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Abstract: This paper addresses the energy management of a standalone renewable energy system.1

The system is configured as a microgrid, including photovoltaic generation, a lead-acid battery as2

a short term energy storage system, hydrogen production and several loads. In this microgrid, an3

energy management strategy has been incorporated that pursues several objectives. On the one hand,4

it aims to minimize the amount of energy cycled in the battery, in order to reduce the associated losses5

and the battery size. On the other hand, it seeks to take advantage of the long-term surplus energy,6

producing hydrogen and extracting it from the system, to be used in a fuel cell hybrid electric vehicle.7

A crucial factor in this approach is to accommodate the energy consumption to the energy demand,8

to achieve this, a Model Predictive Control (MPC) scheme is proposed. In this context, proper models9

for solar estimation, hydrogen production and battery energy storage will be presented. Moreover,10

the controller is capable to advance or delay the deferrable loads from its prescheduled time. As a11

result, a stable and efficient supply with a relatively small battery is obtained. Finally, the proposed12

control scheme has been validated on a real case scenario.13

Keywords: Standalone renewable energy systems, solar photovoltaic energy, demand side14

management, deferrable loads, model predictive control, Hydrogen, fuel cells.15

1. Introduction16

One of the most important modern industry elements is energy, which has usually been obtained17

from fossil fuels. However, their availability is limited, and their negative effects on the environment18

have been widely reported. A lot of research has been performed on the social-economic impact of19

CO2 emissions [1], and the possible collapse of a society with finite energy sources [2]. In consequence,20

the interest in developing renewable energy sources (RES) and increasing its energy market share has21

rapidly grown in recent years. As a result, the transition to renewable energy poses new challenges,22

due to its intrinsic characteristics.23

On the one hand, power systems require a continuous balance between the demand and the24

supply of energy. Nevertheless, the variability and unpredictability of renewable sources, specially25

wind and solar, may cause deviations in the parameters of the supply network [3]. An approach to26

renewable integration is to compensate the variability with short-term energy storage subsystems (ESS)27

[4], which can store the surplus energy and to supply it when the generation is insufficient. On the28

other hand, the ubiquity of the solar resource allows the generation to be distributed, near the points29

of use. Thus, integration of renewable energy has encouraged the decentralization of power systems,30

through distributed generation and storage. In the literature, on-site generation and ESS are usually31
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called "distributed energy resources" (DERs) [5]. The implementation of DERs and consumption32

points that can be disconnected from the utility grid, working autonomously and acting as a single33

controllable entity is usually named a microgrid [5].34

Regarding standalone systems, there are several available options in terms of components, system35

architecture and configuration [6]. The energy production depends on renewable resources, which36

presents variability and uncertainty. In consequence, the design and sizing of the system based in37

solar energy is a complex task [7], which requires estimating the balance between production and38

consumption [8]. As for the photovoltaic generation, in addition to its size other characteristics must39

be determined, such as the orientation and tilt of the solar panels. All this will determine the energy40

production, but always depending on the variations of the solar resource. In the short term, ESS can41

follow the demand curve, if there is enough stored energy. In fact, to obtain some security for the42

energy supply, it is necessary to oversize the photovoltaic system, the ESS or both. As a result, there43

will be a surplus of energy in the long-term. In practice, the oversize can be avoided by hybridization44

with diesel generation [9]. This is one of the main causes that difficult to achieve the economic optimum45

of a standalone system with 100% RES. Therefore, it is important to reduce the need for oversizing46

and, if possible, to harness the energy surplus.47

One of the key parts for the technical and financial viability of the microgrid is the selection of the48

adequate storage system. The lead-acid battery is a relatively economic ESS, widely used in microgrid49

applications; however, lead-acid batteries present a short lifetime, especially in cycling operations50

[10]. In order to minimize the economic costs and degradation of the storage system, the optimal51

battery size has to be determined [11]. For this reason, several technical and financial indicators must52

be considered, including an estimation of the effort of the battery throughout its lifetime.53

From the manageability point of view, energy sources can be classified as dispatchable sources (for54

example, a genset) or non-dispatchable sources (for example, wind turbines or photovoltaic arrays).55

Similarly, loads accept a similar classification, non-deferrable loads (whose operating timing cannot be56

modified) and deferrable ones (whose operating timing can be managed in a flexible manner) [12],57

the so-called demand side management (DSM) [4]. Thus, dispatchable sources and deferrable loads58

offer additional degrees of freedom to improve the system performance if they are properly handled.59

Efficient control schemes may reduce the effort of the battery, therefore reducing operational costs60

of the energy storage system and, proportionally, of the microgrid system. The model predictive61

control (MPC) is a suitable control scheme for this type of systems. Multiple works can be found in62

the literature that describe the benefits of this control strategy. In [13], the MPC controller proposed63

minimizes the operating costs of the energy storage. In [14], a multiobjective controller for AC/DC64

microgrids is proposed. In [15], a MPC controller for an offshore wind farm is proposed. In [16], MPC65

is implemented in a reconfigurable inverter in a standalone PV-wind-battery microgrid. Finally, [17]66

presents a MPC controller implemented into a microgrid with hydrogen production and consumption.67

In this paper, the MPC technique is used in the context of a standalone microgrid, which supplies68

the energy demanded for the wastewater treatment plant of a winery. The generation of this microgrid69

is 100% photovoltaic. That is, in the microgrid under study, some loads are deferrable while the70

energy sources are non-dispatchable. The main contribution of this work is to propose and energy71

management strategy which will optimally manage the design performance taking into account the72

loads and RES characteristics. Proposed methodology will be based on MPC. This type of algorithm73

requires forecasting the RES and loads behaviour. As the microgrid will operate in island mode, isolated74

from the main grid, a methodology to predict the RES behaviour will also be included in the algorithm.75

The main novelty of this work is the combination of a relatively simple and comprehensive model,76

which includes: a solar irradiance prediction algorithm, a battery model and a hydrogen generation77

model; with an MPC algorithm that, through re-scheduling of deferrable loads and controlling the solar78

panel’s power output, reduces the microgrid’s battery cycling. The proposed control scheme is shown79

to be implementable in a real case scenario and is compared with an existing energy management80
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system. It is shown that the presented scheme provides a better matching between the demand and81

supply, improves the microgrid’s reliability and reduces the battery effort.82

The work is organized as follows, Section 2.1 contains a description of the different elements which83

compose the microgrid; Section 2.2 describes the methodology used to predict the solar irradiance;84

section 2.3 describes the battery model and its tuning; Section 2.4 constrains a description of the85

hydrogen facility; Section 3.3 describes the control problem and the developed energy management86

algorithm. Section 4 contains several results and finally Section 5 contain some conclusions, limitations87

and future works.88

2. System modeling89

Variable Name Description Variable Name Description
Gsc Solar constant n number of the day
Gon Corrected solar constant ηp Solar panel’s efficiency
φ Latitude ηinv Inverter’s efficiency
δ Declination Pout Potential panel’s power output
β Slope PSOL Solar panel’s power output
γ Surface azimuth angle SOC State of Charge
ω Hour angle IBAT Battery’s current
θz Zenith angle UBAT Battery’s open circuit voltage
θ Angle of incidence RBAT Battery’s internal resistance

