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Abstract— The manufacturing industry is transforming to-
wards smart, flexible, and energy-efficient systems. In this
regard, control strategies based on optimisation have been
proposed to improve the energy efficiency of manufacturing
systems. Usually, the optimisation problem behind the controller
design involves decision variables constrained to binary and dis-
crete domains resulting in Mixed-Integer Linear Programming
(MILP) problems and require a high computational burden
to find their optimal solution. In this paper, three different
approaches are proposed for the closed-loop decision making
over discrete domains in manufacturing systems, including
the constraints and limitations to their implementation. Thus,
the number and nature of required variables as well as the
additional constraints needed to represent the discrete domains
of the decision variables are established. These approaches are
tested and compared to solve the optimisation problem behind
a predictive-like controller designed to minimise the energy
consumption of a manufacturing process line.

I. INTRODUCTION

In many industrial processes, both the optimal design and
the implementation of optimisation-based control techniques
often require variables constrained to a discrete set of ad-
missible values. Some relevant applications of the use of
discrete input signals can be found in chemical processes
[1], process planning and scheduling [2], smart grids [3], and
on-off systems [4]. For the particular case of manufacturing
systems, system actuators can be of on-off nature of having
different activation levels or status [5]. Thus, both the prob-
lem formulation and discrete optimisation method are crucial
to solve these optimisation problems in a reliable and fast
way. This last fact is quite important in control applications
subject to real-time implementation constraints [6].

The use of discrete decision variables would imply a high
computational burden for the optimisation routines. In most
of the control applications, decisions involving discrete actu-
ators are removed from the control layer and dealt with logic
rules, precomputed control laws, or heuristic approximations
[7], [8], [9]. However, most of these approaches are not able
to respond effectively to disturbances or changes in the sys-
tem since they are predefined considering specific operational
conditions. For the case of flexible manufacturing systems,
in which their operational conditions can change, these
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approaches could be not suitable. Thus, with advances in
computer performance and optimisation software, the com-
mon way to solve such problems is by transforming them into
Mixed-Integer Programming (MIP) problems and solving
them by using branch-and-bound-based MILP solvers such
as those available in packages like cplex and gurobi.
Based on this approach, to choose among n discrete values
in an MIP problem, n binary variables that sum up to one
are required [10]. Nonetheless, if the optimisation problem
is not properly formulated and the decision variables are not
restricted effectively to the feasible alternative, this approach
could lead to unbalanced branch-and-bound trees and may
result in long solution times [11].

Different approaches have been proposed in the literature
to reduce the number of decision variables and the compu-
tational time to solve the related problem [12]. However, in
more complex cases, these approaches imply the product of
some polynomial terms, thus losing the linearity. In [13], a
set of equations for linearising discrete cross-product terms
that can be incorporated into conventional MILP reformula-
tions is proposed. Similarly, a framework for reformulating
Mixed-Integer Non-Linear Programming (MINLP) problems
to a convex relaxed form is discussed in [14]. As common
ideas, trying to avoid both bi-linear and non-linear terms
into the problem reformulation is linked to the reduction of
the number of decision variables and simplifying the nature
of the proposed constraints from the definition stage of the
optimisation problem.

Thus, the main contribution of this work is to provide
three different ways of representing discrete feasible sets
for control applications based on optimisation as well as
to present a comparison of such approaches concerning the
required computational burden for their implementation. In
this regard, mathematical tools and representations such as
rounding error and polyhedrons [15], [16] have been em-
ployed to constrain the discrete sets and to reduce the number
of binary variables required when the optimisation problem is
reformulated as a compact 0-1 MILP problem. The main idea
is to reformulate the optimisation problem effectively and
efficiently to simplify the input to optimisation routines such
that the controllers can be suitable for their implementation
in real time without the use of precomputed control laws.
Other strategies have been excluded from this proposed
comparative assessment due to their computational burden,
a fact that does not allow their use in real time according to
the field of application considered in this paper.

Then, to test the performance of the proposed approaches,
an optimisation-based controller proposed in [17] to min-



imise the energy consumption of a manufacturing process
line will be considered. In this case, the optimal activation
instants of binary and discrete actuators should be determined
considering the operating constraints on both the process line
and the system actuators. Thus, the optimisation problem
is reformulated as an MILP problem using the proposed
approaches, and the closed-loop performance for the con-
troller is compared in terms of the control objective and the
computational burden required to find an optimal solution.

