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Highlights 

 Integrated pollution-based real-time control can reduce pollute of sanitation system. 

 Model predictive control with quality dynamics generates optimal control strategy.  

 Feedback coordination algorithm integrates subsystems during the control process. 

 Closed-loop virtual-reality simulator accesses effectiveness of the control strategy. 

 A real life pilot is used to demonstrate applicability of the proposed approaches. 
  



 

 

A B S T R A C T  

An integrated pollution-based real-time control (RTC) approach is proposed for a sewer network 

(SN) integrated with wastewater treatment plants (WWTPs) in a sanitation system (SS) to mitigate 

the impacts of pollution from combined sewer overflows (CSOs) on ecosystems. To obtain the 

optimal solution for the SS while considering both quantity and quality dynamics for multiple 

objectives, model predictive control (MPC) is selected as the optimal control method. To integrate 

SN and WWTP management, a feedback coordination algorithm is developed. A closed-loop 

virtual-reality simulator is used to assess the results of the optimal management approach achieved 

by applying MPC. The Badalona SS (Spain) provides a pilot case study to assess the efficacy and 

applicability of the proposed approach. A comparison with local rule-based and volume-based 

control strategies currently in use indicates that the proposed integrated pollution-based RTC 

approach can reduce the pollutant loads released to the receiving environment. 

Keywords: Integrated; Pollution-based; Real-time control; Model predictive control; Sanitation 

system 
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1. Introduction 

Combined sewer systems, which carry wastewater and rainwater, are sometimes overloaded 

during heavy rain episodes and often cause combined sewer overflows (CSOs). These overflows 

contain a mixture of untreated domestic, commercial, and industrial wastewater, along with 

stormwater runoff, which can be a significant source of pollution (EPA, 2015) affecting aquatic 

ecosystems, human health, and the environment. Moreover, the rapid urbanization and global 

climate change have led to worse ecological conditions and have generated major environmental 

challenges worldwide (van Loosdrecht and Brdjanovic, 2014). To confront these challenges, 

official policies and regulations on water quality have been published worldwide, for instance the 

CSO Policy issued by Environmental Protection Agency in the United States (EPA, 1994; EPA, 

2006; EPA, 2015), the Water Framework Directive (WFD, 2000/60/EC) (STW, 2013) established 

by European Union, and the “10-Point Water Plan” (Han, et al., 2016) released by China’s Central 

Government. The sanitation system (SS), which generally comprises a sewer network (SN), one 

or more wastewater treatment plants (WWTPs) and a receiving body (e.g., rivers or coastal areas), 

is the main infrastructure to manage CSOs. Under this context, develop an advanced control 

approach for the SS in order to mitigate impact of CSO is in high requirement. 

Traditionally, the construction of separated sewers and storage retention tanks and increasing 

the capacity of treatment facilities have been the primary ways of mitigating CSO pollution. 

Nevertheless, these approaches are limited by their high costs in terms of capital investment (e.g., 

an estimated $44.7 billion is needed for CSO abatement in the USA with a repayment time of up 

to 20 years) (EPA, 2015; Meng, et al., 2017). Also, selecting the location for CSO-reduction 

facilities is a major challenge given problems with land availability, community opposition, and 

competing land usage (EPA, 2015). Thus, solutions based solely on civil works are often not 

realistic in most urban areas. 

Given the development of information and communications technology, real-time control 

(RTC) of SS has become a promising approach to reduce pollutions of CSOs without expensive 

investment in infrastructural expansion (Cembrano, et al., 2004; Meng, et al., 2017; Joseph-Duran, 

et al., 2014; Joseph-Duran, et al., 2015; Schütze, et al., 2004; Sun, et al., 2017a; Sun, et al., 2018a). 

By optimizing the use of storage for subsequent treatment as well as the proper management of 

WWTPs, especially during wet weather, efficient control strategies computed by RTC can 

maximize the efficiency of the SS infrastructure to prevent CSOs (EPA, 2015; Fu, et al., 2010). 

To date, RTC has been applied successfully to SSs, but most of those applications focused on only 

one subsystem. For example, in (Cembrano, et al., 2004; Joseph-Duran, et al., 2014; Joseph-Duran, 

et al., 2015; Puig, et al., 2009), RTC algorithms were applied to SNs, and it was assumed that the 

WWTPs had a constant capacity. In practice, WWTP capacity can vary significantly during rain 

events, and SN flow sent to a WWTP in excess of its actual capacity can cause CSOs. Thus, it is 

clear that to take advantage of the entire infrastructure, the management of SNs and WWTPs must 

be integrated. 