Gb,τ Extraterrestrial irradiance UBAT Battery’s terminal voltage
TL Turbidity coefficient Pc Power consumption
Ics Clear-sky DNI Crate C rate
b Correction coefficient DOD Depth of Discharge
m Relative optical air mass Ah Effective Ah-throughput
h Solar panel’s height σ Severity factor
I Measured normal irradiance Bl Battery charge/discharge efficiency
N Number of solar panels Ahn Nominal Ah-throughput

PBAT Battery’s power Cn Nominal capacity
IBAT Battery’s current αch/dch Battery’s charge/discharge efficiency

Table 1. Description of the model variables and parameters

2.1. Description of the facilities90

This section describes the microgrid that will be considered. It corresponds to standalone RES91

placed at Viñas del Vero winery, which is located in the Somontano region, in the north of Aragon92

(Spain) [18,19]. The energy consumed in the winery’s wastewater treatment plant and the irrigation93

system is supplied with a set of photovoltaic panels. Furthermore, a lead-acid battery is used as a94

short-term ESS and the surplus energy produced by the PV system is converted into hydrogen by95

water electrolysis. This hydrogen is eventually supplied to a fuel cell hybrid electric vehicle. In Figure96

1, a general scheme of the system is depicted.97

The microgrid electrical distribution network was designed with an AC bus architecture, to which98

the PV panels, the battery and the power consumers are directly or indirectly connected. It operates99

at 400V and 50Hz, and it is regulated by the inverters connected to the battery. No connection to the100

general distribution network exist, i.e. the microgrid works in isolated operation mode.101

The system could work without the production of hydrogen. However, as usual in standalone102

systems with 100% renewable generation, there would be a high percentage of surplus energy, which103

could not be used. This happens when the production is greater than the consumption and the battery104

is fully charged. This hydrogen is extracted from the system, by refuelling a fuel cell electric vehicle.105
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Figure 1. General scheme of the standalone renewable energy system

2.1.1. Solar Photovoltaic System106

A set of solar photovoltaic panels is used as the main energy source . Three different PV arrays on107

different supports are available: a fixed structure on the ground, a floating structure on the pond of the108

wastewater treatment plant and a two-axis solar tracker.109

The DC power generated by the solar panels is transferred to the AC bus through a group of110

DC/AC three-phase solar power inverters. These inverters include maximum power point trackers111

(MPPT) to ensure that the solar cells work at the optimum point of their voltage-current curve, which112

varies depending on the incident radiation. The inverters can be regulated to produce only a percentage113

of the available energy. Thus, in terms of the energy management algorithm the solar inverters will be114

a controllable input of the system.115

2.1.2. The Battery Storage System116

The microgrid contains a lead-acid battery bank which is used as s low-term ESS. The battery is117

connected to the AC bus through a set of battery inverters (one for each phase). These inverters are118

also responsible for maintaining the voltage and frequency parameters of the microgrid.119

2.1.3. The Power Consumers120

The PV electric power is used to supply the winery’s wastewater treatment plant and the irrigation121

system. Specifically, this energy demand includes the power consumed by the water treatment plant122

(aerators), a set of elevation pumps used for irrigation and a system of hydrogen production used to123

fuel a hybrid electrical vehicle [20]. Moreover, the aerators are power loads that can be advanced or124

postponed from its scheduled time. This re-schedule of the load will be managed by the controller125

proposed in this work.126

2.2. Estimation of Solar Irradiance127

The energy production system is a set of solar panels, which transforms solar radiation into128

electric energy. In order to design a predictive control, it’s necessary to have some knowledge about129

the future of the system. Although nowadays there exist excellent weather forecast services they130
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are usually available in isolated areas. Thus, it is crucial to develop a model that forecasts the solar131

resource received by the panels, and more specifically, it’s clear-sky direct normal irradiance (DNI).132

In the literature, clear-sky DNI is defined as the direct solar irradiance that did not interact133

with the atmosphere and is received by a plane normal to the sun [21]. Two types of clear-sky DNI134

forecasting models can be found in the literature: radiative transfer models and empirical ones [22].135

Radiative transfer models are based on an accurate estimation of the atmosphere’s state. Although136

this type of model estimates clear-sky DNI with really high accuracy [23], it is necessary to compute137

complex calculations using data difficult to be obtained. As a consequence, radiative transfer models138

are not convenient for predictive control. In this work, an empirical model based on [24] is used.139

2.2.1. Solar Constant140

The solar constant Gsc is the solar radiation per unit of time received on a unit area of a surface
perpendicular to the direction of circulation of the radiation at an average earth-sun distance without
considering the atmosphere [25]. A constant value of Gsc = 1360.8W/m2 [25] is the most used value in
the industry; however there are some sources of variation. The elliptic orbit of the earth around the
sun induces a variation, up to 3,3%, of the solar radiation. This dependence can be represented by the
following equation [26]:

Gon = Gsc

(
1 + 0.034 cos

(
2πn
nd

))
(1)

where nd is the number of days in the year, nd = 365 or 366 (leap-years). And n is the day number,141

n ∈ [1, nd]. The modified solar constant (Gon) represents the power received from the sun on a plane142

normal to the direction of propagation.143

2.2.2. Geometric Considerations144

Figure 2. Set of angles of a inclined surface

Solar panels may not always be normal to solar radiation, thus it is necessary to define the145

geometric relationship between the solar radiation and a surface arbitrary oriented and positioned on146

earth. With this objective in mind, a set of angles is defined as depicted in Figure 2:147

• Latitude (ϕ): Geographic coordinate that specifies the north south position of the surface’s center;

−90◦ ≤ ϕ ≤ 90◦
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• Declination (δ): The angular position between the sun on the local meridian and the plane of the
equator;

−23.45◦ ≤ δ ≤ 23.45◦

Which can be estimated with the following equation [27]:

δ = 23.45 sin
(

2π
284 + n

nd

)
(2)

where nd and n are defined in (1).148

• Slope (β): The angle between the surface’s plane and the horizontal plane.149

• Surface azimuth angle (γ): Angle between the surface’s vector of the perpendicular projection
on a horizontal plane and the south vector;

−180◦ ≤ γ ≤ 180◦

• Hour angle (ω): The angular variation of the local meridian due to rotation of the earth, at 15◦

per hour;
−180◦ ≤ ω ≤ 180◦

• Zenith angle (θz): Angle between the solar radiation and the zenith of the panel;

−90◦ ≤ θz ≤ 90◦

• Angle of incidence (θ): Angle between the direct radiation on a surface and the normal to that150

surface;151

The angle of incidence can be derived from this set of angles [28] as follows:

cos θ = sin δ sin ϕ cos β− sin δ cos ϕ sin β cos γ + cos δ cos ϕ cos β cos ω

+ cos δ sin ϕ sin β cos γ cos ω + cos δ sin β sin γ sin ω
(3)

The angle θ may exceed the 90◦, which means the sun is behind the surface. In photovoltaic152

applications this fact implies null generation from the panels.153

2.2.3. Geometric Considerations for Tracking Surfaces154

The solar photovoltaic system includes a PV array mounted on a two-axis solar tracker, which155

continuously changes the surface slope (β) and azimuth angle (γ) in order to minimize the angle of156

incidence and to maximize the solar irradiance captured by the panels. In this context, the following157

assumption can be made cos θ = 1.158

2.2.4. Extraterrestrial Irradiance159

The defined set of angles and the modified solar constant can be used to estimate the solar160

radiation received by the panels as Gb,τ = Gon cos θ. This estimation does not include the effects of the161

atmosphere and, for this reason, the calculated irradiance is known as extraterrestrial irradiance.162

Each PV array include a pyranometer that measures the solar irradiance that reaches163

perpendicularly the panels’ plane. In Figure 3, it is shown the difference between the computed164

extraterrestrial radiation and the actual irradiance measured at the panels’ pyranometer.165

It can be seen that the extraterrestrial irradiance values are significantly higher than the measured166

ones. This is due to the fact that the solar radiation must cross the earth’s atmosphere and react with its167

elements before reaching the solar panels. The inclusion of this attenuation in the model is explained168

in section 2.2.5.169
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Figure 3. Comparison of computed extraterrestrial irradiance [yellow], irradiance data measured with
the panels pyranometer [blue] and clear sky DNI estimation [orange]. Date: 27/06/2016.

