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Abstract— Today’s complex robotic designs comprise in some
cases a large number of degrees of freedom, enabling for
multi-objective task resolution (e.g., humanoid robots or aerial
manipulators). This paper tackles the local stability problem of
a hierarchical closed-loop inverse kinematics algorithm for such
highly redundant robots. We present a method to guarantee this
system stability by performing an online tuning of the closed-
loop control gains. We define a semi-definite programming
problem (SDP) with these gains as decision variables and a
discrete-time Lyapunov stability condition as a linear matrix
inequality, constraining the SDP optimization problem and
guaranteeing the local stability of the prioritized tasks. To
the best of authors’ knowledge, this work represents the
first mathematical development of an SDP formulation that
introduces these stability conditions for a multi-objective closed-
loop inverse kinematic problem for highly redundant robots.
The validity of the proposed approach is demonstrated through
simulation case studies, including didactic examples and a
Matlab toolbox for the benefit of the community.

I. INTRODUCTION

Modern robotic devices, such as humanoid robots [1], or
unmanned aerial manipulators [2], share the characteristic
of being highly kinematically redundant. This kinematic
redundancy exists when a robot has more degrees of free-
dom (DOFs) than those required to fulfill a particular task,
hence a robot controller may exploit the unused DOFs to
simultaneously achieve other compatible objectives, which
may be secondary. Solving a set of tasks, expressed in their
respective task spaces, requires to find the appropriate joint
commands, expressed in the robot joint space (also known as
configuration space or C-space). This procedure is known as
solving the inverse kinematics (IK) problem and is usually
done at a differential level (i.e., outputting joint velocities to
perform trajectory tracking). These IK approaches generally
suffer from drift as they do not receive any feedback from
the actions executed by the robot. To overcome this issue,
one can resort to closed-loop inverse kinematic (CLIK)
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schemes [3], [4], which consist in finding proper joint values
such that the task errors (comparison of desired and actual
values of a given task cost) are driven towards zero. Although
most IK algorithms can be easily modified to become CLIK
methods, there exist some implications when solving for
several tasks.

To solve multiple tasks simultaneously for a redundant
robot, a common approach is to introduce task priorities
while combining them in a single control law. Hence, if the
robot cannot fulfill all tasks, it can prioritize the solution of
those placed at the top of the hierarchy. A method to solve the
IK problem using a hierarchy of tasks was early introduced
in [5]. This technique satisfies lower priority tasks only in
the null space of the higher priority ones. A similar approach
is taken in [6], this time using task-augmented Jacobians. By
using these approaches, when two tasks are not independent
(i.e., when they share their corresponding null-space), the
algorithm suffers from algorithmic singularities, leading to
unstable joint velocities [7]. In [7], an algorithmic singularity
robust method is proposed to solve for two tasks separately
using a classical least-squares method. The conflict between
tasks is filtered out by projecting the second task solution into
the null-space of the first one. Even though the algorithmic
singularity disappears, this is a suboptimal solution and
hence, a greater tracking error appears. This approach is
analyzed and extended for several tasks in [8] where the
projection is done in the augmented null space. In this paper,
we have drawn inspiration from [8] to formulate a CLIK
problem. Although this null-space technique has been used in
recent works like [2], [9] or [10], they usually lack of a rigor-
ous formulation development. For instance, all these methods
are usually developed in continuous time while afterward
they are implemented in discrete time, hence bypassing the
influence of the sampling time into the overall system’s
performance. Besides, the overall control law stability has
not been analyzed and just analysis for individual tasks is
presented, without a mention of the instability behaviors that
can arise while combining them.

In closed-loop schemes, the analysis of the system stability
is a must even though, as in this case, a low-level controller
able to handle the computed velocities is assumed for each
actuator. In task-priority CLIK problems, this stability might
be affected by several factors. First, the completion of a par-
ticular task might prohibit the fulfillment of another eventual
task due to their antagonistic nature (e.g., the convergence
of all errors might be compromised since, by construction,
not all errors will converge towards zero). However, there
exists the case where all task errors behave as desired if



the proper closed-loop control gains are selected. Manually
tuning these gains can easily lead to undesired behaviors as
the error dynamics also depend on the robot configuration. In
that sense, [11] presents the dependency between tasks and
gains together with a way to measure it. Besides, [11] studies
the local stability of a task-priority CLIK problem taking
advantage of the Lyapunov theory, which allows finding
conservative upper and lower bounds for the task gains.
Unfortunately, the analytical developments presented in [11]
are focused on three tasks and become intractable when
extended to N tasks. A similar problem appears in [12]
where stability conditions are only provided for a single task.
An extension of [11] is [13], where the local stability of
systems dealing with inequality tasks is analyzed, however,
they assume a manually chosen set of gains and there is no
insight provided on how to compute them. The gain-tuning
solution is one of the main novelties presented hereafter in
this paper.