The rest of the paper is organised as follows. The energy
efficiency control strategy for manufacturing systems and
the problem statement are introduced in Section II. Then, in
Section III, the proposed approaches to model the discrete
sets are presented. Next, the case study and the related
decision models are introduced in Section IV. Later, the
simulations results and the comparative assessment for the
proposed approaches are presented and discussed in Section
V. Finally, conclusions from the obtained results are pre-
sented in Section VI.

II. ENERGY EFFICIENCY OF MANUFACTURING SYSTEMS

A. Energy Efficiency Control Strategy

A process line is a complex system including several
machine tools and peripheral devices that work sequentially
and logically, as shown in Figure 1. Machines refer to a set
of devices that are directly related to the machining processes
(e.g., milling, cutting, turning), while the peripheral devices
are those elements that provide the resources required to
machines for their proper operation. Thus, there exist several
functional relationships between machines and peripheral
devices that determine the productivity of the process line.

Machine tools are characterised by periodic behaviour
according to the time required to process a piece, which
is denoted by TMi

. Besides, due to the different operations
performed by machine devices, there are high and low
energy consumption stages along TMi

. Then, since peripheral
devices supply resources to machines in the process line,
such devices might or might not show a periodic behaviour,
which may match with TMi

. Thus, to improve the energy effi-
ciency of manufacturing system, a predictive-like controller
to manage the activation instants of the peripheral devices
in a process line without affecting its productivity has been
proposed in [17]. In this case, the activation/deactivation
of the machine devices along TMi , i.e., the machining
sequence of the i-th machine (ΛMi

), is considered as fixed
and periodic over time. Thus, TMi

are kept the same and
machines can handle the same number of pieces as when the
control strategy is not implemented. The energy consumption
for ΛMi

, i.e., βMi
=
∑TMi

k=1 SMi
(k), will also be constant

over any interval TMi
and periodic over time, being SMi

the
instantaneous power consumption of the machine.

The control strategy proposed in [17] focuses on the
management of peripheral devices to minimise the total en-
ergy consumption and guarantee the supply of the resources
required by the machines. Then, considering a fixed number
of both machines and peripheral devices in a process line,

their activation sequences can be defined as

ΛMi
(k) = {uMi,1(k), uMi,2(k), . . . , uMi,v (k)}, (1a)

ΛP(k) = {u1(k), u2(k), . . . , um(k)}, (1b)

being k ∈ Z≥0 the discrete-time index, and uMi,l
(k) and

uj(k) the activation signals of machining devices of the i-th
machine and the peripheral devices in the process line. Then,
considering a prediction horizon Hp, the sequence1 for ΛP

along Hp is defined as

Γ(k) , {ΛP(k|k), . . . ,ΛP(k +Hp − 1|k)}, (2)

and an MPC controller is designed based on the following
open-loop optimisation problem:

min
Γ(k)

Hp∑
k=1

S(k)∆k (3a)

subject to

ξ(k + r + 1|k) = f(ξ(k + r|k),ΛMi(k + r|k), . . .

uj(k + r|k)), (3b)
S(k + r|k) = g (ξ(k + r|k)) , (3c)

Qj(k + r + 1|k) = qj(Qj(k + r|k), uj(k + r|k), . . .

ΛMi(k + r|k)), (3d)
uj(k + r|k) ∈ Ωj = {sj1 , sj2 , · · · , sjn}, (3e)

Qh(k + r + 1|k) ∈
[
Qh Qh

]
, (3f)

for r ∈ {0, 1, 2, ..,Hp − 1}, being S ∈ R the instantaneous
power consumption of the whole process line given by

S(k) =

(
b∑

i=1

SMi(k)

)
+

 m∑
j=1

Sj(k)

 , (4)

with SMi ∈ R and Sj ∈ R the power consumption of the
machines and peripheral devices, respectively. Besides, in
(3), ξ ∈ Rn1 is the state vector of the energy consumption
model of the process line, while f : Rn1 ×Ωj 7→ Rn1 and
h : Rn1 7→ R≥0 are the maps for such a model. Moreover,
Qj corresponds to states of the process dynamics related to
the operation of peripheral devices with qj : Ωj ×R 7→ R≥0

the maps that consider the operational relationships between
machines and peripheral devices. According to Figure 1, the
q-relations in (3) correspond to the process dynamics for the
supply systems of compressed air and coolant.