2.2.5. Atmospheric Attenuation and Clear-Sky Irradiance170

Solar radiation is subject to variations as it crosses the terrestrial’s atmosphere. Under cloudless171

skies, there are two significant phenomena that induce some attenuation to the solar radiation:172

• Scattering as the radiation interacts with the atmospheric molecules.173

• Absorption of the radiation by the molecules O3, H2O and CO2.174

In [24] a model of the atmosphere attenuation based on a modification of the Kasten-reviewed Linke
turbidity coefficient (TL) [29] is proposed as:

Ics = bGb,τe−0.09m(TL−1), (4)

where Ics is the attenuated extraterrestrial irradiance or clear-sky DNI and b is a correction coefficient
defined as follows [24]:

b = 0.0664 + 0.163e

( h
8000

)
. (5)

The parameter h is the panel’s height above sea level in meters and m is the relative optical air mass. In
[30] a formulation dependent on the zenith angle (θz) is proposed:

m =
1

cos θz + 0.1013θz

(
94.37515− θz

180
π

)−1.21563 . (6)

The value TL is the modified Linke turbidity coefficient and can be computed in the following way
[24]:

TL =
11.1
m

ln
(

bGb,τ

I

)
, (7)

where I is the normal irradiance measured by a pyranometer located at the surface of the solar panel.175

As illustrated in [21] the turbidity coefficient is relatively stable throughout cloudless daylight
hours. In [31] the following day-ahead clear-sky DNI forecast is proposed:

Ics = bGb,τe−0.09m(TL,n−1−1), (8)

where TL,n−1 is the daily mean value of the atmospheric turbidity of the previous day and n is the176

number of the day n ∈ [1, nd].177
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Moreover, in the computation of TL,n−1, two constraints are imposed:178

• Atmospheric turbidity values corresponding to solar zenith angles greater than 75◦ are removed.179

• A minimum number of 60 clear-sky data is needed. Otherwise, the most recent historical clear-sky180

data is used.181

In Figure 3, it is represented the difference between the actual irradiance measured at the182

panels’ pyranometer, the computation of the day-ahead clear-sky DNI forecast and the computed183

extraterrestrial irradiance. It can be seen that the model presented in this section forecasts the clear-sky184

DNI with more precision than the extraterrestrial irradiance model. Using the Root Mean Square Error185

(RMSE) as a performance indicator, it can be observed that the RMSE has been reduced from 142.36186

W
m2 to 35.13

W
m2 .187

2.2.6. Solar Energy Conversion188

The solar panels convert solar radiation into DC electric energy, which will be converted into AC189

current through the corresponding power inverters. In this process, a series of efficiencies must be190

taken into account.191

• Solar panel efficiency (ηp): Relation between the solar radiation perpendicular to the panel192

surface and the output of electric energy from the panel.193

• Inverter efficiency (ηinv): Relation between the output AC electric energy and the input of DC194

electric energy.195

Thus, the electric energy that the AC bus will receive from the solar panels can be estimated for
any given solar radiation by:

Poutput = NSηinvηp Ics (9)

where N is the number of solar panels, S is its individual area and Ics is the perpendicular solar196

radiation that reaches its surface.197

In this work, a set of solar inverters acts as an interface between the DC grid of the solar panels198

and the AC bus of the microgrid. These inverters can be controlled for power regulation between199

the photovoltaic system and the microgrid. Therefore, the electrical energy introduced to the system200

through the solar panels’ inverters (PSOL) is a controllable input of the microgrid. Obviously, this input201

will be bounded by the available solar energy, i.e. 0 ≤ PSOL ≤ Poutput.202

2.3. The Battery Storage Model203

2.3.1. Battery model204

Figure 4. Battery equivalent circuit model

A battery is an electrochemical device capable of converting chemical energy into electrical one205

(discharging) and vice versa (charging). In order to implement a predictive management strategy, a206

model that approximates the battery’s performance is needed.207
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Figure 5. Evolution of the battery open circuit voltage as function of SOC. The set of data points have
been fitted with a linear regression

Figure 6. Comparison of computed battery SOC [orange] and actual data of the SOC [blue]

In energy management systems, an essential variable is the amount of energy stored in the battery,
which can be quantified with the state of charge (SOC). The definition of SOC is the ratio of the remaining
capacity to the nominal capacity of the battery, which can be described as,

SOC =
1

Cn

∫ t f

0
IBATdt. (10)

Thus, the prognostication of the battery’s SOC consists in an estimation of the future charging and208

discharging currents (IBAT), which can be deduced from the prediction of the energy generated by the209

photovoltaic panels and the scheduled energy consumption of the system. Assuming that the MPC210

will work with a low sampling rate, a quasi-stationary model of IBAT evolution could be implemented.211

The battery can be modeled as a voltage source (UBAT,oc), also called open circuit voltage,
connected to an internal resistance (RBAT) [32]. The circuit is depicted in Figure 4. In this scheme, the
terminal voltage of the battery is given by

UBAT = UBAT,oc − RBAT IBAT , (11)
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Figure 7. Profile of power produced by the solar subsystem [orange] and consumed [blue]

where UBAT is the terminal voltage. The current yielded by the battery is computed from the power212

demanded to the battery PBAT :213

PBAT = UBAT,oc IBAT − RBAT I2
BAT (12)

IBAT =
UBAT −

√
U2

BAT,oc − 4RBAT PBAT

2RBAT
(13)

where IBAT is defined positive while discharging.214

Furthermore, the battery’s open circuit voltage (UBAT,oc) depends on the state of charge (SOC)215

and several other factors as thermal effects and filtered battery current [33]. In the microgrid under216

consideration the batteries are inside a temperature-controlled room, so temperature can be assumed217

constant and thermal effects will not be taken into account.218

Described battery equations are nonlinear, this makes difficult to apply optimizers, so a linear219

version of them has been developed. With this perspective, the battery charging/discharging current220

(IBAT) can be assumed to be constant and equal to the nominal value IBAT = IBAT,nom. Consequently221

the open circuit voltage can be considered nearly constant [34].222

Figure 5 shows the battery open circuit voltage, obtained from experiments, as a function of the223

SOC. In the range 0.5 ≤ SOC ≤ 0.85 the variation of UBAT,oc is less than 2 volts, it allows to validate224

previous assumption.225

Battery losses can be characterized through constant efficiencies αch/αdch. Consequently, the
following linear characterization of the battery SOC can be developed from equation (10):

dSOC
dt

=
1

Cn
IBAT =

1
CnUBAT,oc

PBAT (14)