Most of the existing methods that analyze the use of
multiple tasks in a hierarchy are presented in continuous-
time formulations [11], [13]. Discrete-time CLIK schemes
add another factor to consider when proving the stability of
the system: the sampling time selection. This effect is studied
in [14] in the sense of Lyapunov theory, and in [12] without
resorting to such theory. However, in both cases, the analysis
refers to single tasks.

The novel contribution of this paper is a method to find
optimal task feedback gains for the discrete hierarchical
CLIK regulation problem, guaranteeing local stability of
all tasks in the hierarchy. We choose a singularity free
approach [8], describe it as a discrete-time CLIK system and,
taking advantage of an SDP problem definition, we find the
optimal gains which guarantee system stability. With the SDP
approach defined hereafter, local stability can be guaranteed
by adding a constraint to the optimization problem. This
constraint is formulated in the sense of Lyapunov and as
a linear matrix inequality (LMI), where the desired gains are
the optimization variables. Apart from guaranteeing local sta-
bility, this constraint allows us to modify the error dynamics,
i.e., to get faster or slower error convergence towards zero.
Besides, in the SDP we can account for the sampling time
and also add further conditions, such as to limit the joint
velocities. To the best of our knowledge, this is the first
work that uses an SDP formulation to introduce local stability
conditions in the solution of a hierarchical CLIK problem for
highly redundant robots. We stress that this work addresses
the local stability of the system as the global stability for
multiple task hierarchical resolution is still an open question
for discrete-time systems and we consider it out of the paper
scope. For the sake of simplicity, in the rest of the paper we
refer as stability to this local stability.

The remainder of this article is structured as follows. In
Section II, we describe the required background, including
the hierarchical IK and CLIK formulations. The system
stability developments are presented in Section III. Section
IV develops the formulation of the SDP problem to perform
an online tuning of the task gains while guaranteeing closed-

loop stability, together with additional constraints. The val-
idation of the proposed method is illustrated in Section V.
Finally, discussion and conclusions are drawn in Section VI.

II. BACKGROUND

This section introduces the required background formula-
tion related to IK and CLIK algorithms.

A. Hierarchical inverse kinematics

Our formulation has drawn inspiration from the algorith-
mic singularity-free IK presented in [8]. Let us define an i-th
task σi(t) ∈ Rni , with ni dimensions, as a function of the
robot joints,

σi(t) = fi(q(t)) , (1)

being q ∈ Rν the joint values, i.e., the robot configuration.
Solving the IK problem consists of finding the appropriate
values of q(t) such that σi(t) reaches some desired values
(for the sake of simplicity, the dependence on time t will
be omitted hereafter). This problem is typically tackled by
differentiating (1) with respect to time, such as

σ̇i = Jiq̇ , (2)

where Ji ∈ Rni×ν is the Jacobian matrix of the function fi
in (1). Then, the IK problem can be solved by inverting the
Jacobian matrix Ji

q̇ = J†i σ̇i , (3)

being J†i = J>i (JiJ
>
i )−1 ∈ Rν×ni the expression of the Ja-

cobian Moore-Penrose pseudo-inverse. Here, we assume to
be working in a region free from kinematic singularities,
hence Ji will be full rank and (3) does not make use of the
damped pseudo-inverse as in [8].

