
1

Real-time Adaptive Parameter Estimation for a
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Abstract—In this paper we propose real-time adaptive param-
eter estimation methods for a polymer electrolyte membrane
fuel cell (PEMFC) to facilitate the modeling and the subsequent
control synthesis. Specifically, the electrochemical model of this
fuel cell is in a nonlinearly parametric formulation. Hence,
most of existing parameter estimation techniques for PEMFC
mainly rely on the optimization approaches, requiring heavy
computational costs or even offline implementation. In compar-
ison to those methods, real-time adaptive parameter estimation
methods for nonlinearly parametric system are developed in this
paper. First, the nonlinearly parametric function is linearized
by using the Taylor series expansion. Then, adaptive parameter
estimation methods are proposed for estimating the constant or
time-varying parameters of PEMFC. Different from the well-
recognized adaptive parameter estimation methods, the proposed
adaptive laws are driven by the extracted estimation errors, so
that exponential convergence of the parameter estimation error
can be guaranteed, without using any predictors or observers.
Finally, practical experiments in a H-100 PEMFC system are
conducted, which illustrate satisfactory performances of the pre-
sented parameter estimation methods under different operation
scenarios.

Index Terms—Adaptive parameter estimation, nonlinearly
parametric system, polymer electrolyte membrane fuel cell, time-
varying parameters.

I. INTRODUCTION

FUEL cells as sustainable energy conversion devices have
already attracted considerable interests of both academia

and engineers in recent years [1]. They can directly convert
hydrogen and oxygen into water, thermal energy and electricity
through the electrochemical reaction. Based on variety of
electrolyte materials, there are different types of fuel cells,
such as solid oxide fuel cell (SOFC), polymer electrolyte
membrane fuel cell (PEMFC), and alkaline fuel cell (AFC),
etc.

Polymer electrolyte membrane fuel cells (PEMFCs) have
been recognized as one of the most promising devices for
commercial application due to their specific advantages, such
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as low operation temperature, zero pollutant emission, high
efficiency and flexible installation, etc [2]. However, PEMFCs
have not been widespread used since the stack degradation
may cause low durability and high life-cycle costs [3]. In
this respect, many studies on the modeling of PEMFCs have
been carried out for the purpose of analyzing, optimizing and
monitoring their operation performance. In brief, the models
of PEMFCs can be generally divided into three types: i) mech-
anistic models range zero-dimensional to three-dimensional
models, which are based on the material property, physical
structure and electrochemical phenomena [4]–[6]; ii) data-
driven models, which are highly dependent on experimental
data [7]; iii) semi-empirical models, which consider the com-
bination of physical and empirical models [8]. Since PEMFC
is a highly nonlinear system and some parameters are related
to the operation condition, these models mentioned above are
still difficult to accurately predict the PEMFC characteristics.
Thus, it is necessary to exploit parameter estimation methods
for PEMFC to online determine unknown model parameters
by using easily measurable input and output data.

Adaptive parameter estimation has been widely studied
during the past decades. In general, the well-known adaptive
methods are designed to handle the parameter estimation by
minimizing the observer error based on the gradient descent
algorithm [9], least square (LS) method [10], or even neural
network [11], [12], etc. However, most of these parameter
estimation methods have been developed to estimate constant
parameters only, and assuming the unknown parameters are in
the linearly parametric systems. These stringent assumptions
may not be true for fuel cell systems. In [13], recursive
least square (LS) algorithms were employed for parameter
estimation of PEMFC based on a semi-empirical model, where
the unknown time-varying parameters are assumed to be
independent of the regressor matrix. However, estimating time-
varying parameters still remains as an open problem [14].

In fact, PEMFC is a typical nonlinearly parametric system,
where some of unknown parameters, especially time-varying
parameters, are embedded in nonlinear functions. However,
only few studies have been reported on the real-time parameter
estimation of nonlinearly parametric systems. For instance, an
adaptive estimation method based on the convexity or concav-
ity parametrization and the min-max algorithm was proposed
in [15], where certain assumptions that are not true for fuel cell
plants are imposed. Hence, most of the parameter estimation
schemes for PEMFC have been designed based on intelligent
optimization techniques. In [16]–[18], genetic algorithms (GA)
were applied into curve fitting procedures to handle the
PEMFC parameter identification problem. However, genetic
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algorithms have inherent limitations in terms of searching
efficiency, i.e. premature convergence, highly correlated pa-
rameters, etc [19]. In order to avoid these degradations in GA
schemes, particle swarm optimization (PSO) was employed
to estimate PEMFC parameters based on experimental data
in [20]. Compared with traditional optimization methods and
GA approaches, the PSO can achieve better estimation results.
More recently, evolution algorithm [21] was also used to
estimate parameters based on the circuital model of PEMFC.
However, all of above mentioned optimization methods cannot
address the estimation problem online since they focus exclu-
sively on offline searching procedures, which introduce heavy
computational costs in the practical implementation and thus
cannot be used in the real-time applications.