The power that is charged or discharged from the battery PBAT depends on the difference between
the power generated by the photovoltaic panels, PSOL, and the power consumed by the system Pc.
Hence, two expressions can be obtained from equation (14):

dSOC
dt

=


Pc ≤ PSOL

1
CnUBAT,oc

ηinvαch (PSOL − Pc)

Pc > PSOL
1

CnUBAT,oc
ηinvαdch (PSOL − Pc)

(15)

where ηinv is the efficiency of the battery inverters.226
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Figure 6 shows a comparison between the measured data and the computed one. The inputs227

of the model are the profiles of PSOL and Pc measured online with the system inverters, depicted in228

Figure 7.229

2.3.2. Battery Degradation230

Degradation is one of the main disadvantages of this electrochemical ESS. In the case of microgrids,231

the estimated lifetime of the battery is lower than that of the other elements of the system, thus, the232

maintenance and renovation of the battery system is a crucial cost of the microgrid. With this premise,233

it seems reasonable to include the battery degradation as one of the criteria be to minimized.234

The rate of capacity loss is a complex nonlinear process dependent on factors as the state of charge235

(SOC), temperature, depth of discharge (DOD), discharge rate, time and environmental conditions of236

the battery [35]. In this work, it is assumed that the temperature and environmental conditions of the237

battery cannot be modified, as they are stored in a temperature-controlled room, thus, these factors238

will not be taken into account.239

With this assumption, the concept of Ah-throughput can be used to estimate the battery’s lifetime240

[36]. Ah-throughput represents the quantity of charge delivered by the battery. It is expected that241

there is an amount of Ah-throughput that can circulate through the battery before it reaches the end of242

lifetime (EOL) [37].243

In order to understand the concept of Ah-throughput it is necessary to introduce two new244

variables:245

• Crate: The ratio between the battery current and its nominal capacity.

Crate =
|IBAT |

Cn
(16)

• Depth of Discharge (DOD): The complementary of the SOC.

DOD = 100− SOC (17)

The nominal current of the battery Inom is the current produced if the battery is charged/discharged
with a Crate = 1, depth of discharge of DOD = 100% and temperature of 25◦C. Then, the nominal
Ah-throughput of a battery is defined as:

Ahn =
∫ EOL

0
|Inom|dt. (18)

For an arbitrary battery current, the effective Ah-throughput can be computed as:

Ah =
∫ t f

0
|IBAT |σdt (19)

where σ is the severity factor, which depends on the Crate and the DOD. In this study, the battery’s246

nominal capacity is large enough to assume that the Crate will always be below 2, hence the severity247

factor has a negligible effect and can be considered to be one [38].248

Finally, the battery lifetime Bl can be computed as,

Bl =
Ah
Ahn

100 [%] (20)

It can be observed that a reduction in the effective Ah-throughput can lead to an extension of the249

battery lifetime. Thus, a reduction in the charge/discharge currents IBAT requested to the battery can250

lead to a significant extension of the battery lifetime.251
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2.4. Hydrogen generation facility252

The variability and unpredictability of the solar energy source might be compensated with a253

battery system, which stores the energy excess of high irradiance hours and supplies it to the loads254

in low irradiance hours. However, in some conditions, the solar inverters might have to reduce the255

generation of electrical energy. For example, when the generation exceeds the energy demand and256

the battery bank is too stocked to store it. This generation reduction is a direct energy loss that has to257

be avoided. For this reason, it is convenient to have an auxiliary system that can utilize this energy258

surplus.259

In the scenario under study[18] [43], there is a facility that generates hydrogen in order to refuel260

a fuel cell hybrid electrical vehicle. The main element of this subsystem is an alkaline electrolyser261

ACTA EL-500, which produces hydrogen through the electrolysis of water. When conditions of energy262

excess and high battery’s SOC are faced, the energy management system turns on the hydrogen facility263

so solar energy is not wasted. However, in some cases, it is advantageous to start the hydrogen264

production before these conditions are met. For this reason, further optimization can be achieved if the265

hydrogen scheduling problem is solved with the predictive approach.266

The hydrogen facility will be modeled as an ON/OFF system. In the state ON the hydrogen267

facility will demand the operational power of its components. In the state OFF, the hydrogen facility268

will be supplied with a fraction of the electrolyser operational power, as too low energy supply may269

create hazardous conditions for the alkaline electrolyser. Therefore, the hydrogen facility is always270

supplied with some energy. The difference between an active hydrogen facility (state ON) or inactive271

(state OFF) is the amount of energy demanded. The activation of the hydrogen facility will be a272

controllable input of the microgrid.273

3. Control problem274

Continuous decision variables
PSOL Electrical output of the solar panels controlled by the inverters

Binary decision variables
vd Variable denoting the activation of load d
α Variable denoting the activation of the hydrogen facility
zd Variable denoting that the flexible load d is active
b Variable denoting the charging of the battery

Parameters
D Power demand of the flexible load
L Minimum consecutive active time intervals of the flexible load
T0 Scheduled activation time of the load
Sl Maximum time intervals that the flexible load can be advanced/delayed

PBAT Maximum battery charge/discharge power
SOC/SOC Maximum/minimum allowed state of charge

Table 2. Description of the MPC’s decision variables and parameters

3.1. Introduction275

For the formulation of the control problem, it is convenient to define the controllable inputs276

and the measured variables needed by the controller. Accordingly, the controllable inputs can be277

characterized as follows:278

• PSOL: Real variable depicting the electrical energy introduced to the system through the inverters279

of the solar panels. Note that this variable will be bounded by the available solar energy.280

• vd: Binary signal that activates the time flexible load d. The loads that are time inflexible will not281

be governed by the controller of this work.282

• α: Binary signal that governs the activation of the hydrogen facility.283
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Figure 8. General control scheme of the proposed methodology

In order to compute the control action, the controller needs to have some knowledge about the284

state of the system. In this work, the controller requires information about the batteries’ state of285

charge. Moreover, in order to estimate the solar irradiance (Ics), it is necessary the computation of the286

daily mean of the atmospheric turbidity (TL,n−1). This computation involves the measure of the solar287

irradiance (I). Finally, the MPC requires the knowledge of the loads schedule,P f l
c and Pi f l

c . In Figure 8,288

it can be seen the general control scheme.289

Model Predictive Control (MPC) is a well-known control strategy that has proved to provide290

positive results in applications where tight performance is needed under several process constraints291

[41]. The main concept of MPC is to use a model to predict the behavior of the system, and then,292

apply some optimization technique in order to determine a control action that enhances the predicted293

behavior [42]. In predictive schemes, at each time step, the current control input is found by solving a294

finite horizon optimization problem.295

The main elements of the MPC are the model used to compute the predictions, the cost function to296

be minimized, the process constraints to be satisfied and the prediction horizon of the optimization.297

3.2. Cost function definition298

The MPC’s algorithm aims to minimize the cost function with the proper selection of the control299

action. Hence, the cost function has to be a description of the desired control objectives, which, in this300

work, can be defined as follows:301

• To ensure that the demand of the system can be afforded.302

• To maximize the production of H2 from the hydrogen facility.303

• To avoid actions that can damage the battery system.304

The first control objective is considered to be mandatory, for this reason it will be introduced as a305

hard constraint instead of a term of the cost function.306

The rest of the control objectives will be directly included in the cost function:307
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• Large discharge rate of the battery is one of the main factors that contributes to its degradation,
due to this, the following term will be included:

J1(k) = (Pdch
BAT(k))

2.