In order to accomplish a secondary task simultaneously
while imposing a hierarchy, one can take advantage of the
motions residing in the null space of the primary task.
That is, all motion belonging to the i-th task null space
does not effect the variable σ̇i. A first work presenting this
technique is [5] where joint velocities for the secondary task
are computed so as not to modify the primary task. However,
as analyzed in [7], this method suffers from algorithmic
singularities. Even though separate Jacobians from different
hierarchy levels are full-rank, when joined together their re-
spective null-spaces become linearly dependent. With the aim
of overcoming these algorithmic singularities, [7] proposes
a solution in which tasks at two different hierarchy levels
are solved separately. Then, the low priority task solution
is projected onto the null space of the task higher in the
hierarchy. This technique is analyzed and generalized to more
than two priority levels in [8]. Thus, in the case of having h
hierarchy levels, the solution to the IK problem results in

q̇ = J†1σ̇1 + N1J
†
2σ̇2 + · · ·+ Nh−1J

†
hσ̇h , (4)

where Nh−1 = In − J†1...h−1J1...h−1 is the null-space
projector of the augmented Jacobian matrix

J1...h−1 = [J>1 J>2 . . .J
>
h−1]> , (5)



with J1...h−1 ∈ R(n1+···+nh−1)×ν . Note that here we con-
sider one single task for each hierarchy level. In case of
multiple tasks with the same priority, we can stack their
vectors and Jacobian matrices and treat them as a single
task. Projecting joint velocities into the null space of other
tasks can be done as long as the robot is redundant in those
dimensions (DOFs) required by the tasks higher up in the
hierarchy; and that its configuration is in a region free from
singularities.

B. Closed-loop inverse kinematics

The aforementioned IK solution has to be computed in
the discrete-time domain. Thus, given a trajectory in the task-
space we obtain its analogous in the joint space by numerical
integration, e.g., by using a first order Euler integration

q(k+1) = q(k) + q̇(k)∆t , (6)

where q(k) = q(tk) and tk is the time at integration step
k (i.e., tk = k∆t, being ∆t the sampling time). Notice
that we abuse of the notation by using �̇(k) to express
the velocity of a variable evaluated at time tk. This IK
discrete implementation entails a drifting problem provoked
by numerical integration. To overcome it, we can formulate
a closed-loop version of the IK problem (CLIK) with the
task error defined as the difference between a desired and
the actual values of the task variable.

The continuous-time version of the closed-loop solution
defines the task error as

σ̃i = σ∗i − σi , (7)

and assigns to it an error dynamics such that

˙̃σi = −Λiσ̃i , (8)

where σ∗i ∈ Rni is the desired task value. In order to
decrease the error towards zero, Λi ∈ Rni×ni is a positive-
definite diagonal matrix of suitable gains. Differentiating (7)
with respect to time, combining it with (8) and isolating σ̇i,
we can directly substitute σ̇i = σ̇∗i + Λiσ̃i into (4). Hence,
the analogous equation for a CLIK problem with h priority
levels becomes

q̇ = J†1Λ1σ̃1 + N1J
†
2Λ2σ̃2 + ... + Nh−1J

†
hΛhσ̃h . (9)

Notice how (9) includes different desired values and gain ma-
trices for each task. Finally, when considering the discrete-
time system, we can obtain q̇(k) from (6) by evaluating the
multiple Jacobian matrices and task errors in (9) at time tk.

This discrete-time CLIK formulation is considered in
sections III and IV to state an SDP problem that, when
solved, outputs the gains that render all tasks stable. Al-
though all equations stated hereafter consider the discrete-
time domain (i.e., matrices and vectors must be evaluated at
the corresponding tk), for the sake of conciseness, the super-
index (k) indicating the evaluation time will be only written
when confusion may occur.

III. STABILITY ANALYSIS

In this section, we establish the conditions to guarantee
the stability of the CLIK algorithm described above. By
definition, a single task i is stable if its error decreases
asymptotically to zero. However, when a hierarchy is applied
to solve several tasks simultaneously for a redundant robot,
the interaction between tasks affects the overall control law
stability (i.e., solving a task in the null space of tasks higher
up in the hierarchy can also affect its own stability). As stated
in the Introduction section with reference to [11], the stability
of the closed-loop controlled scheme can be guaranteed if
we assume independent tasks, as done in this work, and
with proper tuning of the task gains Λ. In the following, we
present one of the key novelties of this paper: the condition
to guarantee the overall stability considering a discrete-time
system, which depends on these task gains. As the analytical
computation of the gains for N tasks is unfeasible [11], the
condition presented here will be later on introduced as a
constraint in an SDP optimization procedure.