This paper aims to exploit real-time adaptive parameter
estimation methods for a nonlinearly parametric PEMFC
system. Specifically, the Taylor series expansion is used to
extract the unknown parameters from the electrochemical
functions. Then, adaptive parameter estimation algorithms are
developed to estimate constant or time-varying parameters in
the PEMFC model, where the convergence of estimation errors
is guaranteed under the persistent excitation (PE) condition.
Comparing to other classic estimation approaches relied on the
predictor or observer errors with gradient descent algorithms,
the main feature of the proposed methods is that the adaptive
laws are driven by parameter estimation errors, which help
to guarantee fast estimation performance even for nonlinearly
parametric time-varying parameters. Experimental validations
are carried out based on a practical PEMFC plant to show
the feasibility and satisfactory performance of the proposed
estimation methods.

The remainder of this paper is organized as follows: In
Section II, the electrochemical model of PEMFC is briefly
introduced. Section III presents the proposed parameter es-
timation methods for constant and time-varying parameters.
In Section IV and Section V, the experimental setup and
comparative results are discussed. Finally, conclusions are
provided in Section VI.

II. THE MATHEMATICAL MODELS OF PEMFC

The PEMFC studied in this paper is an open-cathode fuel
cell, which has been widely used. In previous works [22], [23],
the modeling for this type of PEMFCs has been addressed.
In order to determine the parameters to be estimated, a
brief description about PEMFC operation principle and its
corresponding lumped model is introduced in this section.

A. Operation Principle

The core of a PEMFC is a polymer membrane that acts as
an electrolyte in contact with positive and negative electrodes.
Figure 1. shows the schematic diagram of a PEMFC. The
electrochemical reaction of PEMFC occurs at the interface
between the electrolyte and positive electrode. At the anode,
hydrogen as a fuel releases electrons and protons. Then protons
pass through the electrolyte layer to the cathode whereas
electrons travel through outside circuit to the cathode. They
are combined with oxygen at the cathode to produce water
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Figure 1. Schematic diagram of a PEMFC.

and heat. The electrolyte has a main function that only
allows hydrogen ions to pass. For water, it can go through
the electrolyte in both directions as a result of the pressure
difference and water concentration in both electrodes. More-
over, the conductivity of the polymer membrane is dependent
on its hydration. The resistance can be increased for lack
of hydration whereas excessive hydration can limit protons’
transport. Thus, water transport can be regarded as a key factor
to affect the PEMFC operation performance.

B. Electrochemical Model

The electrochemical model of PEMFC is used to predict the
voltage. In practice, the theoretical maximum cell potential,
Er, is larger than the actual voltage output, V . In PEMFC,
there are three major potential losses: ohmic losses, Vohm, acti-
vation losses, Vact,c, and concentration losses, Vcon, [1]. To be
specific, the ohmic loss is derived from electrons and protons
traveling from the electrodes and membrane. For the activation
loss, it occurs on the interface between the electrodes and
electrolyte which is used to drive the electrochemical reaction.
The concentration loss is an irreversible loss that happens
due to the change of reactant concentration. In this study, the
concentration loss is not considered.

Ohmic losses can be described by ohm’s law

Vohm = RohmI (1)

where I is the current; Rohm is the ohmic resistance.
The activation polarization losses happened at the cathode

can be expressed as a function of current density, that is

Vact,c =
RT

αcnF
ln

(
i

i0,c

)
(2)

where i = I/Acl is the current density; Acl denotes the
surface activation area of catalyst layer; αc is the charge
transfer coefficient; F and R are the Faraday’s constant and the
ideal gas constant, respectively; n is the number of electrons
involved in the chemical reaction; T is the stack temperature;
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i0,c denotes the exchange current density that represents the
equilibrium rate at the chemical reaction process. It is a very
sensitive value in the activation losses which heavily depends
on the electrode physical properties and operation conditions.
Considering the effect of liquid water saturation, the exchange
current density at the cathode is calculated as follows:

i0,c = γc · ECSA(s) ·
(
pO2

pref

)0.25

e
−Eca

RT

(
1− T

Tref

)
(3)

where γc is the exchange current density constant at the
ambient condition (Tref = 293 K, and pref = 1 atm);
pO2 represents the pressure of oxygen; Eca is the activation
energy for oxygen reaction at the cathode catalyst layer; The
electrochemical active surface area, ECSA, is heavily related
to the liquid water saturation, s, which is difficult to measure
in the experiments. The empirical expression of ECSA in [22]
is written as

ECSA(s) = A0(eKcs − 1) (4)

where A0 is the pre-exponential constant of electrochemical
active area; Kc is the active area reduction rate.

