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Abstract— Human-robot interaction is one of the keys of
assistive robots. Robots are expected to be compliant with
people but at the same time correctly perform the tasks. In
such applications, Cartesian impedance control is preferred
over joint control, as the desired interaction and environmental
feedback can be described more naturally, and the force to be
exerted by the robot can be readily adjusted.

This paper addresses the problem of controlling a robot
arm in the operational space with variable stiffness so as to
continuously adapt the force exerted in each phase of motion
according to the precision requirements. Moreover, performing
dimensionality reduction we can separate the degrees of free-
dom (DoF) relevant for the task from the redundant ones. The
stiffness of the former can be adjusted constantly to achieve
the required accuracy, while task-redundant DoF can be used
to achieve other goals such as avoiding obstacles by moving
in the directions where accuracy is not critical. The designed
method is tested teaching the robot to give water to drink to a
model of human head. Our empirical results demonstrate that
the robot can learn precision requirements from demonstration.
Furthermore, dimensionality reduction is proved to be useful
to avoid obstacles.

I. INTRODUCTION

Population ageing poses one of the main social and
economic challenges. We live in long-living societies that
require a greater effort in the dependency area. Within the
European Union, the old-age dependency ratio is expected
to rise from 28.1% in 2014 to 49.4% by 2050 [1]. Assistive
robots can provide a solution to this problem.

Industrial robots are nowadays already able to cooperate
with humans while carrying out complex tasks [2]. However,
these tasks are not focused on direct contact between the robot
and the human as in assistive robotics. In this context, for
instance, a robot has to be able to dress [3] or to feed people
[4]. Hence, it is clear that robots need to be compliant and safe.
Safety can be eased by using low-inertia robots [5]. These
robots have decoupled some motors’ inertia from the links’
inertia, by placing the heavy motors at the base. This improves
safety at high speed because the stored kinetic energy is small.
Besides, lightweight materials are used to further enhance
safety properties. Even with these characteristics, we need
to implement the so-called compliant controllers [6]-[7], i.e.,
controllers that can accommodate to human contact without
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Fig. 1. Teaching the WAM robot to give water to drink.

exerting too much force. This behaviour can be obtained with
impedance control [8], where the force exerted by the robot
is related to the error in tracking a desired trajectory.

However, in human-robot interaction, we often have
different scenarios where the relative importance between the
precision of the robot and its compliance might vary. As it is
very difficult to perform highly in both respects, a tradeoff
between precision and compliance needs to be attained. The
precision requirements are usually provided by a motion
characterization that encodes a time-varying precision at every
part of the trajectory. In the case of Probabilistic Movement
Primitives (ProMPs) [9], such precision can be extracted from
the time variance through several motion demonstrations
to the robot. Nevertheless, ProMPs suffer from the high-
dimensionality of their parametrical representation. For this
reason, we use dimensionality reduction techniques as in [10].
Moreover, [9] presents a stochastic controller that tracks the
desired precision at every timestep. However, such controller
suffers from a high computational cost if the data used for
generating the ProMP is not rich enough to fully characterize
its covariance. On the other hand, some authors [11] use
characteristics of the motion to regulate the stiffness of the
robot, but they do not take into account the requirements
introduced by the user.

Using a latent space as defined in [10], we obtain a
projection matrix that specifies the relevant variables to do the
task, while its null space contains the redundant variables for
the task. This distinction is useful to apply separate control
laws to the different DoF depending on their importance for
the task.

Avoiding obstacles is a problem extensively dealt with in
literature. Assistive robots have to be able to detect and adapt
to unexpected situations like finding obstacles in their path. In
[12], the ProMP definition is adapted to find a new path while
avoiding an obstacle, but it presents real-time implementation
difficulties. Therefore, if the object moves, the robot cannot
easily recalculate a new path. For this reason, other authors
[13] use potential fields that are fast to calculate and also



offer a solution.
In this work, we propose to reduce the problem to a latent

space by selecting the DoF according to their importance
in the task. While the compliance of the relevant DoF is
adapted in each phase of motion depending on its precision
requirements, the task-redundant DoF are forced to remain
always compliant, so as to avoid obstacles in the space, as
we show in the experimental section.