Integrated RTC of SSs has been analyzed in the literature over the past few years using 

different approaches: a) volume-based RTC, which focuses on minimizing the amount of CSO 

discharged to the receiving waters; b) pollution-based RTC, which seeks to minimize the total 

amount of pollutants released to the environment; and c) emission-based RTC, which aims to 

directly maximize the quality of the receiving water (Joseph-Duran, et al., 2016; Vanrolleghem, et 

al., 2005). Among these approaches, emission-based RTC is superior in terms of environmental 

protection (Vanrolleghem, et al., 2005). However, emission-based RTC is difficult to implement 

because it requires real-time measurements and complex models that consider spatial and temporal 



 

 

changes in quality parameters inside receiving waters (Joseph-Duran, et al., 2016). Previous 

studies (Métadier and Bertrand-Krajewski, 2011; Meng, et al., 2017) have shown that pollution-

based RTC provides a new and promising approach when several quality variables can be 

measured or estimated in real time. 

Various methods have been proposed for generating optimal RTC control strategies, for 

instance the genetic algorithm (Fu, et al., 2008; García, et al., 2015), rule-based control (Schütze, 
et al., 2003) and model predictive control (MPC) (Cembrano, et al., 2004; Ocampo-Martínez, et 

al., 2013; Puig, et al., 2009). Genetic algorithm is a class of evolutionary methods which have been 

developed over the past few years for the RTC of SSs (Fu, et al., 2008; García, et al., 2015). Genetic 

algorithm can solve multi-objective problems with global optimal actions using probabilistic 

iteration mechanism. However, the high computation load and potential “premature” problem 

prevent its usage into large scale systems. Rule-based control is a widely used RTC strategy for 

SSs in practice (Schütze, et al., 2003; Schütze, et al., 2017; Sun, et al., 2020a; Sun, et al., 2020b) 

because of its simplicity of defining rules (in the format of “if-then-else”) without modelling 

requirement (Elbys, et al., 2018; García, et al., 2015; Klepiszewski and Schmitt, 2002). 

Considering quality of the rule-based control is highly depended on experience of the person who 

defines the rules, and the optimal control solutions cannot be guaranteed.   

Model predictive control is an optimization approach which uses a model of the system and 

forecasts of external variables to derive future optimal control strategies. Several previous studies 

have described the application of MPC in urban drainage control with significant reduction in CSO 

(Cembrano, et al., 2004; Joseph-Duran, et al., 2015; Ocampo-Martínez, et al., 2013; Puig, et al., 

2009; Xu, et al., 2013). Optimal control strategies can be guaranteed from MPC regarding the fact 

that MPC considers not only current state but also future forecast states of the systems during the 

computation process. Besides, through developing control-oriented models using simple 

mathematical equations, MPC can be applied in large scale SS with limited computation efforts. 

Up to now, most of MPC applications in SS are focused on only one subsystem without 

considering the quality data either (Cembrano, et al., 2004; Joseph-Duran, et al., 2015; Ocampo-

Martínez, et al., 2013; Puig, et al., 2009).  

The main contributions of this work are: 1) Proposing an integrated pollution-based RTC 

approach for SSs, using MPC to minimize the pollution impact of CSOs. 2) The MPC state-space 

model and objective function were built considering both the quantity and quality dynamics of 

flows in the SSs and effluents. The approach uses the total suspended solids concentration (TSS) 

as a key quality parameter given that TSS is generally correlated with turbidity, which can be 

measured continuously online. Additionally, TSS can provide information on other relevant 

correlated quality parameters (Campisano, et al., 2013). The hydraulics and TSS dynamics in the 

SS were represented by simplified mathematical equations, which were used as constraints in the 

optimization procedure. 3) To integrate SN and WWTP subsystems during the optimization 

process, a feedback coordination algorithm was developed. 4) A real pilot study of the Badalona 

SS in Spain provided a case study. A closed-loop virtual reality (VR) simulator was used to 

evaluate optimal actions for the proposed control approach for the case study. 

The rest of this paper is organized as follows. In Section 2, the simplified quantity and quality 

models are described briefly. Next, we present the MPC controller with both quantity and quality 

dynamics. We then explain a feedback coordination algorithm for SN and WWTP integration 

during the optimization process, as well as a closed-loop VR simulator to implement the control 

actions. In Section 3, the proposed approaches are applied and validated using the Badalona SS in 

a VR simulation environment, and we discuss the implementation of the integrated pollution-based 



 

 

RTC approach. Finally, in Section 4, we discuss where some improvements could be made, as well 

as topics requiring future attention. 

2. Methodology 

        In the SS, detention tank, gates and pumps, as well as the rainfall runoff are the main 

components, where the water volume and TSS mass in the detention tank used to behave as the 

state variable, the actuators (i.e. gates and pumps in SN and WWTP) are the control handle 

variables and the rainfall runoff is the disturbance in the control problem. The goal of the proposed 

methodology is to produce control strategies for the detention of water inside a SN that minimizes 

the polluting impact of CSOs during storm events while considering the most up-to-date 

information on WWTP capacity. To achieve these goals, an integrated pollution-based RTC 

approach has been developed through modules of Simplified models, MPC formulations, 

Feedback coordination algorithm and the Closed-loop VR simulator defined in Subsection 2.1, 

Subsection 2.2, Subsection 2.3 and Subsection 2.4.   