• Maintaining the batteries around a reasonable SOC is crucial to ensure the uninterrupted supply
of the power to the scheduled energy consumption. To accomplish this the following term is
included:

J2(k) = (SOC(k)− SOC)2,

where SOC corresponds to the reference value.308

In cases where the microgrid is no self-sufficient, the reference value SOC may not be trackable by309

just the RES generation and it may be necessary to exchange energy with the grid. In such cases,310

the viability of the control scheme can be studied through indicators such as energy-independence311

and self-supply [43][44], which could be optimized by adding an additional term in the cost312

function that penalizes the exchange with the grid [43].313

• To maximize the production of hydrogen, the following term is considered:

J3(k) = −(α(k))2.

All these terms will be combined in the cost function as:

J(k) = c1 J1(k) + c2 J2(k) + c3 J3(k), (21)

where c1, c2 and c3 are three weighting terms to be fixed.314

3.3. Characterization of Time Flexible Loads315

Figure 9. Characterization of the power demanded by a consumption load

Some loads could be described as time flexible, meaning that they can be advanced or delayed316

from the scheduled time [18]. In this work, it is considered that the consumption of the aerators of the317

wastewater treatment system can be shifted in time. This flexibility can be used to readjust the load318

schedule to the variability of renewable supply, which may result in a reduction of the size and use of319

the battery system.320

In the following how these loads can be modeled in order to introduce them in the optimization321

problems will be described.322

An energy load can be characterized by a constant power demand D that has to be supplied323

during a minimum of L consecutive sampling time intervals, from a scheduled starting time, T0, to324

an end time, T0 + L, depicted in Figure 9. In other words, they can be advanced or delayed some325

time from the scheduled starting time, T0. Note that only the starting time is modified, the minimum326
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duration, L, remains invariant. Hence, a consumption load advanced n time intervals would start at327

time T0 − n and end at T0 − n + L.328

Time flexibility is acknowledged to be bounded, thus, consumption loads can be advanced or329

delayed to a maximum of Sl time intervals.330

This formulation, in contrast to the one of the time inflexible loads, doesn’t define a unique331

solution, as the consumption load can start at any sampling time k ∈ {T0 − Sl , T0 + Sl}. Hence, the332

system flexibility is increased and a further optimization can be achieved.333

The load will be represented as signal P f l
c (k) ∈ R+ which can take two values, 0 if the load is not

active and D ∈ R+ if it is active. In order to transform in terms of binary variables it is rewritten as :

P f l
c (k) = zd(k) · D ∀k, (22)

where zd(k) ∈ B are binary variables which will be defined over the optimization procedure.334

In order that P f l
c (k) fulfills the desired characteristics different constrains will be defined over the335

binary variables zd(k) :336

1. To guarantee that P f l
c (k) is active in the interval {T0 − Sl , T0 + Sl} it is necessary to fulfill that :

Constraint 1: ∑
k∈{T0−Sl ,T0+Sl}

P f l
c (k) ≥ Ed (23)

where Ed is a constant parameter that can have any value bounded to 0 < Ed < D.337

2. To force that P f l
c (k) starts in some time k ∈ {T0 − Sl , T0 + Sl} the following condition is also

considered
Constraint 2: P f l

c (k)− P f l
c (k− 1) ≤ Tsl(k)D ∀k (24)

where Tsl(k) ∈ B equals 1 if k ∈ {T0 − Sl , T0 + Sl}, otherwise, Tsl(k) = 0.338

3. Finally, to ensure that P f l
c (k) remains active at least L consecutive time intervals the following

constrain is required

Constraint 3:
k

∑
k−L

vd(k) ≤ zd(k) ∀k, (25)

where vd ∈ B is a binary variable that is equal to 1 if and only if zd(k)− zd(k− 1) = 1. This is
usually implemented including the additional constrain:

Constraint 4: vd(k) ≥ zd(k)− zd(k− 1) ∀k. (26)

3.4. Controller formulation339

Proposed controller will try to minimize the cost function defined in section 3.2, during the340

system evolution. To do this a MPC approach will the used, in this context the dynamic problem is341

transformed into an static one focusing in a finite horizon. To do this, the system behavior is rewritten342

as a set of constrain over the optimization. First ones correspond to a discrete time version of the343

system dynamic, (15):344

SOC(k) = SOC(k− 1) + PBAT(k) (27)

PBAT(k) = αchPch
BAT(k)− αdchPdch

BAT(k), (28)

where αch ∈ R+ and αdch ∈ R+ represent charging and discharging efficiencies and Pch
BAT(k) ∈ R+ and

Pdch
BAT(k) ∈ R+ correspond to the charging and discharging battery powers. Secondly, a power balance

constrain is included:

PSOL(k)− PBAT(k)− Pi f l
c (k)− P f l

c (k)− PH2 α(k) = 0 (29)
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where PSOL(k) represents the electrical power coming from the photovoltaic inverters, P f l
c and Pi f l

c345

represents the power from the flexible and inflexible loads respectively loads, PH2 represents the346

electrical power consumed by the electrolyser and α(k) ∈ B is a binary variable used to indicate if the347

electrolyser is turned on or off..348

To guarantee the consistency in previous formulation, it is assumed that the charge and discharge349

processes cannot occur simultaneously; hence, a complementarity constraint is introduced:350

b(k)PBAT ≤ Pdch
BAT(k) ≤ b(k)PBAT (30)

(1− b(k))PBAT ≤ Pch
BAT(k) ≤ (1− b(k))PBAT (31)

where PBAT ∈ R+ is the operational upper limit of power through the battery, and b(k) ∈ B is a binary351

variable necessary to obtain a linear complementarity constraint. A part from that, some constrains are352

considered to ensure that all variables are inside the required ranges:353

SOC ≤ SOC(k) ≤ SOC (32)

0 ≤ Pch
BAT(k) ≤ PBAT (33)

0 ≤ Pdch
BAT(k) ≤ PBAT (34)

where SOC and PBAT denotes the maximum value of SOC and PBAT , respectively, and SOC denotes354

the minimum value of SOC.355

The electrical energy generated by the solar panels is constrained by the available solar irradiance,
which will be estimated with the irradiance model presented in section 2.2:

0 ≤ PSOL(k) ≤ P̂SOL(k) (35)

where P̂SOL(k) is the estimated potential generation of solar electric energy.356

Finally, it is necessary to include all the constraints related to the time flexible loads described in357

section 3.3.358

Combining the cost function, the free variables used to obtain the optimal solution and the set of359

constrains previously introduced, the following optimization problem is formulated:360

min
PSOL(k),zd(k),vd(k),α(k),b(k)

=
N

∑
k=1

c1 · J1(k) + c2(k) · J2(k) + c3 · J3(k)

s.t.
SOC(k) = SOC(k− 1) + PBAT(k)
PBAT(k) = αchPch

BAT(k)− αdchPdch
BAT(k),

}
System dynamics

PSOL(k)− PBAT(k)− Pi f l
c (k)− P f l

c (k)− PH2 α(k) = 0
}

Power balance

b(k)PBAT ≤ Pdch
BAT(k) ≤ b(k)PBAT ,

(1− b(k))PBAT ≤ Pch
BAT(k) ≤ (1− b(k))PBAT ,

SOC ≤ SOC(k) ≤ SOC,
0 ≤ Pch

BAT(k) ≤ PBAT ,
0 ≤ Pdch

BAT(k) ≤ PBAT ,
0 ≤ PSOL(k) ≤ P̂SOL(k),


Operational constrains

∑k∈{T0−Sl ,T0+Sl} P f l
c (k) ≥ Ed

P f l
c (k)− P f l

c (k− 1) ≤ Tsl(k)D ∀k
∑k

k−L vd(k) ≤ zd(k) ∀k
vd(k) ≥ zd(k)− zd(k− 1) ∀k.