B. Problem Statement

It is worth noting that (3e) and (3f) refer to the constraints
for the domain of decision variables and process variables
Qj , respectively. In this case, Ωj ⊂ R is the discrete and
countable finite set of cardinality nj describing the feasible
domain of uj , with sjn the values (or symbols) that form
such discrete (or alphabet) set. In the most simple case, uj
will be constrained to a binary set, which represents the
on/off status of a device with nominal power consumption.

1Here, z(k+ r|k) denotes the prediction of the variable z at time instant
k+ r performed at k. The index r will cover the finite prediction window
of length Hp.



Fig. 1: A b-stage serial process line with its corresponding peripheral devices.

However, in a real plant, peripheral devices are of different
nature and usually constrained to different discrete sets based
on their design and the configuration of the process line.

Taking into account the admissible domain for the decision
variables in (3), the problem addressed in this paper is to
determine suitable ways of modelling these domains, fact that
contributes to reducing the computational burden required
to solve (3). This last fact is important for the real-time
implementation of closed-loop control strategies based on
optimisation, in which the optimisation problem should be
solved fast enough at every instant k. Therefore, to get
suitable representations of discrete sets such as Ωj , the nature
of the decision variables and corresponding mathematical
expressions to represent the admissible values should be
determined and added to the optimisation problem.

III. MODELLING OF DISCRETE SETS

Due to the nature of the decision variables in (3), three
different ways to represent the discrete sets are presented
below to formulate the optimisation problem as a compact
0-1 MILP problem. Although there are some optimisation
routines that model directly such sets, the idea behind the
proposed approaches is to further simplify the problem
before to use the optimisation solver.

Approach 1: Rounding-error based strategy: In this case,
to model Ωj the following statement is assumed:

Assumption 1: A discrete set Ωj = {sj1 , sj2 , · · · , sjn}
with sjn ∈ R is an ordered set in which all its elements
have a regular spacing ρ. �

Under this assumption, to model the discrete feasible
set Ωj , one decision variable, i.e., ũj ∈ [ε, ε]with ε =
max(Ωj) and ε = min(Ωj) is required. Besides, to ensure
that only the admissible values of Ωj in [ε, ε] could be
selected, the rounding error should be added as a constraint
into the optimisation problem in (3) as follows:∣∣∣∣ρ [( ũjρ

)]
− ũj

∣∣∣∣ ≤ 0, (5)

with [·] the round operator and ρ the regular spacing among
the elements of Ω. Based on the previous inequality, only the
values in [ε, ε] that satisfy (x mod ρ) ≡ 0 can be chosen.

Remark 1: If zero belongs to Ωj and its distance to the
next element in Ωj does not satisfy the spacing regularity
of the rest of the elements, a new variable and a constraint
should be introduced, e.g., when zero represents the off status

and the rest of the elements refer to different activation
levels. Thus, zero is considered separately by its nilpotent
properties within Ωj , and an extra binary variable φj and a
new constraint are added as follows:

ε φj ≤ ũj ≤ ε φj , (6)

with φj ∈ {0, 1} and ũj ∈ [ε, ε]. Besides, this approach
could be extended to the case in which ρ for the elements
of Ωj is not regular. The original set is split into subsets
with regular spacing, which are associated with one binary
variable, rounding error equation, and extra constraints on
binary variables to ensure the selection of only one set. �

Approach 2: Direct binary approach encoding: Given
a set Ωj = {sj1 , sj2 , · · · , sjn} with sjn ∈ R, one can
associate n decision variables, i.e., γ1, γ2, · · · , γn ∈ {0, 1},
and reinforce the alternative of decision with the constraint

γ1 + γ2 + · · · + γp = 1. (7)

Indeed, to guarantee the selection of only one of the values
in Ωj , the decision variable uj is computed according to

uj = sj1 γ1 + sj2 γ2 + · · · + sjn γn. (8)

Remark 2: It should be noted that if zero belongs to Ωj ,
n− 1 binary variables are needed, and the constraint in (7)
should be relaxed as γ1 + γ2 + · · · + γn−1 ≤ 1. �

Approach 3: Geometrical representation of the feasible
domain: In this case, the discrete set will be modelled
by means of a polyhedron given as the intersection of
inequalities and equalities (referred to as H-representation).
To get a polyhedral representation of a discrete set, auxiliary
variables are defined to fit the vertices of the polyhedron. For
instance, considering a discrete set Ωj = {sj1 , sj2 , sj3 , sj4},
two binary variables and one real variable, i.e., δ1, δ2 ∈
{0, 1}, and uj ∈ R, are required. Next, the discrete values
of Ωj will be associated to the combinations of variables δ1
and δ2, which define the vertices set V of the polyhedron as

V = {[0, 0, sj1 ]; [0, 1, sj2 ]; [1, 0, sj3 ]; [1, 1, sj4 ]} .