Based on the activation polarization and ohmic losses de-
fined in (1)-(2), the voltage balance is calculated as

V = ncell (Er − Vohm − Vact,c) (5)

where Er is the theoretical voltage; ncell represents the
number of cells in a PEMFC stack.

C. Problem Formulation

In (4), the function of the electrochemical active surface
area, ECSA, is the empirical expression that is explored in
[24]. This parameter is highly dependent on the time-varying
water saturation, s, which is very difficult to measure and
has relevant impact on the voltage of PEMFC. Moreover,
the ohmic resistance, Rohm, is considered as a constant in
some models [6]. However, the ohmic resistant is related to
the operation temperature and the water transport in practice.
Thus, the parameters to be estimated in this paper are selected
as:

θ =
[
Rohm

1
ECSA

]T
(6)

Since the parameter, ECSA, in (3) is embedded in the natural
logarithmic function of (2), we take θ2 = 1/ECSA as the
reciprocal form of parameter ECSA in (6), which avoids
the complexity in the following mathematical developments.
Hence, the equation (5) can be formulated as follows:

V = ncell [Er − Vohm(I,Rohm)− Vact,c(I, T, ECSA)]

= V (I, T, θ)
(7)

As shown in (7), the parameters to be estimated in the
electrochemical model are in a nonlinearly parametric form,
i.e. the unknown parameter θ is embedded in the nonlinear
function V (I, T, θ). This makes most of existing parameter
estimation schemes invalid for (7), since they have mainly
been developed for linearly parametric systems with θ not
being included in the regressor function.

Hence, the objective is to propose real-time adaptive param-
eter estimation algorithms for nonlinearly parametric PEMFC

model (7), which allows to estimate the unknown parameters
of the ohmic resistance Rohm and the electrochemical active
surface area ECSA through using the measurable variables
(i.e. current I , temperature T , and voltage V ).

III. PARAMETER ESTIMATION ALGORITHM

In this section, two adaptive parameter estimation algo-
rithms are presented for constant parameters and time-varying
parameters, respectively. The estimation of constant parame-
ters is first presented to show the merit of the suggested new
adaptive law. Then this idea is further tailored to address the
estimation of time-varying parameters, since some parameters
involved in the realistic PEMFC model are time-varying.

For the simplicity of notation and the generality of tech-
niques to be developed, the following nonlinearly parametric
system is considered:

y = f (x, u, θ) (8)

where x ∈ Rm×1 is the system state; u ∈ Rn×1 is the input;
y ∈ Rq×1 is system output; θ ∈ Rp×1 represents the unknown
parameters to be estimated; and f (x, u, θ) is the nonlinearly
parametric function involving the unknown parameters θ.

Before we present the adaptive parameter estimation algo-
rithm, the following practically feasible assumption is given:

Assumption 1: The nonlinear function f(x, u, θ) is continu-
ous and differentiable with respect to the unknown parameter
θ. The unknown parameter, θ, and its derivative are bounded,
(i.e. ‖θ̇(t)‖ ≤ ε, for a constant ε > 0).

Remark 1: The above assumption can be trivially fulfilled
in the practical operation of PEMFC systems. For instance,
the input/output are all bounded, and the operation scenarios
allow smooth behaviors involved in f(x, u, θ). The variation of
unknown parameters θ is also bounded in the realistic PEMFC
plants. Moreover, the upper bound ε of θ̇ is used for analysis
only, which is not necessarily known.

As explained in Section II, to address the nonlinearly para-
metric problem that cannot directly apply real-time adaptive
parameter algorithms, we will reformulate system (8) by using
the Taylor series expansion with respect to the parameters,
which was used in the fuel cell field [25]. Hence, by applying
the Taylor series expansion on (8), we have

y = f(x, u, θ̂) +

p∑
i=1

(θi − θ̂i)
∂f(x, u, θ̂)

∂θi
+ ξ(θ̃)

where θ̂ ∈ Rp×1 is the estimated parameters; θ̃ , θ − θ̂
denotes the estimation error; ξ(θ̃) is the residual error, which
stems from the higher-order terms of the Taylor series expan-
sion.

Furthermore, we can rewrite the above equation as

y = g(x, u, θ̂) + F (x, u, θ̂)θ + ξ(θ̃) (9)

where the known regressor matrix F (x, u, θ̂) ∈ Rq×p is
calculated by

F (x, u, θ̂) =


∂f1(x,u,θ)

∂θ1

∣∣∣
θ=θ̂

· · · ∂f1(x,u,θ)
∂θp

∣∣∣
θ=θ̂

...
. . .