 Flexible loads
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where N corresponds to the prediction horizon discussed in section 3.5. The overall problem contains361

3N decision variables, which are: PSOL(k) (real), vd(k) (binary) and α(k) (binary). It also contains N362

state variables, SOC(k), and 5N auxiliary variables, PBAT(k), Pch
BAT(k), Pdch

BAT(k), b(k), zd(k). Finally, the363

problem contains 4N equality constraints and (15 + N − L + 1)N inequality constraints. To address364

this problem optimization a mixed integer linear programming is required.365

3.5. Prediction horizon366

Adopting a suitable prediction horizon is crucial to obtain interesting results. However, selecting367

the correct horizon is not an obvious problem. On the one hand, implementing a large prediction368

horizon can be very computationally costly, as the size of the optimization problem is proportional369

to the size of the horizon. Moreover, the accuracy of the prediction is compromised in the final time370

intervals of a large horizon, especially in the prediction of the solar irradiance. On the other hand, a371

small prediction horizon combined with unfavorable plant characteristics can easily drive the controller372

unstable [42].373

In this work, a prediction horizon of 24 hours, with a sampling time of 10 minutes, has been374

implemented. With this horizon, the value of the factor N would be 144.375

3.6. Parameter uncertainty and robustness376

Notice that the proposed control scheme is based on a deterministic representation of the377

microgrid. In a realistic scenario, some uncertainty on the model’s parameters should be expected. Due378

to the closed loop nature of the MPC scheme, the controller is expected to present certain robustness379

to small parametric uncertainty. Nevertheless, the presented model is sensitive to the forecasted380

parameters, i.e., the solar irradiation forecast and load consumption. Next section will show that, in381

the considered case scenario, the proposed MPC scheme achieves acceptable results. Nonetheless, the382

performance of the controller could be further improved by considering a robust MPC scheme. This383

type of controller can achieve solutions that remain feasible even if uncertain variables are changing,384

which has been shown to be really useful on similar power grids problems [45][46].385

4. Results and discussion386

Figure 10. Simulation profiles. Prediction of PV power [blue], estimation of PV power with perturbation
[orange] and original system power demand [yellow]

In order to evaluate the applicability of the proposed control strategy, different simulations have387

been performed. The simulation has been computed in MATLAB 2018a using the optimization software388

CPLEX studio 12.8 with an i7–8700K processor and 16 GB of RAM. Furthermore, the simulation starts389

at date 09/04/2016, has a period of 72 hours and the predicted horizon is 24 hours, which results390
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in N = 144. The system has been subjected to a profile of energy demand that has to be supplied391

by the photovoltaic panels. In order to introduce some disparity between the MPC’s estimation and392

the simulation, the system will be subject to an experimental profile of solar irradiance, using data393

measured at the panels pyranometer. In summary, three profiles have been introduced to the system:394

an energy demand profile, an estimation of available solar energy (used in the MPC’s computations)395

and an experimental profile of available solar energy (used in the simulation), which are depicted in396

Figure 10.397

It is important to remark that the profile of energy demand depicted in Figure 10, is the summation398

of all the system’s loads, except the power supplied to the H2 production. Furthermore, only one of the399

aerators (aerator 1) schedule can be advanced or postponed up to two hours from the scheduled time.400

Moreover, experimental data of the battery’s SOC under the experimental profile of solar401

irradiance has been acquired. This data has been used to compare the results of the MPC’s energy402

management with the energy management implemented in [18]. Two cases have been studied and403

compared with the experimental data. In the first one, no production of hydrogen and no re-schedule404

of the aerator 1 load is allowed. With these conditions, the behaviour of the system is very similar to405

the one without MPC. In the second one, the controller can re-schedule the aerator consumption and406

to activate the hydrogen facility.407

The results of the simulation have been the following. In the first case, the profile of PV energy408

introduced to the system (control input PSOL) has been exactly the same as the experimental PV power409

of Figure 10, and the profile of energy demand has also been the same as the one presented in Figure410

10. The evolution of the battery’s SOC has been very similar to the one depicted in the experimental411

data, represented in Figure 11.412

Figure 11. Batteries’ SOC evolution. SOC’s evolution case 1 [blue], SOC’s evolution case 2 [orange]
and experimental data of the batteries’ SOC [yellow].

In the second case, production of hydrogen and re-schedule of the aerator 1 load is allowed.413

Similar to the first case, the profile of PV energy introduced to the system (control input PSOL) has414

been identical to the experimental profile of available solar energy. However, some differences can415

be observed in the profile of energy demand, in Figure 12, and in the battery’s SOC profile, in Figure416

11. On the first day, the load of the aerator 1 has been advanced 60 minutes from its scheduled time.417

On the second day, the aerator 1 has been advanced 10 minutes. On the third, it has been advanced418

60 minutes. This re-schedule of the loads has produced a different evolution of the battery’s SOC,419

as depicted in Figure 11, and has reduced its charge and discharge effort. A further explanation is420

included below.421

In terms of the amount of energy cycled in the battery, in the first simulation case, the total amount422

of energy introduced and extracted has been 180 kWh and 71 kWh, respectively. These values agree423
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Figure 12. Energy demand profiles. Energy demand case 1 [blue] and energy demand case 2 [orange]

with the experimental data. In the second case, a total amount of 177 kWh has been charged to the424

battery (reduction of 1.46%) and a total of 66 kWh has been discharged (reduction of 6.6%). These425

results show that the implemented MPC has reduced the amount of energy cycled in the battery,426

compared to that obtained without MPC in [18]. This suggests that the inclusion of the MPC could427

reduce the size of the needed battery. This possibility could be taken into account when sizing the428

system [11], for instance, through simulation and optimization processes by genetic algorithms [9]. In429

this way, a reduction in the cost of the system and the energy produced is expected, similar to that430

obtained in [16].431

It is noticeable that at the start and end of each day, the solar generation is lower than the energy432

demand; in consequence, a period of fast discharge rate is requested to the battery. To reduce battery433

degradation, low SOC levels should be avoided. As it can be seen in Figure 11, the re-scheduling of434

the time flexible load has reduced the discharge at the end of each day (912 min, 2355 min and 3799435

min) by increasing the discharge at the start of the day (441 min, 1900 min and 3228 min). Moreover,436

the discharge increase at the start of the day has been lower than the discharge reduction at the end of437

the day. As stated before, the charge of the battery has been reduced in 1.46% and the discharge in438

6.6%, therefore, the accumulated charge has increased in the second simulation case. For this reason,439

the SOC’s value at the end of each day (1100 min, 2556 min and 4000 min) is higher in case 2, depicted440

in Figure 11, which is beneficial for the microgrid, as the system will be more robust to unexpected441

increases of the system’s demand or unexpected reductions of the available solar energy. Furthermore,442

battery degradation, as well as operation and maintenance costs will be reduced [10].443