In order to analyze the stability of the whole system, let
us consider an augmented vector containing all task errors:

σ̃> = [σ̃>1 . . . σ̃>h ] , (10)

being σ̃ ∈ Rn the augmented error, with n = n1 + · · · +
nh at time tk. We can assess the stability of a system
by resorting to the Lyapunov theory for discrete systems.
Given a Lyapunov candidate function V (σ̃(k)) = V (k) > 0 ,
∀σ̃(k) 6= 0, the error will decrease towards zero if
V (k+1) − V (k) < 0 holds, i.e., if the Lyapunov candidate
decreases with time [15]. We choose it to be

V (σ̃) =
1

2
σ̃>σ̃ . (11)

Hence, to guarantee the stability of the system we must
ensure that

1

2
σ̃(k+1)>σ̃(k+1) −

1

2
σ̃(k)>σ̃(k) < 0 , (12)

where the error σ̃(k+1) can be approximated by a Taylor
series expansion of σ̃(t) around tk and evaluating it at tk+1

up to the first term (first order Euler integration). Thus,

σ̃(k+1) ≈ σ̃(k) + ˙̃σ(k)∆t . (13)

As shown in [14], this approximation is valid as long as the
higher-order terms remain small. According to this work,
the higher-order terms can be neglected if ||q̇||∆t is below
a certain bound. To fulfill this statement, we add another
constraint to our SDP problem, as explained in the following
section. Notice that guaranteeing (12) implies local stability
depending on the tasks gains, the sampling time and the
initial value of the error. In this paper, we propose a solution
considering the first two factors (tasks gains and sampling
time) and assume, as commonly done in the literature, an
initial value of the error that can keep the problem feasible
(i.e., limiting the initial error by keeping the robot and tasks
within proper operative conditions). In [12], it is proposed a
method to estimate the region of attraction for a single task,



depending on the task gain selected, the sampling time and
several parameters related to the derivatives of the f(q(t)).
However, an estimation of the region of attraction for several
tasks still remains as an open problem, hence we limit the
scope of the paper to guarantee local stability.

Now we can substitute (13) in (12) obtaining

V (k+1) − V (k) ≈
1

2
( ˙̃σ(k)>σ̃(k)∆t+ σ̃(k)> ˙̃σ(k)∆t+

+ ˙̃σ(k)> ˙̃σ(k)∆t2) ,

(14)

which no longer depends on σ̃(k+1) and therefore, from
now on, the super-index k will be omitted. In order to keep
developing (14), we use the following expression for the error
velocity evaluated at time tk,

˙̃σ =


˙̃σ1

...
˙̃σh

 = −

J1

...
Jh

 q̇ . (15)

Notice how this expression can be obtained by differentiating
(7) and combining it with (2). This can be further expanded
by using the CLIK solution in (9) resulting in the following
linear mapping

˙̃σ =

−J1J
†
1Λ1 · · · −J1Nh−1J

†
hΛh

...
. . .

...
−JhJ

†
1Λ1 · · · −JhNh−1J

†
hΛh

 σ̃ ,

˙̃σ = Aσ̃ .

(16)

Now, by substituting (16) into (14), we obtain the following
quadratic equation

V (k+1)−V (k) ≈
1

2
σ̃>(A>∆t+A∆t+A>A∆t2)σ̃ . (17)

Therefore, the stability of the stack of tasks will be guar-
anteed if we can assure the positive definiteness of the
expression

−A>∆t−A∆t−A>A∆t2 � 0 , (18)

leading the candidate Lyapunov function to become an actual
Lyapunov function. The symbol ”�” stands for positive def-
inite matrix. Notice how for convenience, we expressed (18)
as a positive definite matrix condition by multiplying the sum
in (17) by −1.

System stability is guaranteed if we can find proper gain
values Λi so that condition (18) holds at every time step. In
this paper, we choose these gains as the decision variables in
the SDP optimization problem and, by performing an online
gain tuning, we account for the error dynamic change at
every specific robot configuration. However, notice how (18)
depends quadratically on the different Λi. As an SDP for-
mulation requires linear matrix inequalities (LMIs), further
developments are detailed hereafter.