...
∂fq(x,u,θ)

∂θ1

∣∣∣
θ=θ̂

· · · ∂fq(x,u,θ)
∂θp

∣∣∣
θ=θ̂

 ;
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The known nonlinear vector g(x, u, θ̂) ∈ Rq×1 is expressed as

g(x, u, θ̂) = f(x, u, θ̂)− F (x, u, θ̂)θ̂

which can be computed in real-time.
Remark 2: In practical operation, the input, output and

state of PEMFC are all measurable and bounded. Thus, the
regressor F (x, u, θ̂) is bounded. Moreover, the residual term,
ξ(θ̃), stemming from the high-order Taylor series expansion,
is a function of the estimation error θ̃. Thus, the effect of this
residual term can be reduced when the estimation error finally
converges to a small compact set. Without loss of generality,
we have ‖F‖ ≤ η, ‖ξ‖ ≤ υ for positive constants η > 0 and
υ > 0.

A. Adaptive Estimation for Constant Parameter

In this subsection, we first present an adaptive estimation
method for constant parameter θ to show the merit of this
new estimation algorithm, which serves as the basis of the es-
timation of time-varying parameters to be presented in the next
subsection. In order to obtain the implicit relation between the
unknown constant parameter θ and the measurable variables
(i.e. y, F , and g), the filtered auxiliary matrix M ∈ Rp×p and
vector n1 ∈ Rp×1 are defined as

Ṁ(t) = −κM(t) + F TF, M (0) = 0 (10)

ṅ1(t) = −κn1(t) + F T (y − g) , n1 (0) = 0 (11)

where κ > 0 is a forgetting factor.
Then, another auxiliary vector h is defined as

h = Mθ̂ − n1 (12)

This variable h can be online calculated based on the measured
input/output data with the regressor F and function g, and thus
it can be used for the parameter estimation. To show the merit
of the induced variable h, we have the following Lemma:

Lemma 1: From the auxiliary vector h(t) in (12) based on
the filtered matrix M(t) in (10) and the filtered vector n1(t)
in (11), we can derive that

h = −Mθ̃ +D1 (13)

where D1(t) = −
∫ t
0
e−κ(t−τ)F T(τ)ξ(τ)dτ is a bounded

vector (i.e. ‖D1‖ ≤ ‖F‖ ‖ξ‖ /κ , σ1).
Proof: By integrating (10) and (11), we obtain{
M(t) =

∫ t
0
e−κ(t−τ)F T(τ)F (τ)dτ

n1(t) =
∫ t
0
e−κ(t−τ)F T(τ)(y(τ)− g(τ))dτ

(14)

From (9), we can obtain that y−g = Fθ+ξ. Substituting this
fact into (14), then n1 = Mθ+D1 is derived, which together
with (12) implies (13).

Remark 3: The constant κ in (10) and (11) serves as the
forgetting factor to retain the boundedness of the derived
variables M,n1, and determines the ultimate bound of residual
error D1. Thus, the constant κ should be set as a tradeoff
between the convergence rate and the estimation accuracy.

It is shown in Lemma 1 that the obtained variables h
contains the estimation error θ̃, and thus they can be used
to design an adaptive law to achieve guaranteed convergence,

where the widely used observers or predictors are avoided
[14]. On the other hand, it is known that the persistent exci-
tation (PE) condition is necessary in the adaptive parameter
estimation [26]. This condition can be fulfilled in the PEMFC
plant due to the variations of the voltage. Moreover, this
paper will introduce a feasible technique to online test the
required excitation condition, which can be summarized in
the following lemma:

Lemma 2: Supposing that the regressor matrix F satisfies
the PE condition (i.e. ∃τ > 0 and α > 0, such that∫ t+τ
t

F T(τ)F (τ)dτ ≥ αI , ∀t > 0), then the derived matrix
M in (10) is positive definite (i.e. its minimum eigenvalue
λmin{M(t)} > β > 0, ∀t > 0).

Proof: The proof of Lemma 2 is similar to that shown in
our previous work [27]. Thus, it will not be given here due to
the limited space.

Now the adaptive law for estimating constant parameter is
given as

˙̂
θ = −Γh (15)

where Γ > 0 is a learning gain.
Theorem 1: Consider the system (9) and the adaptive law

(15) with filtered matrix (10) and vector (11). Suppose the
regressor F satisfies the PE condition, then the estimation error
θ̃ finally converges to a small compact set around zero.

Proof: Selecting V = θ̃TΓ−1θ̃/2 as the Lyapunov func-
tion, then we can evaluate its derivative by substituting ˙̃

θ = − ˙̂
θ

into (13) and (15), which yields

V̇ = θ̃TΓ−1 ˙̃
θ = −θ̃TMθ̃ + θ̃TD1 (16)

Applying the Young’s inequality, i.e. aTb ≤ aTa/(2m) +
mbTb/2 for any positive constant m, the derivative of V
satisfies