In both cases, and in the experimental data, there was no activation of the hydrogen facility. In444

order to evaluate the benefits of the controller in terms of hydrogen production, two more simulation445

cases have been studied. The simulations have been exactly the same as the last ones (the first without446

reschedule of the aerator 1 and the second with reschedule) but, in this instance, the battery starts with447

5% more of SOC. In the case where re-schedule of the aerator 1 was allowed, there was an activation448

of the hydrogen facility, as depicted in Figure 13. The facility was switched on in the third day for a449

total duration of 50 minutes, which implies an approximate production of 417 Nl of hydrogen. It is450

remarkable that, even though the power consumption has increased, the major benefits of the controller,451

in terms of reducing the battery’s effort, can still be observed Figure 14. In this sense, the incorporation452

of MPC facilitates the deviation of the energy surplus for hydrogen production, alleviating the waste453

of energy that is usual in standalone fully based in renewable sources and non-dispatchable generation454

[5].455

For the suitable operation of the MPC, it is crucial that the elapsed time between MPC cycles is456

lower than the sampling time considered. In Figure 15, it can be seen that the elapsed time in each457
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Figure 13. Evolution of the power supplied for the generation of hydrogen

Figure 14. Batteries’ SOC evolution. SOC’s evolution without aerator 1 reschedule [blue], SOC’s
evolution with aerator 1 reschedule [orange]

cycle of the second simulation case has been between 0.25 and 0.04 seconds. This time is lower than458

the 10 minutes considered as the sampling time, therefore, the controller will not present any conflict459

on this issue. The other simulation cases present similar elapsed time evolution.460

5. Conclusions461

In this paper, the application of a model predictive control for the energy management in a462

standalone microgrid, whose only generation is photovoltaic, has been presented. The results show463

that the energy demand has been managed through changes in the schedule of deferrable loads. It464

should be noted that, given the predictive nature of the control developed, the management of the465

loads is not limited to deferring them, but also to advance them. Thus, a reduction in the amount of466

energy cycled in the battery has been obtained. In addition, the evolution of the battery SOC has been467

stabilized, avoiding deep discharges. These results suggest that the implementation of the MPC could468

reduce the need for storage, prolong the life of the battery and reduce the investment and operating469

costs of the system.470

Regarding the simulations performed including the production of hydrogen, its activation471

occurred before the battery reached a very high SOC. This avoids wasting energy that can not be stored472
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Figure 15. History of the time elapsed on each MPC cycle in the second simulation case

because the battery is completely full. In addition, when the system is sized, a smaller battery size473

could be chosen.474

New work is required to quantify the advantages obtained. Future research includes the475

application of the proposed model predictive control to several case studies in order to quantify the476

benefits obtained in terms of battery lifetime, both on energy and system costs, and on the reduction of477

energy surplus. Experimental validation of the proposed predictive scheme must also be carried out.478

Moreover, the performance of the controller could be improved with the use of more accurate models479

of the solar irradiance and the battery subsystem, and by the implementation of more complex control480

schemes as the robust or stochastic variants of the MPC.481
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MPC Model Predictive Control
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AC Alternating Current
DC Direct Current
PV Photovoltaic
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RMSE Root Mean Square Error

496



Version March 20, 2020 submitted to Energies 22 of 24

References497

1. Van den Bergh, J., Botzen, W., Monetary valuation of the social cost of CO2 emissions: A critical survey.498

Ecological Economics 114, 2015, 3-46. DOI:10.1016/j.ecolecon.2015.03.015499

2. R. A. Barreto, Fossil fuels, alternative energy and economic growth. Economic Modelling, 2018, 1–25.500

DOI:10.1016/j.econmod.2018.06.019501

3. Mahmud, N., Zahedi, A., Review of control strategies for voltage regulation of the smart distribution502

network with high penetration of renewable distributed generation. Renewable and Sustainable Energy Reviews503

64, 2016, 582–595. DOI:10.1016/j.rser.2016.06.030504

4. Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J., Review of energy system flexibility measures to enable505

high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews 45, 2015, 785–807.506

DOI:10.1016/j.rser.2015.01.057507

5. Fahad Zia, M., Elbouchikhi, E., Benbouzid, M., Microgrids energy management systems: A critical review on508

methods, solutions, and prospects. Applied Energy 222, 2018, 1033–1055. DOI:10.1016/j.apenergy.2018.04.103509

6. Chauhan, A.; Saini, R.P. A review on Integrated Renewable Energy System based power generation for510

stand-alone applications: Configurations, storage options, sizing methodologies and control. Renew. Sustain.511

Energy Rev. 2014, 38, 99–120. DOI:10.1016/j.rser.2014.05.079512

7. Al-falahi, M.D.A.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimization methodologies for513

standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274.514

DOI:10.1016/j.enconman.2017.04.019515

8. Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated516

microgrid with pumped-storage unit and demand response. Renew. Energy 2018, 123,517

460–474.DOI:10.1016/j.renene.2018.02.072518

9. Carroquino, J.; Dufo-López, R.; Bernal-Agustín, J.L. Sizing of off-grid renewable energy systems for drip519

irrigation in Mediterranean crops. Renewable Energy 2015, 76, 566–574. DOI:10.1016/j.renene.2014.11.069520

10. Spanos, C., Turney, D.E., Fthenakis, V., Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-,521

and valve-regulated lead-acid batteries designed for demand-charge reduction. Renewable and Sustainable522

Energy Reviews 43, 2015, 478–494.DOI:10.1016/j.rser.2014.10.072523

11. Yang, Y., Bremner, S., Menictas, C., Kay, M., Battery energy storage system size determination in renewable524

energy. Renewable and Sustainable Energy Reviews 91, 2018, 109–125. DOI:10.1016/j.rser.2018.03.047525

12. Carli, R., Dotoli, M., Energy scheduling of a smart home under nonlinear pricing. 53rd IEEE Conference on526

Decision and Control, Los Angeles, California, USA, 2014. DOI:10.1109/CDC.2014.7040273527

13. Wang, T., Kamath, H., Willard, S., Control and Optimization of Grid-Tied Photovoltaic Storage528

Systems Using Model Predictive Control. IEEE Transactions on Smart Grids, 5, 2, 2014, 1010–1017.529

DOI:10.1109/TSG.2013.2292525530

14. Hu, J., Xu, Y., Cheng, K.W., Guerrero, J.M., A model predictive control strategy of PV-Battery531

microgrid under variable power generations and load conditions. Applied Energy 221, 2018, 195–203.532

DOI:10.1016/j.apenergy.2018.03.085533

15. Wang, X., Li, L., Palazoglu, A., El-Farra, N.H., Shah, N., Optimization and control of offshore534

wind systems with energy storage. Energy Conversion and Management 173, 2018, 426–437.535

DOI:10.1016/j.enconman.2018.07.079536

16. Al-Ammar, E.A., Habib, H.U.R., Kotb, K.M., Wang, S., Ko, W., Elmorshedy, M.F., Waqar, A., 2020. Residential537

Community Load Management based on Optimal Design of Standalone HRES with Model Predictive538

Control. IEEE Access. DOI:10.1109/access.2020.2965250539

17. Pereira, M., Limon, D., Muñoz de la Peña, D., Valverde, L., Alamo, T., Periodic Economic Control540

of a Nonisolated Microgrid. IEEE Transactions on industrial Electronics, 62, 8, 2015, pp 5247–5254.541