In Section II we introduce the operational space control
problem as well as the definition of the trajectory with ProMPs
and its reduced latent space. In Section III we first present
our solution to the wrist singularity to work robustly in the
Cartesian space. Next we explain how to adapt the compliance
in real time of the relevant DoF and how to avoid obstacles
using the redundant ones. Finally, in Section IV we present
the obtained results with their discussion, followed by some
conclusions.

II. PRELIMINARIES

Throughout this work we will study the control problem in
the operational space, using ProMPs to encode the trajectories
learned from demonstration and an Expectation-Maximization
(EM) algorithm [14] to reduce the dimension of the problem.
In this section, we introduce these concepts which are going
to be used along the paper.

A. Jacobian transpose control
Jacobian transpose control [15] is a well-known method

to calculate the torques required to apply at joints to follow
an end-effector pose (position and orientation) trajectory. By
using the principle of virtual work on the manipulator system,
it can be easily seen that the relation between the 6 ˆ 1
Cartesian force-moment vector acting at the end-effector f
(wrench) and the d ˆ 1 vector of torques at joints is the
geometric Jacobian of the manipulator:

τ “ JTf ` gpqq, (1)

where the gravity compensation term gpqq depending on the
joint configuration q is included.

Note that this equation allows us to work in the operational
space without using any inverse kinematics. In this paper, we
calculate the forces in Eq. (1) as a proportional-derivative
(PD) law (see Figure 2)

f “KPe`KD 9e, (2)

where KP and KD are the proportional and derivative gains
matrices an e and 9e are the position and velocity errors.
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Fig. 2. Jacobian transpose control scheme with gravity compensation.

B. Kinematic redundancy control

A manipulator is kinematically redundant when it has more
DoF (d) than the dimension of the operational space [16]
- 6 in case of Cartesian control -. These extra DoF can be
exploited to achieve a secondary goal while performing a
task as, for instance, keeping the redundant joints as far as
possible from people. To this end, it can be constructed a
second controller projecting the secondary goal τnull into the
null-space orthogonal projection pI´JTJT

:

q [17], obtaining:

τ “ JTf ` gpqq ` pI ´ JTJT
:

qKnullτnull, (3)

where Knull is a diagonal matrix used to select the relevance
of the secondary goal.

C. Probabilistic Movement Primitives

ProMPs are a stochastic approach to learn and encode a
set of similar motion trajectories that present time-dependent
variances over time [9]. Given a number of basis functions
per DoF, Nf , ProMPs use time-dependent Gaussian kernels
Φt to encode the state of a trajectory, Φt being the vector of
normalized kernel basis functions (e.g., uniformly distributed
Gaussian basis function over time). Thus, the position and/or
velocity state vector yt can be represented as

yt “ ΨT
t ω ` εy, (4)

where ΨT
t “ Id bΦT

t , Id being the d-dimensional identity
matrix and Φt an Nf -dimensional column vector with the
Gaussian kernels associated to one DoF at time t. Moreover,
εy „ N p0,Σyq is a zero-mean Gaussian noise and the
weights ω are also treated as random variables with a
distribution ppωq “ N pω|µω,Σωq.

This distribution can be fitted, given a set of demonstration
trajectories, by obtaining the weights ωj of each demon-
stration through least squares. Subsequently, the parameters
of the distribution θ “ tµω,Σω,Σyu, Σy being the state
covariance, are fitted by means of a maximum likelihood
estimate, i.e., computing the sample mean and the sample
covariance of ω. We know that the distribution for our current
state yt is Gaussian with mean µ “ ΨT

t µω and covariance

Σt “ ΨT
t ΣωΨt. (5)

ProMPs also provides a model-based stochastic controller
that reproduces the encoded trajectory distribution [9].

D. Dimensionality reduction for ProMP

Given a robot working in the 6 DoF Cartesian space, we
can reduce the dimensionality of its motion representation to
a latent space [10] of dimension r, which is manually given.
We can express the robot’s state vector yt with latent space
variables xt as

yt » Ωxt, (6)

where Ω (6ˆ r), will be used throughout this paper as the
coordination matrix, a linear mapping from an r-dimensional
Cartesian latent virtual space into the 6-dimensional Cartesian
space. We select r as the minimum number of variables so
the information lost doesn’t reach a 5 %.