Then, using suitable tools, such as the MPT Tool-
box [18], the H-representation of the polyhedron Pv =
{v|A v ≤ b, Ae v = be}, which corresponds to the convex
hull of V , can be determined. These expressions should
be added as constraints in the optimisation problem such
that [δ1, δ2, uj ]

T ∈ Pv . Based on this formulation, for
any combination of the binary variables only the values in



Ωj satisfy the inequality and equality matrices added as
constraints.

IV. BENCHMARK SYSTEM

According to Figure 1, the process line is formed by n sub-
systems, which consists of three machines and two shared
peripheral devices. Thus, the process description presented
below for the one sub-system is straightforwardly extended to
the other sub-systems without lost of generality. It is assumed
that all machines in each sub-system have the same period,
i.e., TMi = 28s ∀ i = 1, 2, 3, and that the peripheral devices
P1 and P2 are shared among these machines. In this case,
P1 is associated to a supply system of compressed air with
nominal energy consumption, i.e., u1 ∈ Ω1 , {0, 1}. Thus,
the q-relations in (3d) related to PG1 refer to the dynamics
for the total change of mass MT1 and pressure PT1 inside a
storage tank T1, which are expressed as follows:
MT1(k + r + 1|k) = MT1(k + r|k) + τs σ(k + r|k), (9a)

σ(k + r|k) = min uG1(k + r|k)−
b∑

i=1

moutMi
(k + r|k), (9b)

PT1(k + r|k) =
MT1(k + r|k) R T

VT1 Wair
, (9c)

with τs the sampling time, moutMi
the air consumption

from Mi, min the air flow pumped by PG1
towards the

tank T1, and, R, T, VT1
, and Wair the gas constant, air

temperature, volume of T1, and the molecular weight of the
air, respectively. Besides, PT1

must belong to
[
PT1

, PT1

]
.

Besides, P2 is related to a coolant supply system for
the cutting operations at each machine, and its activation
can be modulated at different levels, i.e., u2 ∈ Ω2 ,
{0, 100, 120, 140}. According to Figure 1, a flow of coolant
mc is pumped by P2 from T3 towards T2, passing through a
filter in which the gross particles are separated. The coolant
flows required by the machines are pumped from T2. The
level dynamics in both tanks are given by

L2(k + r + |k) = L2(k + r|k) + τs γ(k + r|k)

(
1

ρc AT2

)
,

(10a)

γ(k + r|k) = mc(k + r|k)−
b∑

i=1

mout,cMi
(k + r|k), (10b)

L3(k + r + 1|k) = L3(k + r|k) + τs θ(k + r|k)

(
1

ρc AT3

)
,

(10c)

θ(k + r|k) =

b∑
i=1

min,cMi
(k + r|k)−mc(k + r|k), (10d)

Pout(k + r|k) = Pin(k + r|k) + ρchf1→2(k + r)

− η
(
W (k + r|k)

mc(k + r|k)

)
, (10e)

with mout,cMi
the coolant flow required by the i-th machine,

and min,cMi
the flow of the dirty coolant recovered. Besides,

Pin and Pout correspond to the input and output pressure in
the pipe system from T3 towards T2, while, ρc, η,W and
hf1→2 are the coolant density, the pump efficiency, the work
supply to PG2 , and the energy losses by friction, respectively.

Fig. 2: Polyhedron for the discrete set Ω2.

A. Discrete domain for the decision variables

Given the nature of the discrete sets Ω1 and Ω2, the
decision variables and constraints required by each one of
the approaches proposed in Section III are presented below.

Approach 1: If zero is removed from the set Ω2 and an
extra variable is added for the switching off of P2, i.e. u2 =
0, it is possible to fix ρ = 20 for the elements of Ω2. Thus,
three decision variables are required to model Ω1 and Ω2,
i.e., u1(k), φ2(k) ∈ {0, 1}, and ũ2(k) ∈ [100, 140] , with
u1 related to P1 and, φ2 and ũ2 associated to Ω2. Then,
considering ε = 100 and ε = 140, constraints in (5) and (6)
should be adapted and added to (3).