IV. SDP-BASED GAIN SCHEDULING

We want to formulate an SDP problem with the stability
condition (18) as an LMI constraint. So, this SDP will
be used to find the optimal closed-loop control gains that
guarantee the stability of the error in (10). An SDP problem
is a convex optimization problem whose feasible set is a cone
formed by positive semidefinite symmetric matrices [16],
[17]. Making use of LMIs, this kind of problems allows us
to impose constraints on the definiteness of matrices. In this
case, we choose a specific form of SDP problem to solve,
expressed as

min
x

c>x ,

s.t. F(x) � 0 ,
(19)

where x = [x1, . . . , xr]
> ∈ Rr is the vector of decision vari-

ables, c ∈ Rr is a vector of coefficients and F(x) ∈ Rs×s is a
positive semi-definite LMI (noted with ”�”). The dimensions
r and s will be defined hereafter.

Our goals in specifying the elements of (19) are to impose
closed-loop stability and limit the resulting joint velocities,
so the approximation in (13) holds, while trying to impose a
convergence speed. Each of these constraints will be defined
as single LMIs Fj(x), described in the following subsec-
tions. Afterwards, all these single LMIs will be formulated
as an LMI of the form F(x) by placing them into a block
diagonal matrix

F(x) = diag(F1(x), . . . ,Fm(x)) � 0 , (20)

with m the number of single LMIs.
The optimized outputs of the SDP problem are the Λi gain

matrices, which have the form

Λi = diag(λi,1, . . . , λi,ni
) , for i = 1, . . . , h , (21)

thus the λi = [λi,1, ..., λi,ni
]> vectors will be part of the

decision variable x in (19). Therefore, each single LMI
Fj(x) will have the form

Fj(x) = Fj,0 + Fj,1λi,1 + · · ·+ Fj,ni
λi,ni

� 0 ,

for i = 1, . . . , h . (22)

In the following subsections, we describe in detail the
form of each of these single LMIs Fj(x) that form
the SDP constraint F(x) in (20). For the sake of sim-
plicity, we join all task gains in a single vector of n
elements, i.e., λ = [λ1,1, ..., λ1,n1 , ..., λh,1, ...λh,nh

]> ∈ Rn
with n =

∑h
s=1 ns, being the sum of task dimensions. Be-

sides, notice that online gain tuning consists of solving the
SDP problem at each iteration, obtaining different λ at each
tk.

A. F1: Stability

In order to express (18) as an LMI, we require some math-
ematical manipulations. On the one hand, notice that (18)
imposes the strict definiteness (�) in contrast to the semidef-
initeness (�) required by LMIs in (19). To accomplish with
this restriction, we can add a scalar factor α > 0 that when



multiplied by the identity of suitable dimensions, will impose
the strict positive definitness on (18), i.e.,

−A>∆t−A∆t−A>A∆t2 � αI . (23)

Notice that, if we consider the scalar β , α
∆t , (23) can be

further simplified, obtaining

−A> −A−A>A∆t � βI . (24)

Note also how β can be used to modify the error dynamics,
so the higher the value of β, the faster the errors will
convergence. However, setting β too high can jeoparadize the
SDP feasibility as it is contradictory with limiting the joints
velocities. To overcome this issue, we set a soft equality
constraint on β in the SDP problem (see Section IV-C for
implementation details).

Notice how (24) depends quadratically on the task gains.
To express it as an LMI (linear dependence on gains), we take
advantage of the Schur complement for symmetric matrices.
First, let us define a symmetric matrix of suitable dimensions
as

M =

[
B C

C> D

]
. (25)

The Schur complement condition for positive definiteness
states that, considering D is positive definite, M is positive
semi-definite if and only if its Schur complement M|D is
positive semi-definite. Hence,

If D � 0, then M � 0⇔M|D = B−CD−1C> � 0 .
(26)

Then, doing the proper assignments, the expression (24)
becomes the Schur complement of the matrix

M =

[
−(A> + A)− βI A>∆t1/2

A∆t1/2 I

]
� 0 , (27)

which finally, depends linearly on the gains λi.
The details on how to express M in terms of Λ, M(Λ), are

presented in the following. This procedure is only detailed
for the block (A> + A). The developments for the rest of
the blocks are straight-forward and are here omitted for the
sake of brevity.

We can express the matrix A in terms of the different gain
matrices Λi as

A(Λ) =

A1,1 · · · A1,h

...
. . .

...
Ah,1 · · · Ah,h


Λ1 0

. . .
0 Λh

 , (28)

being Ai,ρ = −JiNρ−1J
†
ρ for i, ρ = 1, . . . , h from (16),

with N0 = I. Then, using (28) we obtain the symmetric
matrix

A>(Λ) + A(Λ) =A1,1Λ1 + Λ1A
>
1,1 · · · A1,hΛh + Λ1A

>
h,1

...
. . .