In order to represent the trajectory as a linear combination
of some parameters ω as in ProMP, Eq. (6) is written as

yt “ Ωxt ` εfit “ Ω
´

ΦT
t ω ` εx

¯

` εfit, (7)

with Φt being the Nfˆ1 matrix with the kernels used for the
trajectory, and εfit, εx the DR fitting error and the Gaussian
noise for x, respectively. Thus, the probability of being in
the latent state xt given the weights ω “ rωT1 , ...,ω

T
r s
T ,

(rNf ˆ 1) is

ppxt|ωq “ N pxt|ΨT
t ω,Σxq, (8)

with ΨT
t “ Ir b ΦT

t (r ˆ rNf ). In this case the set
of parameters of the DR-ProMP representation are θ “
tµω,Σω,Ω,Σyu, with Σy “ Σfit ` ΩΣxΩ

T the total
system noise, being Σx the latent space covariance matrix,
computed as

Σx “ ΨT
t ΣwΨt. (9)

III. PROPOSED METHOD

Anthropomorphic robotic arms are widely used for cooper-
ative tasks because of their motion and appearance similarities
to humans arms. These resemblance makes social connections
with humans easier. One example of it is the WAM arm. It
has 7 revolute joints implemented in three groups similarly
to a human arm, as shown in Figure 3.
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Fig. 3. Joints in the WAM arm.

A. Wrist singularity control

Working in the operational space with non-redundant robots
implies that the Jacobian matrix can lose rank when two or
more axis are aligned, known as kinematic singularity. In the
WAM robot, since it is redundant, the Jacobian always has
full rank inside its workspace1. Even though, a configuration
where two axis are aligned is not desirable.

In the wrist singular configuration (joint 5 and 7 aligned),
the elbow redundancy is used to completely orientate the
end-effector. As a result, the null space changes: instead of
including the elbow redundancy directions, it includes the
directions of the axis aligned (joint 5 and 7).

In this situation wrist vibrations are observed because joint
5 and 7 swap easily, as they are expressing the same rotation

1Not considering the workspace limits where the robot is outstretched
and in practice will never pass through this point.

and the wrist has low inertia. To avoid these vibrations we
propose to control the kernel of the Jacobian matrix. A torque
vector τnull proportional to the gradient of a function Hw is
defined. This function expresses how fast joint 5 and 7 are
moving, therefore the goal is to minimize this function so
the wrist joints moves as minimum as possible and, hence,
avoid its swap.

τnull “ ´∇pHwqµ

Hw “ p 9θ25 `
9θ27q ; µ “ e´4θ26

(10)

Note that a regulating factor µ is defined. This variable
is 1 when the robot is in the singular configuration (θ6 “ 0)
and is 0 when is far from it.

B. Compliance adaption using ProMPs

Some authors compute covariance matrices from the
residual errors of the least-squares estimation for each state
of the different demonstrations [18]. They use this covariance
to calculate the stiffness matrix using eigendecomposition.

We have used a similar idea but with the covariance of
the Cartesian variables obtained from ProMPs in Eq. (5).
This matrix is an indicator of the precision requirements in
each phase of motion: if a variable has a low variability the
robot should be precise to repeat the same path taught by
demonstration. Therefore, the variability introduced by the
user can be used to calculate the gains of Eq. (2).

For this purpose, the orientation part of Σt has to be
reconstructed (see Appendix). Then, we propose to extract
from Σt the covariance of the position and orientation
independently, not taking into account the coupling terms.
By doing this, we can separate the position and orientation
gains to give them different magnitudes. Then, computing
their inverses we can link the precision needed (Σt) to the
compliance of the robot (KP ), obtaining a stiffness matrix
with a structure

KP “

„

Kpos
P 0

0 Kori
P



(11)

where each sub-matrix is a 3x3 matrix.
Linking these two matrices is not straightforward. Since

the scale of Σ´1
t and KP is not the same, [18] proposes to

use the eigendecomposition of Σ´1
t to take its eigenvalues

and rescale them to obtain the stiffness in the desired range
rKmin,Kmaxs based on the range of the eigenvalues of the
trajectory rλmin, λmaxs as

Di “ Kmin`pKmax´Kminq
ln pλiq ´ ln pλminq

ln pλmaxq ´ ln pλminq
. (12)

Note that we use a logarithmic scale to reduce the effect of
the extremely low variability at the initial point compared to
the variability along the trajectory. This is due to the fact that
in the learning process the robot moves itself to the initial
point and the precision is always higher than that introduced
by demonstration.