V̇ ≤ −
(
β − 1

2m

)∥∥∥θ̃∥∥∥2 +
m‖D1‖2

2

≤ −ψ1V + ζ1

(17)

where ψ1 = 2 (β − 1/(2m)) /λmax{Γ−1} and ζ1 = mσ2
1/2

are all positive constants if we set m > 1/(2β); λmax

{
Γ−1

}
is the maximum eigenvalue of the matrix Γ−1. Then by
further solving the inequality (17), we can obtain that V (t) ≤
e−ψ1tV (0) + ζ1/ψ1, which together with the definition of
Lyapunov function V gives the norm bound of the estimation
error as∥∥∥θ̃∥∥∥ ≤√ 2V

λmin {Γ−1}
≤

√
2ζ1 + 2ψ1V (0)e−ψ1t

ψ1λmin {Γ−1}

≤

√
2ζ1 + ψ1e−ψ1tλmax {Γ−1} ‖θ̃(0)‖2

ψ1λmin {Γ−1}

(18)

where λmin

{
Γ−1

}
is the minimum eigenvalue of Γ−1.

B. Adaptive Estimation Method for Time-varying Parameter

The above adaptive estimation scheme in Section III. A.
assumes that the parameters to be estimated are constant, and
shows the main idea of the design of adaptive laws by using the
extracted parameter estimation error. However, this assumption
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may not be always true for the studied PEMFC system, and
the use of constant estimation algorithm may lead to degraded
performance (as shown in the subsequent experimental valida-
tion). Thus, this subsection presents a further tailored adaptive
estimation method for time-varying parameter θ(t). Following
the same procedure of constant parameter estimation, we first
define the filtered matrix M , which is given in (10). Moreover,
a filtered vector n2 ∈ Rp×1 is defined as

ṅ2(t) = −κn2(t)+F T(y−g−F θ̂)−M ˙̂
θ, n2 (0) = 0 (19)

Then, the following auxiliary vector is defined as

h1(t) = F TF θ̂ − F T(y − g) (20)

Now, we have the following lemma showing the merits of
the above defined variables:

Lemma 3: From the filtered matrix M(t) in (10), the filtered
vector n2(t) in (19) and the auxiliary vector h1(t) in (20), we
can derive that

n2 = Mθ̃ −D2 (21)

h1 = −F TF θ̃ + F Tξ (22)

where D2(t) = −
∫ t
0
e−κ(t−τ)(F T(τ)ξ(τ)−M(τ)θ̇(τ))dτ is

a bounded vector (i.e. ‖D2‖ ≤ σ2 holds for a constant σ2 > 0).
Proof: By multiplying eκt on both sides of (19), recalling

(14), and the facts y−g−F θ̂ = F θ̃+ξ from (9) and ˙̂
θ = θ̇− ˙̃

θ,
we can obtain

eκtṅ2 + κeκtn2 = eκtF TF θ̃ + eκtF Tξ − eκtMθ̇ + eκtM
˙̃
θ

= eκtF TF θ̃ +

(∫ t

0

eκτF T(τ)F (τ)dτ

)
˙̃
θ

+ eκt
(
F Tξ −Mθ̇

)
(23)

Based on (23), it can be rewritten as

d

dt

(
eκtn2

)
=

d

dt

[(∫ t

0

eκτF T(τ)F (τ)dτ

)
θ̃

]
+ eκt

(
F Tξ −Mθ̇

) (24)

By integrating (24), we can derive that

n2 (t) =

(∫ t

0

e−κ(t−τ)F T(τ)F (τ)dτ

)
θ̃

+

∫ t

0

e−κ(t−τ)
(
F T(τ)ξ(τ)−M(τ)θ̇(τ)

)
dτ

(25)

Then the fact (21) is verified. Similarly, by substituting (9)
into (20), then (22) can be proved.

Compared with the estimation algorithm for constant pa-
rameters shown in (15), the proposed variables h1, n2 also
contain the estimation error θ̃, and thus they can be used to
design an adaptive law to achieve guaranteed convergence.
However, since time-varying parameters are considered in this
case, specific modifications on n2 should be made to derive
(21). Moreover, the essential difference between n2 and h1 lies
in that the associated regressors, M and F TF . It is noted in
(14) that the matrix M is the integration version of F TF with
penalty coefficient κ, which introduces an averaging effect. As

shown in [14], the use of h1 with instant error information is
essential for estimating time-varying parameters.

Hence, the adaptive law for estimating time-varying param-
eter θ(t) is defined as

˙̂
θ = Γ(n2 − `h1) (26)

where ` > 0 is another learning constant to be tuned.
Now the main results of this subsection are given as follows:
Theorem 2: Consider the system (9) and the adaptive law

(26) with filtered matrix (10), and vectors defined in (19)-(20).
Suppose the regressor F satisfies the PE condition, then the
estimation error θ̃ converges to a small small compact set.