...
Ah,1Λ1 + ΛhA

>
1,h · · · Ah,hΛh + ΛhA

>
h,h

 . (29)

The stability LMI requires M(Λ) to be positive definite,
i.e., F1(λ) = M(Λ). To express M in terms of the corre-
sponding vector λ, which is part of the decision variables,
the matrices F1,l with l ∈ [1, n] in (22) must be the elements
of M that are multiplied by the corresponding gains in λ.
Notice that this LMI also takes into account the sampling
time ∆t, whose effect is shown in Section V.

B. F2: Joint velocity limits

In order to make the approximation in (13) hold, we must
bound the joint velocity so second-order terms of the Taylor
expansion do not become significant. With that aim, we resort
to (9) to express every component of q̇ = [q̇1, . . . , q̇n]> as a
linear combination of the gains, hence we can transform (9)
into

q̇ = J†1Σ1λ1 + · · ·+ Nh−1J
†
hΣhλh , (30)

where we express every Λi in its vector form and the
error vector of every task is replaced by a diagonal matrix,
i.e., Σh = diag( ˙̃σh). This expression can be rearranged as

q̇ = Sλ , (31)

with
S ,

[
J†1Σ1| · · · |Nh−1J

†
hΣh

]
. (32)

Then, we can add upper bounds to the joints velocities
considering

q̇− Sλ ≥ 0 , (33)

where q̇ is the vector containing the upper bounds, and the
symbol ≥ stands for the element-wise operand ≥. Finally,
we can convert (33) into an LMI of the form F � 0 by
specifying

F2,0 = diag(q̇) , (34a)
F2,j = −diag(sj) for j = 1, . . . , n , (34b)

being sj the j-th column of S. Notice that F2,j ∈ Rν×ν .
The addition of lower bounds is done analogously to the

upper bounds procedure and has been omitted here for the
sake of brevity.

C. F3: Soft constraint on β

The variable β will direct the velocity of the error con-
vergence in (24). Although high values of β may lead to
fast convergence, this behavior might go against limiting the
joints’ velocities with the constraint described above, thus it
difficults the convergence of the SDP problem. To avoid this,
we can define a soft constraint on β with an initial desired
value β̃, such that

min ||β − β̃||2 + δ||λ||2 ,
s.t. F1,F2 � 0 .

(35)

Now, the error will converge with a speed imposed by β̃,
if possible. Otherwise, the constraint will be relaxed so
the system is stable (F1) and the Euler approximation in
(13) holds (F2). Setting a high value for β̃ might be seen
as maximizing the speed convergence while keeping the
stability and the joints’ velocity limits. Notice that, for the



sake of the problem solvability, it is also necessary to add a
regularization term δ related to the gains.

In order to convert (35) into an LMI we must provide
a linear objective function. This can be done by using its
epigraph form, i.e., upper-bounding the quadratic expression
with an additional optimization variable γ ∈ R. Thus, we
will minimize γ subject to the following constraint

γ − (β − β̃)2 − δλ>λ ≥ 0 . (36)

Again, we can express the constraint (36) as an LMI by
taking advantage of the Schur complement

F3(λ, β, γ) =

 γ λ> β − β̃
λ δ−1I 0

β − β̃ 0 1

 � 0 . (37)

Notice that an extra constraint to guarantee β > 0 is
also necessary. For the sake of conciseness and due to its
simplicity, it has not been detailed here.

By introducing β and γ in the problem, we are adding two
new components to the vector of decision variables, hence
x = [λ>, β, γ]>. Therefore, two extra matrices F3,n+1 and
F3,n+2 should be added in the computation of F3 in (22),
which will be multiplied by β and γ, respectively. Notice
how the previous LMIs (F1,F2) do not depend on γ nor β
and their corresponding F{j,n+1} matrices can be omitted
since they are null. With γ the variable to be minimized,
we can define the coefficient vector c of the cost function
in (19) as a vector with zeros in the positions related to
each component of λ and β (i.e., n + 1 elements with
0) and a one in the position of the upper bound γ, hence
c = [01×n+1, 1]> ∈ Rn+2.

