PEM automotive stack model with experimental validation
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1. Introduction

Dynamic models of PEM stacks are the basis to design controllers for optimizing performance, efficiency
and minimizing degradation. Fluid dynamic models of different dimensions can be found in the literature;
however, these models are rarely used to improve the control laws and strategies. This work presents a
1+1D control oriented model, distributed in the direction of the stack flow channels. The model, which is
based on first principles as described by Mangold [1], is implemented in MATLAB Simulink. Moreover, in
this work we introduce the conversion from potentiostatic to galvanostatic mode of operation, because this
is the operating mode in automotive applications. The model presented by Luna et al. [2] has similar
objectives; however, we propose an improved solution to the distribution of current along the channels in
galvanostatic, what gives an improved calculation of the distributed consumption of species in both the
anodic and cathodic semi-reactions. The model is validated using experimental data of a Powercell stack.

2. Model description
2.1 System description

The stack modelled has 335 cells and 300 cm2 of active area. The flow of reactants in the channels are in
a counterflow configuration. Since the model is aimed at automotive applications, excluding the start up,
which is potentiostatic, it uses a load control device to set the current that cirtulates through the stack, that
forces a galvanostatic mode of operation.

2.2 Model description

The model presented in this work is based on a first principles model with partial derivatives to describe
the variation of the relevant fuel cell variables along the channel’s direction (z-direction) [1]. In order to
take into account concentration gradients in the direction perpendicular to the MEA (y-direction) in the
catalyst and difusion layers, our model adds to the z-direction distribution axis a second distribution axis
in y-direction.

On the ohter hand, the model in [1] has voltage as an input and calculates the dynamics of the current as
an output (potentiostatic mode), but our automotive application requires a galvanostatic operation,
therefore, the model needs to be reversed. In [2], this change was done by including the Nernst equation
to calculate the voltage for a specific current and partial pressure of gases. However, the condition that
the voltage at the terminals is the same along the z-direction was disregarded. In section 2.3, we present
a methodology to solve the system of equations for galvanostatic operation, at the same time that the
current distribution is computed.

In the rest of this section, the most relevant model equation of a single cell are given. To obtain the stack
model, we simply extrapolate linearly to the the number of cells in the stack.

The cathodic and anodic catalyst layers have no mass storage capacity. Then, the semi-reaction at the

discretization points read as:
Equation 1: 0 = i, — %rc; 0=ny, —14

The rate of reaction in the anode and the cathode catalyst layers are given,
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The voltage drop on the catalyst layers depend on the difference between the reation rates and the flow
of protons across the membrane,
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From simple algrebraic substitution of equations in [1], it can be shown that the voltage drop on the
membrane, A ®M, depends on the water content, gradients of concentration water and protons on the
membrane, and the crurrent density,
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2.3 Solving the system of equations for galvanostatic operation

The mean current density through the stack, iy = Ali, its known because the current throguht the stack,

cell

I, is an input variable. The unkown variables are the cell voltage, U, and the distribution of the current
densities, iy ;. The cell voltage is composed of three voltage drops the cathodic, anodic and the membrane
(Equation 6). Since the total current is imposed, the current at any point of discretization is not independent
of the rest, and the system has to be solved as a whole.

An auxiliary distributed variable Q@ (Equation 7) is used. Q; represents the voltage on the discretization if
the ohmic resistance was null, and is a function of the states and the terms independent of i,.

Equation 6: U = A ®f — A & — AdM

M le
Equation7: Q; =U+4 X(AD

In Figure 1, an equivalent electrical system is presented. The electrical power of the single fuel cell P =
I; - U. The electrical branches represent the voltages of the discretizations. At any time, the current is

distributed following the system of equations. Both the resistivity of the membrane, —
- 6M —(YM

M
G and Ql are known.

sMK(A1)

QO+U

MKA2)

)

}L

Aiy, =B -

K(A)

K(Az)

—oM

i Q1 —Q;
in,2 Q1 — Qs
iz | = :
: Q1 —Qy

im,n N g

TTT T I

Figure 1: Distributed current equwalent CII’CUI’[
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Figure 2: Linear system of distributed currents

Knowing that the potential at the terminals is the same, we use the following constraint.

Equation 8: Q; — &M -2 =Q;— " twj

K(A) K(a;)’ viJ

The total current of the stack is the sum of currents from each discretization. Due to the fact that the
discretizations are of the same size, the mean of the current densities of the discretizations equal the total
current density.

Equation 9: %Z?’ﬂ iy =g

Taking into account Equation 8, Equation 6 and Equation 9 there are N equations and only the current
densities as unknown. Then, the linear system, Ai,, = B, is solved in Figure 2.
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The value of the coeficients of the matrix A represent the electrical resitivity of each discritization along the
membrane. Analyzing the structure of matrix, A, we can demonstrate that it is always solvable as long as
the conductivties are strictly positive, K(A;) > 0. Hence, the linear system is solved by iy, = A™!B.

M .
Proof: The determinant of A is (H?’zlﬁ)(ﬁ’:l K;/A\,,’) ). The value of both 6M,K(Aj) are estrictly positve

which leds to a strictly positive determinant.
Then, in order to calculate the total potential of the cell, U, we can use any discretization and add up the
terms of membrane, cathodic and anodic voltage drops using Equation 6.

3. Experimental validation

We test our model against the experimental data provided by PowerCell. Figure 3 shows the variables
measured and the simulated results. The experiment consists of changes in stoichiometry (a), relative
humidity (b), current (d) with constant outlet pressure (c) in both channels.
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Figure 3 Experimental results and input condition for the simulation
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Figure 4 Single cell voltage, experimental and simulated

The results of the simulation shown in Figure 4, confirm that the model reproduces the trends of the real
system in a multivariate scenario. The simulated voltage curve of our model estimates the experimental
voltage taking into account the behaviour of the operating conditions: relative humidity, pressure or
stoichiometry. It represents correctly both the steady-states and the transients with an error that is within
the order of tens of millivolts.

4. Conclusions

A dynamic control-oriented model of an automotive PEM stack has been modelled and experimentally
validated. The distribution of current along the z direction has been calculated solving the mathematical
problem through the inversion of a matrix.
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