k + 1) = Aix̃i(k) + Bi
ww(k). (24b)

Recall x(0) =
[
x1(0)⊤, x2(0)⊤

]⊤. The initial condition is given
by x̄i1(0) = x2(0) and x̄i2(0) satisfies (24a) with ū.

By definition of the RPI set, we denote x̃i(k + 1) ∈ P̃ i, ∀x̃i(k) ∈

P̃ i, ∀w(k) ∈ W , ∀k ∈ N. The system trajectory in mode i belongs
to the parameterized RPI set, that is, x(k) ∈ P i(k) =

{
x̄i(k) ⊕ P̃ i

}
,

with x̄i(k) obtained from (24a) and ∀w(k) ∈ W , ∀k ∈ N.
From the nominal dynamics (24a), the stability is guaranteed

when the system evolves towards the equilibrium point

x̄i
∞

=
(
E i

− Ai)−1
Biū. (25)

In the following theorem, we present the set separation con-
dition for the design of ū.

Theorem 8. For any two modes i, j ∈ Σd, the sets

P i
∞

=
{
x̄i
∞

⊕ P̃ i} , P j
∞

=
{
x̄j
∞

⊕ P̃ j} (26)



Fig. 2. Three mRPI sets and separated sets.

satisfy P i
∞

∩ P j
∞ = ∅ if and only if there exists an active detection

input ū such that(
(E i

− Ai)−1Bi
− (E j

− Aj)−1Bj
)
ū /∈ S ij. (27)

Proof. From (26), P i
∞

∩ P j
∞ = ∅ is equivalent to{

x̄i
∞

⊕ P̃ i}
∩

{
x̄j
∞

⊕ P̃ j}
= ∅. (28)

By adding −x̄∞

j to the above both sets in (28), we obtain{
x̄i
∞

⊕

(
−x̄j∞

)
⊕ P̃ i

}
∩

{
x̄j∞ ⊕

(
−x̄j∞

)
⊕ P̃ j

}
= ∅, which can be

simplified as
{(

x̄i
∞

− x̄j∞
)

⊕ P̃ i
}

∩ P̃ j
= ∅ leading to (27) based

on (25). □

Let us denote the half-space representation of the set Sij as

Sij =
{
x ∈ Rn

: Hijx ≤ bij
}
, ∀i, j ∈ Σd,

where Hij ∈ Rpij×n, bij ∈ Rpij , and pij is the total number of the
linear constraints corresponding to Sij.

Based on the set separation condition in (27), the constant
active detection input u ∈ [umin, umax] can be obtained by solving
offline the following mixed-integer optimization problem.

Problem 1 (Constant Active Detection Input).

minimize
u

u2, (29a)

subject to x̄i
∞

=
(
E i

− Ai)−1
Biu, (29b)

x̄j
∞

=
(
E j

− Aj)−1
Bju, (29c)

umin ≤ u ≤ umax, (29d)

Hij
(
x̄i
∞

− x̄j
∞

)
≥ bij − Mr∆ij + ϵr , (29e)

∆ij =
{
δ1, . . . , δpij

}
∈ {0, 1} , (29f)

pij∑
l=1

δl = pij − 1, ∀i, j ∈ Σd, i ̸= j (29g)

with an arbitrary large positive scalar Mr and an arbitrary small
positive scalar ϵr .

The optimal solution of Problem 1 defines the constant active
detection input ū = u.

Remark 8. The computational complexity of Problem 1 relies on
the total amount of decision variables that includes the vector
u ∈ Rm and the binary variables in ∆ij. The worst-case complexity
of ∆ij is 2pij , where pij is the number of linear constraints for the
set Sij.

Example. Consider the same three modes of operation in (18).
By solving Problem 1, a constant active detection input ū can be
obtained. As shown in Fig. 2, mRPI sets for three modes can be
separated by ū.

With the constant detection input obtained from solving
Problem 1, the guaranteed mode detection result is presented in
the following theorem.

Theorem 9. If ū is a feasible solution of Problem 1, then for any
initial state x(0), there exists a finite time NT (x(0)) such that the
detection Card(Σd(k)) = 1 is achieved in k ≤ NT (x(0)). Moreover,
the convergence time from x(0) to the set P i

∞
denoted as T i

c can be
computed explicitly for any i ∈ Σd. Then, the upper bound for the
detection time is

NT (x(0)) = max
i

T i
c . (30)

Proof. By the design of ū, it is guaranteed P i
∞

∩ P j
∞ = ∅ for

any two modes i, j ∈ Σd. For a given initial state x(0) compatible
with the mode i in (24), one has x(T i

c) ∈ P i
∞

independent of the
operating mode. But P i

∞
∩P j

∞ = ∅ for all i ̸= j and x
(
NT (x(0))

)
∈

P i
∞

only holds for the current operating mode. □

4.3. Active mode detection algorithm

Based on the above results, we now propose an algorithm to
achieve the mode detection by updating online the active input
according to the monitoring of the compatible modes. Overall,
this leads to a piecewise constant signal and a detection time
upper-bounded by NT (x(0)).

Offline procedure: For any Σ ⊆ Σd with Card(Σ) ≥ 2, compute
ūΣ as the solution of Problem 1.

Online procedure: Input an initial state x(0);

(i) Initialize Σd(0) = Σd;
(ii) Compute the compatible state x̄i(0) with u(0) = ūΣd(0)

and x(0);
(iii) k = 0;
(iv) while (Card(Σd(k)) > 1)

(1) for i ∈ Σd(k), if x(k) ̸∈
{
x̄i(k) ⊕ P̃ i

}
, then Σd(k) =

Σd(k) \ {i};
(2) u(k) = ūΣd(k);
(3) Update the nominal state x̄i(k + 1) by (24a);
(4) k = k + 1;

(v) Obtain Card(Σd(k)) = 1 and the operating mode is de-
tected.



Fig. 3. Active model detection with ū . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Example. By applying the above algorithm to the same example,
the simulation result is shown in Fig. 3. From an initial state x(0),
the operating mode can be detected at time k = 3 and the
system (18) is in the Mode 2 since the state trajectory only stays
in the blue set at time k = 3.

Remark 9. Active mode detection can also achieved via online
redesign of the separation signals. A receding sequence of de-
tection inputs can be designed with a given detection window
through a corresponding mixed-integer optimization structurally
similar to Problem 1. Then, online monitoring procedure can be
carried out with these time-varying detection inputs. As a result,
the operating mode can be detected within a predefined window.

5. Conclusion

In this paper, we have studied robust invariant set character-
izations of discrete-time descriptor systems in both causal and
non-causal cases. Based on two restricted equivalent forms of
descriptor systems, the explicit results on robust invariant set
characterizations are provided. Besides, we have also proposed
an active mode detection mechanism based on RPI set-invariance
characterizations for discrete-time descriptor system with multi-
ple modes of operation. Based on the separation of RPI sets of
descriptor systems, we have proposed a method to design an
active detection input and an active mode detection algorithm.
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