DOI:10.1109/TIE.2015.2404815542

18. Carroquino, J., Roda, V., Mustata, R., Yago, J., Valiño, L., Lozano, A., Barreras, F., Combined production543

of electricity and hydrogen from solar energy and its use in the wine sector. Renewable Energy 122, 2018,544

251-263. DOI:10.1016/j.renene.2018.01.106545

19. Carroquino, J.; Bernal-Agustín, J.-L.; Dufo-López, R. Standalone Renewable Energy and Hydrogen in an546

Agricultural Context: A Demonstrative Case. Sustainability 2019, 11, 951. DOI:10.3390/su11040951547



Version March 20, 2020 submitted to Energies 23 of 24

20. Roda, V.; Carroquino, J.; Valiño, L.; Lozano, A.; Barreras, F. Remodeling of a commercial plug-in548

battery electric vehicle to a hybrid configuration with a PEM fuel cell. Int. J. Hydrogen Energy 2018.549

DOI:10.1016/j.ijhydene.2017.12.171550

21. Chauvin, R., Nou, J., Eynard, J., Thil, S., Grieu, S. A new approach to the real-time assessment551

and intraday forecasting of clear-sky direct normal irradiance. Solar Energy 167, 2018, 35–51.552

DOI:10.1016/j.solener.2018.02.027553

22. Gueymard, C.A., Ruiz-Arias, J A. Validation of direct normal irradiance predictions under arid conditions:554

A review of radiative models and their turbidity-dependent performance. Renewable and Sustainable Energy555

Reviews 45, 2015, 79–396. DOI:10.1016/j.rser.2015.01.065556

23. Gueymard, C.A. REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance,557

and photosynthetically active radiation – Validation with a benchmark dataset. Solar Energy 82, 2008, 272–285.558

DOI:10.1016/j.solener.2007.04.008559

24. Ineichen, P., Perez, R. A New Airmass Independent Formulation for the Linke Turbidity Coefficient. Solar560

Energy 73, 3, 2002, 151–157. DOI:10.1016/S0038-092X(02)00045-2561

25. Kopp, G. An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim., 2014,562

4. DOI:10.1051/swsc/2014012563

26. Spencer, J.. Fourier Series Representation of the Position of the Sun. Search, 2, 1972 162-172.564

27. Cooper, P. The Absorption of Solar Radiation in Solar Stills. Solar Energy, 12, 1969, 333-346.565

DOI:10.1016/0038-092X(69)90047-4566

28. Duffie, J. A., Beckman, W.A. Solar Engineering of Thermal Processes. Hoboken, New Jersey: John Wiley and567

Sons Inc. 2013568

29. Kasten, F. A simple parameterization of two pyrheliometric formulae for determining the Linke turbidity569

factor. Meteorol. Rdsch. 33, 1996, pp 124–127.570

30. Gueymard, C.. Critical analysis and performance assessment of clear sky solar irradiance models using571

theoretical and measured data. Solar Energy 51, 2, 1993, pp 121–138. DOI:10.1016/0038-092X(93)90074-X572

31. Inman, R.H., G. Edson, J., F.M. Coimbra, C. Impact of local broadband turbidity estimation on forecasting of573

clear sky direct normal irradiance. Solar Energy 117, 2015, pp 125–138. DOI:10.1016/j.solener.2015.04.032574

32. Hu, X., Li, S., Huei, P.. A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power575

Sources, 2012, pp 359–367. DOI:10.1016/j.jpowsour.2011.10.013576

33. Huria, T., Ceraolo, M., Gazzarri, J., Jackey, R. High Fidelity Electrical Model with Thermal dependence for577

characterization and simulation of high power lithium battery cells. Electric Vehicle Conference (IEVC).578

Greenville, SC, USA: IEEE. 2012. DOI:10.1109/IEVC.2012.6183271579

34. He, Y., Liu, X., Zhang, C., Chen, Z. A new model for State-of-Charge (SOC) estimation for high-power Li-ion580

batteries. Applied Energy 101, 2013, pp 808–814. DOI:10.1016/j.apenergy.2012.08.031581

35. Jin, X., Vora, A., Hoshing, V., Saha, T., Shaver, G., Wasynczuk, O., Varigonda, S. Applicability of available582

Li-ion battery degradation models for system and control algorithm design. Control Engineering Practice,583

2018, pp 1–9. DOI:10.1016/j.conengprac.2017.10.002584

36. Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Finamore, P. Cycle-life model585

for graphite-LiFePO4 cells. Journal of Power Sources, 2011, pp 3942–3948. DOI:10.1016/j.jpowsour.2010.11.134586

37. Serrao, L., Simona, O., Rizzoni, G., Guezennec, Y. A Novel Model-Based Algorithm for Battery Prognosis.587

IFAC Proceedings Volumes, 42, 8, 2009, pp 923–928. DOI:10.3182/20090630-4-ES-2003.0393588

38. Serrao, L., Onori, S., Sciarretta, A., Guezennec, Y., Rizzoni, G. Optimal energy management of hybrid589

electric vehicles including battery aging. Proceedings of the American Control Conference. 2011.590

DOI:10.1109/ACC.2011.5991576591

39. Joe Qin, S., Badgwell, T. A. A survey of industrial model predictive control technology. Control Engineering592

Practice 11, 2003, 733–764. DOI:10.1016/S0967-0661(02)00186-7593

40. Camacho, E., Bordons, C. Model Predictive Control. London: Springer-Verlag. 2004594

41. Carli R, Dotoli M, Jantzen J, Kristensen M, Ben Othman S, Energy schedulin gof a smart microgrid with595

shared photovoltaic panels and storage: The case of the Ballen marina inSamsø, Energy (2020), doi:596

https://doi.org/10.1016/j.energy.2020.117188.597

42. Kim M., Parkt S., Choi J., Lee J., Energy independence of energy trading system in microgrid, 2017 IEEE598

ISGT-Asia, Dec. 2017599



Version March 20, 2020 submitted to Energies 24 of 24

43. S. M. Hosseini, R. Carli and M. Dotoli, "A Residential Demand-Side Management Strategy under Nonlinear600

Pricing Based on Robust Model Predictive Control," 2019 IEEE International Conference on Systems, Man601

and Cybernetics (SMC), Bari, Italy, 2019, pp. 3243-3248. doi: 10.1109/SMC.2019.8913892602

44. J. S. Giraldo, J. A. Castrillon, J. C. López, M. J. Rider and C. A. Castro, "Microgrids Energy Management603

Using Robust Convex Programming," in IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4520-4530, July604

2019. doi: 10.1109/TSG.2018.2863049605

© 2020 by the authors. Submitted to Energies for possible open access publication under the terms and conditions606

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).607

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System modeling 
	Description of the facilities
	Solar Photovoltaic System
	The Battery Storage System
	The Power Consumers

	Estimation of Solar Irradiance
	Solar Constant
	Geometric Considerations
	Geometric Considerations for Tracking Surfaces
	Extraterrestrial Irradiance
	Atmospheric Attenuation and Clear-Sky Irradiance
	Solar Energy Conversion

	The Battery Storage Model
	Battery model
	Battery Degradation

	Hydrogen generation facility

	Control problem
	Introduction
	Cost function definition
	Characterization of Time Flexible Loads
	Controller formulation
	Prediction horizon
	Parameter uncertainty and robustness

	Results and discussion
	Conclusions
	References