D. Final SDP

In summary, considering the described LMIs
i.e., Fj with j ∈ [1, 2, 3], the SDP problem formulation
shown in (19) results in

min
x

c>x

s.t. blockdiag(F1(x),F2(x),F3(x)) � 0 .
(38)

V. VALIDATION

Task stabilization through the optimization procedure pre-
sented in this work is of use when dealing with highly
redundant robots that must perform several tasks. In these
cases, the analytical study to choose the right gains, hence
to guarantee stability, becomes unfeasible. When the number
of tasks and required DOFs are not high (e.g., two tasks and
three DOFs), this method is also of use as it eases the gains
search that will render all tasks stable, without the need for
simplifications as in other existing methods (e.g., it allows
to consider different gains for each task dimension).

The effectiveness of the mathematical developments pro-
posed in this work can be better explained with robots with a
low number of DOFs. Hence, without loss of generality, we
present a numerical experiment with the commercial UR51

1https://www.universal-robots.com/products/ur5-robot/

(6 DOFs) robotic arm performing with the on-line task gain
tuning approach. These examples suffice to validate that:

a) In all simulations the stability condition in (18) holds.
This can be checked by looking at the highest eigen-
value of the sum in (17), which should be negative as
sign for stability.

b) Variations on β̃ truly affect the convergence speed. For
higher values of β̃ the tasks should converge faster.

c) Joint velocity bounds q̇, q̇ are respected and the system
still manages to converge by relaxing β.

d) The method can handle different values of ∆t without
affecting the system stability.

We have performed the simulations by taking advantage
of Matlab and the toolbox presented in [18] to simulate
a robot manipulator. Moreover, we use the already existing
SDP solver Sedumi [19]. All code related with this paper
is made publicly available for the benefit of the community2.

We have set a use case with the aim of reproducing a
hand-writing action done by a human arm. Thus, we set a
primary task to follow a desired position path with the robot’s
end effector, whose error is described by σ̃1 ∈ R3. Besides,
we impose the wrist to be close to the writing surface as a
secondary task, i.e., we impose the y coordinate of the 4th
joint to have a specific value (σ̃2 ∈ R).

The parameters for this case study are
q0 = [135, 0,−90, 0, 90, 0]>deg, σ∗1 = [−0.5,−0.4, 0.6]>m
and σ∗2 = −0.3m. The regularization parameter is
δ = 5× 10−5.

We have performed several experiments to validate the
items (a)-(d) stated above. Although the system stability
(a) has been confirmed in all simulations, for the sake of
conciseness, it is only reported here the figure that shows
the stability of the experiments where we want to show the
effectiveness of β̃. In those cases, we have set ∆t = 0.01s
and q̇ = −q̇ = 6 rad/s (we have used a boldface number
to indicate the same limit for all the robot’s joints) and
ran several simulations to compare our method with both
β̃ = 2 and β̃ = 8 against the tasks deployment with
λ = [2, 2, 2, 1]> as fixed gains. For the sake of readability,
all plots for this robot type are time-cropped to 4s.

The corresponding results are shown in Fig. 1, where the
stability of the CLIK method is not guaranteed when using
constant λ gains (notice the positive maximum eigenvalue
indicated by the solid blue line). The same fact can be seen
in Fig. 2. It shows the Lyapunov function (11). Notice that,
while for the case of using the presented method the Lya-
punov function decreases monotonously whereas for the case
with constant gains the Lyapunov function remains stable
once the first task has converged. The direct consequence of
not having a proper gain tuning method is that tasks with
low priority are less prone to converge (see Fig. 3b).

In the example, we see that a high β̃ translates to faster
error convergence for all tasks. This effect can be seen in
Fig. 2 and Fig. 3 for the primary and secondary tasks.

2https://gitlab.iri.upc.edu/jmarti/SDP_
HierarchicalTaskStability



Fig. 1: Maximum eigenvalue of the sum in (17). Constant gains
(solid blue), β̃ = 2 (dashed red), β̃ = 8 (dotted yellow). The
reported values must negative to guarantee stability.

Fig. 2: Lyapunov function considering different values of β̃. Con-
stant gains (solid blue), β̃ = 2 (dashed red) and β̃ = 8 (dotted
yellow).