Proof: Selecting V = θ̃TΓ−1θ̃/2 as the Lyapunov func-
tion, then we can evaluate its derivative by using the fact
˙̃
θ = θ̇ − ˙̂

θ, and (26) with (21) - (22), such that

V̇ = θ̃TΓ−1 ˙̃
θ = −θ̃TΓ−1 ˙̂

θ + θ̃TΓ−1θ̇

= −θ̃TMθ̃ + θ̃TD2 − `θ̃TF TF θ̃ + `θ̃TF Tξ + θ̃TΓ−1θ̇
(27)

Applying the Young’s inequality, the derivative of V satisfies

V̇ ≤ −(β − 3

2m
)
∥∥∥θ̃∥∥∥2 +

mσ2
2

2
+
mη2υ2`2

2
+

mε2

2λ2min{Γ}
≤ −ψ2V + ζ2

(28)

where ψ2 = 2 (β − 3/(2m)) /λmax{Γ−1} and ζ2 =
m(η2υ2`2 + σ2

2)/2 + mε2/(2λ2min{Γ}) are all positive con-
stants if we set m > 3/(2β); Then by solving (28), we
can obtain that V (t) ≤ e−ψ2tV (0) + ζ2/ψ2. Substituting
this solution into the Lyapunov function, the norm bound of
estimation error is given by∥∥∥θ̃∥∥∥ ≤√ 2V

λmin {Γ−1}
≤

√
2ζ2 + 2ψ2V (0)e−ψ2t

ψ2λmin {Γ−1}

≤

√
2ζ2 + ψ2e−ψ2tλmax {Γ−1} ‖θ̃(0)‖2

ψ2λmin {Γ−1}

(29)

The proof of Theorem 2 is completed.
The proposed estimation method for time-varying parame-

ters in the PEMFC is shown in Algorithm 1.
Remark 4: From (18) and (29) and the proof of Theorem 1

and Theorem 2, the excitation level β and the constant gain Γ
determine the ultimate size of the estimation error θ̃. Moreover,
the convergence speed also depends on β and Γ. The residual
error ε from θ̇ and the term ξ from the Taylor expansion in
(29) also affect the size of estimation error θ̃. Hence, the initial
value θ̂(0) could be properly set to enhance the estimation
response.

Remark 5: It is noted that the vector h in (13) and the vector
n2 in (21) including the estimation error Mθ̃ are employed
to drive the adaptive law defined in (15) and (26). Thus, the
observers and predictors that are required in most of existing
adaptive parameter estimation methods are avoided. Moreover,
h1 in (22) with the instant information of estimation error is
introduced in order to improve the ability of tracking the time-
varying behaviors in the unknown parameters.
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Algorithm 1 Implementation of Adaptive Estimation Scheme
1: Start procedure
2: Initialization

• Set the initial values M(0) = 0 and n2(0) = 0, and
initialize the parameter estimate θ̂(0).

• Set the coefficient κ, and the learning gains Γ, `.
• Assign start time t = t0 and end time td, and set the

sampling time ∆t.
3: while t ≤ td do
4: • Calculate the regressor F (x, u, θ̂) and nonlinear func-

tion g(x, u, θ̂) by (9).
• Update the auxiliary matrix M(t) and vector n2 by

(10) and (19).
• Calculate the auxiliary vector h1(t) by (20).
• Update the estimated parameters θ̂(t) by (26).

5: Update time, t = t+ ∆t
6: return {t, θ̂(t)}
7: end while
8: End procedure

Remark 6: The regressor matrix F should satisfy the PE
condition in order to retain the convergence of adaptive laws.
This can be fulfilled in our case studies due to the variations
in the voltage. Specifically, the online validation of the PE
condition is still an open problem, while Lemma 2 provides
a feasible method to test the required excitation condition
by testing the minimum eigenvalues of the derived matrix
M . Nevertheless, it deserves further investigation to relax the
PE condition by applying some emerging techniques such as
composite learning [28], [29], though this is out of the scope
of the current paper.

Remark 7: As shown in the proof of Theorem 1 and
Theorem 2, the convergence of the proposed adaptive laws (15)
and (26) are proved by using quadratic Lyapunov functions. As
shown in [30]–[32], non-quadratic Lyapunov functions may be
used to obtain faster convergence rate, which will be studied
in our future work.

IV. EXPERIMENTAL SETUP AND MODEL VALIDATION

This section first introduces the experimental setup of the H-
100 PEMFC system. Then, the mathematical model provided
in Section II is also validated in this section.