Approach 2: In this “full” binary encoding, four binary
variables are required to represent the domain of decision
variables, i.e., u1(k), γ1(k), γ2(k), γ3(k) ∈ {0, 1} , with u1
related to the device P1, and according to Remark 2, three
binary variables γ1, γ2 and γ3 are required to model the
discrete set Ω2 together with the following constraint:

γ1(k) + γ2(k) + γ3(k) ≤ 1. (11)

Finally, u2 is given by

u2(k) = 100γ1(k) + 120γ2(k) + 140γ3(k). (12)

Approach 3: In this case, one binary variable for the
activation/deactivation of P1 is required, i.e., u1(k) ∈ {0, 1},
while two binary variables, i.e., δ1(k), δ2(k) ∈ {0, 1} , and
one real variable, i.e., ũ2(k) ∈ R, are needed to model Ω2.
Then, each combination of δ1 and δ2 will be related to one
element in the set Ω2, and a polyhedron with vertices

VPG2
= {[0, 0, 0] [0, 1, 100] [1, 0, 120] [1, 1, 140]}

is defined and shown in Figure 2. Next, using the MPT
toolbox, the H-representation of the polyhedron was obtained
and, the following inequality matrix is added to (3):−0.768 −0.640 0.006 0

0.986 0.164 −0.008 0
0.371 0.928 −0.009 0
−0.436 −0.218 0.011 0.873


 δ1δ2ũ2
−1

 ≤
000
0

 .

B. Energy consumption models

Data-driven models were used to identify the power con-
sumption models of machines and peripheral devices. In
this case, Subspace Identification (SI) methods were used



since they allow identifying the matrices of a state-space
realisation of linear time-invariant systems based on input-
output data [19]. According to [17], different sequences of
ΛMi

along TMi
were designed and tested in a test bench that

emulates the energy consumption of machine tools to collect
the data of SMi

. Besides, different sequences of ΛP were
tested to obtain a rich range of the outputs SPj

. From the
obtained input-output data sets, energy consumption models
were identified by using the n4sid routine of the System
Identification ToolboxTM provided by Matlab R©. Thus, differ-
ent values of N were tested to identify the matrices that allow
the highest fitting degree between the real and modelled
outputs. The energy consumption models are detailed in [17].

V. SIMULATION RESULTS

The control strategy was tested using each one of the
proposed approaches to compare their performance and com-
putational burden. All simulations were performed using an
Intel Core i7-55000U 2.4 GHz processor with 8G RAM and
considering a sampling time equal τs = 0.1 s. The simulation
results were obtained in Matlab by using the software IBM
ILOG CPLEX Optimisation Studio integrated to YALMIP
toolbox [20]. Since the controller was designed to make
decisions every second along Hp = 28s, a faster internal
loop (blocking) for both the process and energy consumption
models are implemented [21].

The resulting energy consumption profile and the optimal
activation/deactivation sequence of peripheral devices are
presented in Figures 3a and 3b for the case in which n =
1. Besides, in Figure 3c the process dynamics related to
both PG1 and PG2 are shown. From these results, some
differences can be observed for the peripheral device with
a discrete domain, i.e., PG2

, for which even when the
device was turned on at the same time instant, the activation
value was different according to the approach tested. Thus,
although the stopping criteria of optimisation routine were
the same for all approaches, these differences could be
related to the solver ability to test all possible combinations
for each approach before to reach the stopping criteria. This
is due to the fact that, for each modelling approach, the nature
and the total number of decision variables are different and,
therefore, the number of the possible combinations could
differ although the feasible domain is similar.

Next, to compare the computational burden when more
decision variables are considered, a process line adding sub-
systems as shown in Figure 1 is studied. It should be noted
that for each one of the sub-systems added, the operating
conditions, machine cycles, energy consumption models, and
dynamics of peripheral devices are assumed to be the same
that for the first subsystem with three machines and two
peripheral devices. In Table I, a comparison of the proposed
approaches concerning both the computational burden and
the control objective is presented when several sub-systems
are considered as the process line. In this regard, the decision
variables (DV) along Hp, their classification, the number of
equality and inequality constraints, the CPU time and the
value of the cost function are presented in Table I.