In this experiment, the manipulator is driven towards a
configuration where the two tasks are close to be dependant,
i.e., where the rank of the augmented Jacobian is smaller
than the sum of ranks of the respective Jacobians. In such
a situation, the null-space of the first task becomes smaller,
hence the joint velocities devoted to fulfill the low priority
task become smaller. When operating in a close-loop manner,
this vanishing joint velocity can be tackled by increasing the
gains, a benefit of imposing (23) within our SDP approach.
This effect is shown in Fig. 4, where the orientation task gain
is increased as the configuration approaches the singularity.

As previously noted, imposing faster error dynamics by
increasing β̃ results in increasing the joint velocities. This
fact might violate the joint velocity constraint (F2) if β was
not properly relaxed (F3). This case is shown in Fig. 5,
where the limits for the joints velocities are respected while
the β value is moved away from its desired β̃ (Fig. 6), in
order to keep the joints velocity limits while guaranteeing the
system stability. Fig. 6 shows the impact on β while imposing
different joint velocity limits, i.e., the more restricting joint
velocities (solid blue line), the further β has to be moved
from its desired value.

The effect of the sampling time in the system performance
is depicted in Fig. 7 and Fig. 8. We have set the desired speed
to β̃ = 8 and the joint velocity limits to q̇ = −q̇ = 6 rad/s
across all different ∆t. As with previous experiments, the
method manages to stabilize the two tasks for all the tested
∆t, i.e., in all cases the maximum eigenvalue remains neg-
ative. Therefore, as shown in Fig. 7, the different task gains
must be adapted (we could not notice a remarkable difference
for the second task’s gain). Besides, the speed convergence
of the second task improves with smaller sampling time
(see Fig. 8). An important remark is that for a sufficiently
small ∆t, the quadratic term vanishes and (24) becomes the
stability condition of the continuous-time CLIK algorithm.
This fact is shown in both Fig. 7 and Fig. 8, where the
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Fig. 3: Tasks error norms considering different values of β̃. Constant
gains (solid blue), β̃ = 2 (dashed red), β̃ = 8 (dotted yellow).

Fig. 4: Gain associated to the second task considering different
values of β̃. Constant gains (solid blue), β̃ = 2 (dashed red) and
β̃ = 8 (dotted yellow).

Fig. 5: Limited joint velocities when β̃ = 8 and q̇ = −q̇ = 6 rad/s.
Colors related to each joint in increasing order: solid blue, dashed
red, dotted yellow, dashed magenta, solid green, dashed cyan.

Fig. 6: β value for different values of q̇ and q̇. Fixed value of
β̃ = 8. q̇ = −q̇ = 4 rad/s (solid blue), q̇ = −q̇ = 6 rad/s (dashed
red).

trajectories converge to a specific solution as ∆t decreases.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a novel approach to guarantee
the stability of a hierarchical multi-task CLIK scheme. Dif-
ferently from other existing works, this optimization-based
approach allow us to extend the proper gain tuning that
guarantees such stability for N number of tasks. Besides,
our method allows to modify the error convergence speed.
It also considers the effects of sampling time (discrete-time)



Fig. 7: λ1, i.e., gain associated to the first task’s x-coordinate, for
different ∆t. ∆t = 0.1s (solid blue), ∆t = 0.05s (dashed red),
∆t = 0.01s (dotted yellow), ∆t = 0.005s (dashed magenta).

Fig. 8: Second task norm error for different ∆t. ∆t = 0.1s (solid
blue), ∆t = 0.05s (dashed red), ∆t = 0.01s (dotted yellow), ∆t =
0.005s (dashed magenta).

and allows us to add a constraint to limit the joint velocity
limits.

The focus of this work has been the mathematical devel-
opment to introduce the use of an SDP approach with its
advantages with respect to state-of-art methods. However,
some issues still remain open for further investigation. First,
since this is a problem of local stability, the error has an
associated region of attraction which should be estimated. In
[12], a method is proposed to estimate this region for a single
task, however, an estimation for multiple tasks still remains
as an open problem. Second, the development of the stability
condition is based upon an Euler approximation of the error
(13), which is valid for a sufficiently small value of ||q̇||∆t.
An upper bound for this product should be found. Third,
an open issue is how this method can be adapted to work
in the acceleration domain so as to consider actuator torque
limitations. Finally, even though SDP techniques using LMIs
offer the possibility of using fast and dedicated solvers, our
method is based on iterative procedures (i.e., optimization),
which in contrast to analytical solutions requires some extra
effort in efficient programming to run it in real-time.
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