A. Description of Experimental Setup

The studied system is an Horizonr H-100 open cathode
proton exchange membrane fuel cell system. Figure 2.a. shows
a view of this fuel cell device as obtained from the distributor.
In particular, the PEMFC stack is a self-humidified fuel cell
with 20 cells and an active area of 22.5 cm2 per cell. Thus,
the humidify system is not necessary in this system. Figure 3
shows a schematic diagram of the system behavior. A fan con-
trolled through a pulse-width-modulation (PWM) duty cycle
signal is used to force the air flow in the fuel cell, feed the
cathode with the oxygen required for the reaction, and regulate
the PEMFC temperature. The anode is fed with dry hydrogen
coming from a hydrogen tank. Moreover, the original H-100

Figure 2. Laboratory test rig: (a) Commercial H-100 PEMFC; (b) View of the
H-100 PEMFC in the test rig system; (c) View of the environmental chamber

Figure 3. Schematic diagram of the H-100 PEMFC system

PEMFC is embedded in a case, where additional sensors
are included (see Figure 2.b). The experiments are carried
out inside a climatic chamber to obtain repetitiveness of the
experiments (see Figure 2.c).

B. Model Validation

Before using the parameter estimation algorithms, the
PEMFC model described in Section II is validated by com-
paring its behavior with experimental data. Figure 4. shows
the evolution of the fuel cell voltage and temperature when
the current is kept constant at I = 3.95 A and the speed
fan changes. It is shown that the model output reproduces the
measured variables appropriately. More details of the model
validation and experimental conditions can be found in [22].

From the results given in Figure 4, it can be claimed that the
derived mathematical model presents a good fitting response
for the voltage and temperature, showing the correctness and
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Figure 4. Comparison between the model and the experimental data (Exper-
iment I).

Figure 5. Parameter estimation results for adaptive law (15) and LS approach
(30) (Experiment I - model data).

effectiveness of the derived model, though there are certain
modeling errors in the voltage.

V. EXPERIMENTAL RESULTS

In this section, two experiments are carried out to validate
the parameter estimation algorithms. The first one (Experiment
I) corresponds to a short experiment where the fuel cell current
is kept constant to I = 3.95 A while the fuel cell temperature
changes due to a change in the fan speed. In this experiment
the hydrogen is recirculated and the purge mechanism is active
to guarantee the enough quantity of hydrogen. In the second
one (Experiment II), a longer experiment is performed. In
this experiment the current is dynamically changed to trigger
time-varying behaviours while the fan speed is kept constant.
During this second experiment in a flow-through mode, the
purge mechanism is not required.

Table I
COMPARISON OF ESTIMATION PERFORMANCE.

Index Model output error with (26) Model output error with (15)
ISE 0.0733 0.7815
MAE 1.1823 1.2173
SD 0.0040 0.0123

Figure 6. Parameter estimation results for adaptive law (26) (Experiment I -
experiment data).

Figure 7. Model output voltage with (15), (26) and the experimental data
(Experiment I).

A. Experiment I

In order to verify the parameter estimation method, we
first estimate the parameters using the model data (Section
IV). In this case, the nominal parameter values are exactly
known. Moreover, the exiting parameter estimation method,
LS algorithm [33], is performed for comparison. The LS
approach with a variable forgetting factor is given by

˙̂
θ =

PF Te

m2
(30)

where the observer error e is deduced as e = y− ŷ = F θ̃+ ξ;
the designed observer is ŷ = F (x, u, θ̂)θ̂ + g(x, u, θ̂) and the
disturbance is bounded (i.e. ‖ξ‖ ≤ µ0); m2 = 1 + ‖F TF‖
denotes the normalizing factor; P is a time-varying gain,
which is updated by

Ṗ (t) = −PF
TFP

m2
+ δLS(I − γLSP )P (31)

where δLS > 0 represents a forgetting constant matrix; The
initial value of P satisfies 0 < (1/νLS)I ≤ P (0) = P0 =
P T
0 < (1/γLS)I; νLS and γLS are constants set manually.
For this simulation, the parameters in the proposed method

are selected as κ = 20 and Γ = diag
(
[7 14]

)
. For the LS

method, the parameters are set as δLS = diag
(
[27 10]

)
,

γLS = 10−9. The initial values of the estimated parameters are
θ0 =

[
10−3 10−6

]T
. Figure 5. shows the estimation profiles



8

of the proposed constant parameter estimator (15) and the LS
approach (30). It can be seen that both parameters, Rohm
and 1/ECSA, converge to the correct value by using the
proposed estimator. Moreover, the estimator (15) can achieve
faster transient convergence rate than the LS method (30),
and the LS method has small steady-state estimation errors
as shown in Figure 5.

However, as shown in Figure 4 the derived model with
preset parameters Rohm and 1/ECSA cannot accurately
capture fast variations on the voltage in the experimental data.
In order to obtain accurate values of Rohm and 1/ECSA
in Experiment I, the experimental data of temperature and
voltage depicted in Figure 4 (blue line) is used as the input
for the proposed time-varying estimator (26). The parame-
ters in the simulation are set as κ = 20, ` = 0.01 and
Γ = diag

(
[7 14]

)
. The profiles of the estimated parameters

are depicted in Figure 6. Comparing with the ideal constant
values shown in Figure 5, there are slight fluctuations in
the two estimated parameters (Rohm, 1/ECSA), which stem
from the variations in the voltage. Then Figure 7. shows the
reconstructed model output voltages by using the collected
temperature data and the estimated parameters (Figure 5)
and using the nominal constant parameters (Figure 6). cIt
is clearly seen that the reconstructed voltage by using the
estimated time-varying parameters provides an overall better
model fitting performance in both the steady-state and transient
stages, which implies that the fast varying dynamics can
be captured with this adaptive law (26) developed for time-
varying parameters.