With this result, the position and orientation gain matrix
can be calculated using the eigendecomposition as

K
pos{ori
P “ V DV ´1. (13)



Up to this point, if there is a change in the environment,
since the impedance is time indexed, the robot would not
be able to properly react to it. This becomes critical for
interaction tasks. We propose to compute the trajectory time
as

tk`1 “ tk `
∆t

1` e2
pauseflag, (14)

where the elapsed time between two trajectory points depends
on the tracking error e and a pauseflag that can be set to
zero when the error is high. By doing this time modification
we make the controller indirectly dependent on the state of
the robot obtaining a safest movement.

C. Latent space control

Dimensionality reduction techniques allows us to extract
the relevant DoF of the task, while the task-redundant DoF
are contained in the null Latent space. Using this division,
we have implemented two independent control laws. The
relevant DoF are controlled continuously to adapt its stiffness
according to the requirements whereas the task-redundant
DoF are kept compliant all the time.

To this end, the actual and desired trajectory are mapped
into the latent space obtaining xpqq and xd. Using a PD law
it is defined the control law in the latent space as

ν “ K̃P pxd ´ xpqqq ` K̃Dp 9xd ´ 9xpqqq, (15)

where K̃P , K̃D P Rrˆr. These matrices are obtained from
the compliance adaption technique (sec III-B) but reduced
into the latent space using

K̃P {D “ Ω: KP {D Ω. (16)

Finally, the reduced control law is decoded to the Cartesian
space and a gravity compensation term gpqq is added:

τ lat “ J
TΩν ` gpqq. (17)

With Eq. (17) the relevant DoF are controlled, leaving the
redundants free. These can be regulated using the orthogonal
projection into the kernel of the latent space as

τnull “ J
T
pI ´Ω Ω:qfnull. (18)

Taking equations (17) and (18) we obtain the control law

τ “ τ lat ` τnull “ J
TΩν ` gpqq ` JT pI ´Ω Ω:qfnull.

(19)
It is important to note that the force fnull will only have

effect on the task-redundant DoF. As said before, the main
idea is to maintain as compliant as possible the redundant
DoF but the force vector can be constructed to achieve other
goals, as avoiding obstacles in the Cartesian space.

1) Compliance of the task-redundant DoF
To regulate the stiffness of the task-redundant DoF, we
propose to use a proportional law to the position error and
impose low eigenvalues to the stifness matrix (KPnull ), so a
soft behaviour is achieved.

fnull “ f compliant “KPnulle. (20)

2) Avoiding obstacles
As the redundant DoF of the task are not relevant to perform
the trajectory, they can be used to avoid obstacles. Obstacles
in the Cartesian space can be defined as a point and a safety
distance, considering that a perfect sphere covers the object.
This simple description allows us to create a force defined as

fnull “ favoid “ Kavoid
TCP ´ xyz

}TCP ´ xyz}
, (21)

where the force is pointing from the center of the obstacle
(xyz) to the end-effector (TCP ) with constant magnitude
(Kavoid), manually defined by the user.

This repulsive force has to be regulated according to the
distance between the end-effector and the object, increasing
the force when the end-effector gets closer to the obstacle. To
do so, a parameter λ is defined with a Bézier basis function,
accomplishing a C2 spline as represented in Figure 4
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Fig. 4. Regulation parameter λ.

λ “
5
ÿ

i“0

biB
5
i puq bi “ t1, 1, 1, 0, 0, 0u

u “ dist{distmax

(22)

With Eq. (22) we have that when the distance is very small the
force is the maximum (Kavoid) and when distance increases,
the force smoothly decreases.

Even so, when the robot is far from the obstacle the task-
redundant DoF have to also be regulated with Eq. (20). To
combine both goals, we propose to use the λ parameter
defined before to impose the predominance of f compliant or
favoid according to the distance to the object as

fnulli “ f complianti p1´ λq ` favoidi λα i “ 1, 2, 3.

fnulli “ f complianti i “ 4, 5, 6.
(23)

Note that the regulating factor λ is only applied to the
position components because the orientation of the end-
effector is not used to avoid the obstacle. Moreover, a
parameter α restricts the force: favoid only has effect when
the end-effector is getting closer to the object, but the force
disappears when the robot moves away.