In Table I, the auxiliary variables (AV) refers to the
variables added to model the non-linear operators involved
in the rounding error expression. Thus, the total number of
decision variables considered by each approach corresponds
to the set of both the decision and auxiliary variables.
Besides, for Approach 1 all the auxiliary variables added to
the decision model were defined as integer variables and by
the optimisation routine internally. Finally, the total number
of continuous variables (CV) for Approaches 1 and 3 are
summarised in the seventh column. From these results, it
should be noted that the equality constraints are the same for
all approaches since they correspond to the initial conditions
for both the process model and the machining sequences.

Based on the results in Table I, it is possible to observe
that even when the optimal activation sequences of peripheral
devices obtained from each approach are different, the total
energy consumption is similar for each one of the approaches
tested. However, higher differences can be observed in the
CPU time spent to solve the optimisation problem at each
iteration. Thus, although the Approach 1 has a higher number
of total decision variables, the solution is obtained faster than
for the rest of cases. This behavior is related to the fact
that Approach 1 has a lower number of binary variables,
and therefore, fewer combinations should be tested and
the completion conditions are achieved faster. Therefore,
when the branch-and-bound algorithms are employed, the
computational burden to evaluate all (or most of) the com-
binations is increased as the binary variables increase. In
this regard, by implementing the proposed Approach 1 with
fewer number of binary variables, the computational burden
can be reduced even when auxiliary variables are required.
However, although both Approaches 2 and 3 require more
binary variables to model Ω2 than Approach 1, the latter is
more restrictive than the other approaches. Thus, when more
complex discrete sets with no regular spacing are analysed,
Approach 1 could require more binary variables than Ap-
proaches 2 and 3, in addition to the auxiliary variables due
to both the rounding operator and absolute value.

VI. CONCLUSIONS

In this paper, three different approaches to reformulate
optimisation problems involving discrete and continuous
variables into a mixed-integer MILP problem have been
presented. Based on the proposed formulations, ordered and
non-ordered discrete sets could be modelled by using round-
ing error, binary variables or polyhedral approximations.
Besides, the necessary constraints to guarantee the selection
of the discrete admissible values according to each approach
as well as the conditions for their implementation were
presented and discussed. Based on the obtained results, it is
possible to conclude that the total amount of binary variables
is a crucial factor regarding the computational burden even
when the total number of decision variables is lower. How-
ever, despite the computational cost, the binary variables lead
to optimisation problems that involve non-ordered and non-
regularly distributed symbol sets can be solved in an efficient
manner and with a manageable computational burden.
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(b) Optimal input sequences. (c) Dynamics of peripheral devices.

Fig. 3: Simulation results of the control strategy using the proposed approaches.

TABLE I: Comparison of the proposed approaches regarding their performance and computational burden.

App. Subsystem
n

No.
Devices

No. DV
along Hp

No. AV
along Hp

No. BV
along Hp

No. CV
along Hp

No. inequality
constraints

No. equality
constraints

max CPU
time (s)

CPU
time (s) S [VA]

1 1 2 87 58 58 29 1033 1977 0.157 43.278 1057389.179
2 1 2 116 0 116 0 975 1977 0.563 119.064 1057631.542
3 1 2 116 0 87 29 946 1977 0.390 84.978 1057389.179
1 2 4 174 116 116 58 2066 3954 0.875 241.582 2114885.914
2 2 4 232 0 232 0 1950 3954 1.172 424.487 2114843.857
3 2 4 232 0 174 58 1892 3954 1.609 661.855 2114506.408
1 3 6 261 174 174 87 3099 5931 2.375 581.211 3172410.754
2 3 6 348 0 348 0 2925 5931 3.078 1004.515 3171807.409
3 3 6 348 0 261 87 2838 5931 4.781 1019.072 3171530.959
1 4 8 348 232 232 116 4132 7908 2.953 605.873 4229758.495
2 4 8 464 0 464 0 3900 7908 2.891 1103.728 4229160.288
3 4 8 464 0 348 116 3784 7908 1.983 1105.196 4229503.581
1 5 10 453 290 290 145 5165 9885 2.844 603.630 5286723.512
2 5 10 580 0 580 0 4875 9885 2.562 1274.541 5286230.569
3 5 10 580 0 435 145 4730 9885 2.218 978.293 5286553.431
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