To intuitively show the advantages of the proposed time-
varying estimation scheme, the following statistical analysis
is used to quantify the model output error performance with
the nominal parameters (Figure 5) and the estimated time-
varying parameters with adaptive law (26) (Figure 6), respec-
tively. First, the integrated squared error (ISE) represents the
performance of overall modeling error, which is calculated as

ISE =

∫ t

0

e2(τ)dτ (32)

The temporary response of the parameter estimation method
can be evaluated by the maximum absolute error (MAE) as

MAE = max(|e|) (33)

In order to quantify the dispersion of error, the standard
deviation (SD) is used, that is

SD =

√
1

t

∫ t

0

(e(τ)− ē)2 dτ (34)

where ē is average value of observer error.
The collected voltage and reconstructed model output volt-

age from 1000 s to 6000 s are used to calculate these perfor-
mance indices. The estimation performance for both estimation
methods are summarized in Table I, which indicates that these
performance indices of the proposed method are dramatically
smaller than that of nominal parameters, especially for ISE.
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Figure 8. Evolution of fuel cell voltage, temperature and current (Experiment
II).

Figure 9. Comparison of the estimated parameters of adaptive law (15) and
adaptive law (26) (Experiment II).

B. Experiment II

This experiment operates a longer time and contains a more
dynamic behavior. Figure 8. shows the most relevant variables
of PEMFC in this experiment. It will be used to further test
the proposed time-varying estimation scheme (26). Hence, the
adaptive laws (15) and (26) are used and compared in this
case in order to further illustrate the merit of time-varying
parameter estimation.

The parameters used in the adaptive law for constant pa-
rameter are selected as κ = 1, Γ = diag

(
[104 55]

)
. For

time-varying parameter estimation method, the parameters are
set as κ = 2, ` = 0.05, Γ = diag

(
[104 55]

)
. Moreover,

the initial values of the estimated parameters are set as
θ0 =

[
10−3 10−6

]T
. The parameter estimation results of

both adaptive laws (15) and (26) are depicted in Figure 9.
The estimated parameter profiles are to some extent similar
by using both adaptive laws. However, it is found that the
sharp peaks in the parameters can be captured by using the
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Figure 10. The reconstructed model output voltage results: (a) adaptive law
(15); (b) adaptive law (26) (Experiment II).

time-varying estimation scheme (26), which in turn contributes
to a better accuracy of PEMFC model. Accordingly, the
reconstructed model output voltage profiles with the estimated
parameters are shown in Figure 10, which implies that the
adaptive laws (15) and (26) can help to obtain a very satisfac-
tory modeling precision. More specifically, it is found that the
transient convergence rate of the adaptive law (26) with h1 is
faster than the adaptive law (15).

In order to show the advantages of time-varying parameter
estimation approach, we use the statistical analysis in terms
of error indices (32), (33), and (34) to quantify the estimation
performance of adaptive laws (15) and (26). The collected
voltage and reconstructed model output from 3314 s to 5176 s
are used to calculate these performance indices. The estimation
performance for both adaptive laws are summarized in Table
II. The proposed method for time-vary parameter improves
the ISE, MAE and SD response, which means an overall
better estimation response due to the use of the instant error
information in h1, beyond the averaged error information in
n2.

Table II
COMPARISON OF ADAPTIVE LAW PERFORMANCE.

Index Adaptive law (15) Adaptive law (26)
ISE 1.2923 1.1588
MAE 0.5608 0.4697
SD 0.0429 0.0348

VI. CONCLUSION

In this paper, a new adaptive parameter estimation method
has been proposed to estimate essential model parameters in
PEMFC with fast time-varying dynamics. The ohmic resis-
tance and the electrochemical active surface area are esti-
mated. To handle the difficulty stemming from the nonlinearly
parametric property, the model is linearized by using the
Taylor series expansion. Moreover, to address the fast varying
parameters, a new adaptive estimation method, independent of
the widely used observer/predictor, is suggested. The proposed
adaptive laws are directly driven by the parameter estimation
error, and thus are able to achieve guaranteed convergence.
This new estimation framework allows to online test the
required PE condition. Comparative experimental results il-
lustrate the efficacy of the proposed estimation parameter
methods and their improved performance. In the future work,
we will extend the proposed parameter estimation approach
to other kinds of fuel cell systems and relax the required PE
condition.
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