We propose to calculate the deactivation parameter α as

α “
1

2
p1´ signp~rt ¨ ~vaqq, (24)

where ~rt is the normalized radius vector pointing from the
center of the obstacle to the end-effector and ~va is the
projection of the end-effector’s velocity (~v) onto the direction
of the radius vector, calculated as

~va “ }va}~̂rt “
~v ¨ ~rt
}~rt}2

~rt (25)
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Fig. 5. Euclidean norm of the columns of the stiffness matrix. On the left, position stiffness; on the right, orientation stiffness.

As ~va and ~rt are co-linear, the scalar product in Eq. (24)
results in α “ 1 when ~rt and ~va have opposite sign (end-
effector getting close to the obstacle) and α “ 0 if the have the
same sign. Therefore favoid will be zero when the distance
between the robot and the obstacle is increasing.

IV. EXPERIMENTATION

To evaluate the proposed method, we decided to teach the
robot to give water to a model of a human head (Fig. 1).
In this task the position coordinates can be compliant when
the robot approaches the person, but must be rigid when
the person is drinking to prevent the movement of the glass.
On the contrary, the orientation coordinates have to be stiff
when the robot approaches to avoid pouring the water into
the person, but should be compliant to accommodate when
the person drinks.

A. Parameters pre-calculation

To achieve the desired compliant behaviour we have used
the technique explained in Section III-B. Nevertheless, the
computational cost of the covariance matrix and the stiffness
matrix is very high (see Appendix). Once we have it, position
and orientation sub-matrices are extracted and, for each
one, we invert them and calculate their eigendecomposition.
Finally, the stiffness matrix can be calculated with Eq. (13).
Performing all these operations in real-time is computationally
expensive and can threaten to break the real-time loop.

We propose to pre-calculate the eigendecomposition of the
position and orientation covariance and store them with a
sampling time of T “ 0.1s. With this, we are able to adapt
the impedance of the pose of the end-effector in real time.

B. Results

1) Compliance adaptation
As a first test, we executed the ProMP trajectory with the
Cartesian controller adapting the stiffness matrix, without
reducing the dimensionality. We have set a range for the
position stiffness (see Eq. (12) between rKmin,Kmaxs “

r150, 1000s and for the orientation rKmin,Kmaxs “ r0.5, 6s
(all values decided according to previous experiences).

The Euclidean norms of each column of the stiffness matrix
are shown in Fig. 5. We observe that when the robot moves,
the position stiffness decreases and the orientation remains
more or less constant. On the other hand, when the person
is drinking, the position stiffness remains high while one

of the orientation rigidities (Kpεy ) reduces. This one that
decreases is the rotation associated with the gesture of giving
water. The results are also shown in the video included as
supplemental material.

2) Avoiding obstacles
Even if the results of the previous section are good, we are
controlling the six variables of the Cartesian space. In this task
there are some DoF that do not require variable impedance
and can be regulated independently. For this reason, we have
reduced the dimension into a latent space. Performing a
singular value decomposition of the whole trajectory we have
seen that with only 3 DoF we can already have the 95% of
the information, calculated as the ratio between the 3 first
singulars values and the sum of all of them.

Moreover, we use the null space of the projection to avoid
obstacles as explained in Section III-C. We put an obstacle
of 5 cm of radius in the middle of the trajectory and we have
obtained the results presented in Figure 6. We can see that
the end-effector avoids the obstacle in the vertical direction
(contained in null space of the projection) and then it returns
properly to the desired trajectory.

Fig. 6. Avoiding one obstacle while giving water. In black, reference
trajectory; in blue, performed trajectory.

To extend the method to multiple obstacles, we put another
object in the trajectory. Adding other objects to Eq. (23), we
obtain the equation

fnull “ f compliant
źnp

p“1
p1´ λpq `

ÿnp

p“1
favoidp λp αp,

(26)
where np are the number of obstacles and each one has its
regulation parameter (λp), deactivation parameter (αp) and
force to avoid it (favoidp). Implementing this last equation,
we obtain the results of Figure 7. We can see that the end-
effector avoids both obstacles and when there is not any one
near, it returns to the reference position.



Fig. 7. Avoiding two obstacles while giving water. In black, reference
trajectory; in blue, performed trajectory.

Other experiments testing the Cartesian control, variable
impedance technique and latent space control are shown in:
http://bit.ly/2lLMl4n. We can see how accurate is trajectory
tracking with the designed controller, how impedance is
regulated and also the effects of separating the DoF in the
latent space.

C. Discussion

The obstacle avoidance proposed is done on the kernel of
the dimensionality reduction matrix. As such kernel projection
results in a lower-priority, one can wonder whether the
obstacle avoidance will always be feasible or not. But in
fact, looking at the xyz components, in order not to be able
to avoid an object - assuming we are avoiding a bounding
sphere of a given radius -, it should be in the situation where
the normal plane to the radius vector ~r defined in Sec. III fully
belongs to the projection matrix Ω image space. However,
the direction of motion is also most likely to belong to the
image of Ω, resulting in a three-dimensional manifold for the
cartesian position, thus yielding no dimensionality reduction
on the trajectory position - which makes the proposed method
of smaller applicability - . Therefore, it is a very unlikely
situation that, even if it would happen, the compliant control
would prevent the robot from being too aggressive.

V. CONCLUSIONS

In this work we proposed a compliant Cartesian control
strategy. It uses the variability introduced by the user when
teaching a task to the robot (giving water to a head model) to
adapt the stiffness according to the precision required in each
phase of motion. Furthermore, we have used Dimensionality
Reduction (DR) to avoid obstacles using the redundant DoF
of the task while constantly adapting the stiffness of the
relevant DoF. The obtained results show a suitable tradeoff
between precision and compliance. We also provided visual
demonstration of the proposed method tested on a WAM robot.
Future work will include exploiting the redundant DoF to
achieve other goals as improving manipulability or adaptation
to external disturbances.

APPENDIX: ORIENTATION

Quaternion reduction

We use unit quaternions to orientate the end-effector.
This orientation representation has four components (Q “

rη, εx, εy, εzs) although orientation has only 3 DoF. This dif-
ference involves a problem when working with reinforcement

learning (RL). In RL we should use the minimum number of
variables because more parameters imply exploring a bigger
space. Furthermore, if we use the complete quaternion then
the sampled model in RL can give as a result a quaternion
not expressing a truly orientation. For these reasons, we
have used only the vector part of the quaternion in RL and
afterwards reconstructing the scalar component. Even though,
when we remove the scalar part we lose the sign2. To ensure
not changing from the positive to the negative covering, we
express the orientation in the end-effector frame using the
initial rotation matrix R0. In this frame, the changes in the
angles are smaller than in the base-frame so we can prevent
from moving from the positive to the negative covering.

To do this process we use that a quaternion can also be
expressed [20] as

Q “ e
θ
2 puxi`uyj`uzkq

“ cos θ2 ` puxi` uyj ` uzkq sin θ
2 ,

(27)

where we can clearly see that the scalar and the vector parts
are not independent. Therefore, we can reconsctruct the scalar
part with

η “ cosparcsinp}εxεyεz}qq. (28)

Covariance matrix conversion
As said before, ProMP calculates the covariance between

the vectorial part of the quaternion in the end-effector frame.
To calculate the stiffness matrix as in Section III-B, we need
to have the covariance of the geometric orientation in the
base frame.

In first place, we have estimated the covariance between
the scalar part of the quaternion and the other parameters.
To do so, we have created 10 samples with multivariate
normal distribution ỹt „ N pyt,Σtq. In each sample, the
scalar part of the quaternion is reconstructed using Eq. (28).
This process allows us to compute the covariance between
all the parameters with the scalar part and construct the 7th
row and 7th column of Σt.

Having the covariance of the complete quaternion, it can
be transformed into the geometric orientation covariance.
Using that the quaternion rate matrix connects the angular
velocities and the temporal derivatives of the quaternion
as ω “ 2H 9Q [21], we can also calculate the geometric
orientation covariance as

Σgeo
t “

„

I3
2H



Σquat
t

„

I3
2H

T

(29)

where the quaternion rate matrix is

H “

»

–

´εx η ´εz εy
´εy εz η ´εx
´εz ´εy εx η

fi

fl . (30)

Finally, this covariance matrix is rotated from the end-
effector frame to the base frame using

ΣCart
t “

„

I3
R0



Σgeo
t

„

I3
R0

T

(31)

2Quaternions represent a double covering of the group SO(3). As a
consequence, Q “ ´Q. Without the scalar part we cannot know in wich
covering is located the quaternion.
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