2.1 Simplified models 

The simplified model of an SS is used to predict dynamic changes in water and TSS in a 

control horizon. All of the conceptual SS modeling approaches try to represent complex physical 

phenomena in a simplified manner. However, there is no direct mathematical association between 

conceptual and physical-based models. In this section, the simplified model of hydraulics and TSS 

is described for sewers, detention tanks, and junction nodes. The TSS model for the detention tank, 

the mass balance model for the junction node, as well as the inlet TSS computation for WWTP are 

presented for the basic routing of TSS in SS ( Sun, et al., 2017b; Sun, et al., 2018b). 

1) Simplified TSS model for detention tank 

The simplified model of TSS in a detention tank is based on a simple representation of the 

tank volume and the TSS mass evolution. First, the SS hydraulic tank model is presented as 

(Cembrano, et al., 2004) 

                           𝒗𝒐𝒍(𝑘 + 1) = 𝒗𝒐𝒍(𝑘) + ∆𝑡 (∑ q𝑖𝑛
𝑖 (𝑘)𝑛𝑖𝑛

𝑖=1
− ∑ q𝑜𝑢𝑡

𝑖𝑛𝑜𝑢𝑡
𝑖=1

(𝑘)),                         (1) 

where 𝒗𝒐𝒍 ∈ ℝ𝑛𝑡  represents the vector of water volume (m3) stored in the tanks with their physical 

range in [0, 𝒗𝒐𝒍𝑚𝑎𝑥 ]; ∆𝑡 is the sampling time (s), and k is the time step; 𝒒𝑖𝑛 = (𝑞𝑖𝑛
1 , 𝑞𝑖𝑛

2 ,

⋯ , 𝑞𝑖𝑛
𝑛𝑖𝑛) ∈ ℝ𝑛𝑖𝑛  is the vector of flows ( m3/s ) going into the tank; 𝒒𝑜𝑢𝑡 = (𝑞𝑜𝑢𝑡

1 , 𝑞𝑜𝑢𝑡
2 ,

⋯ , 𝑞𝑜𝑢𝑡
𝑛𝑜𝑢𝑡) ∈ ℝ𝑛𝑜𝑢𝑡  is the vector of flows (m3/s) going out of the tank; 𝑛𝑡, 𝑛𝑖𝑛, and 𝑛𝑜𝑢𝑡 are the 

numbers of tanks, input flows, and output flows of the tanks, respectively. 

According to Eq. (1), the water volume collection capacity of a detention tank is based on 

upstream and downstream differences in water flow. Similarly, the mass of suspended solids is 

collected in the detention tank based on the mass difference between inputs and outputs: 

                  𝒎(𝑘 + 1) = 𝒎(𝑘) + ∆𝑡 (∑ 𝑞𝑖𝑛
𝑖 (𝑘)𝑡𝑠𝑠𝑖𝑛

𝑖 (𝑘)𝑛𝑖𝑛
𝑖=1 − ∑ 𝑞𝑜𝑢𝑡

𝑖 (𝑘)𝑡𝑠𝑠𝑜𝑢𝑡
𝑖 (𝑘)𝑛𝑜𝑢𝑡

𝑖=1 ),            (2) 

where m  ∈ ℝ𝑛𝑡 is the total mass (kg) of the suspended solids in the detained water; 𝒕𝒔𝒔𝑖𝑛 =

(𝑡𝑠𝑠𝑖𝑛
1 , 𝑡𝑠𝑠𝑖𝑛

2 , ⋯ , 𝑡𝑠𝑠𝑖𝑛
𝑛𝑖𝑛) ∈ ℝ𝑛𝑖𝑛  and 𝒕𝒔𝒔𝑜𝑢𝑡 = (𝑡𝑠𝑠𝑜𝑢𝑡

1 , 𝑡𝑠𝑠𝑜𝑢𝑡
2 , ⋯ , 𝑡𝑠𝑠𝑜𝑢𝑡

𝑛𝑜𝑢𝑡) ∈ ℝ𝑛𝑜𝑢𝑡 are the TSS 

concentrations (kg/m3) for the water at the inlet and outlet of the tank, respectively. 



 

 

Given that TSS models are used only to provide an understanding of the performance of the 

proposed control approach, the TSS dynamics in the detention tank can be simplified as the mixture 

behavior of the TSS mass, wherein mass sedimentation and erosion effects are not considered, the 

control interval is small (5 min), and new measurements are available at each control interval. 

Assuming the detention tank has a constant TSS at different positions, the concentration 

vector of suspended solids in the detention tanks tss ∈ ℝ𝑛𝑡, which is also the TSS at the outlets, 
can be computed as (valid for vol ≠ 0)  

                                                  𝒕𝒔𝒔 (𝑘 + 1) = 
𝒎(𝑘+1)

𝒗𝒐𝒍 (𝑘+1)
.                                                              (3) 

2) Mass balance model for junction nodes 

The junction node corresponds to the element where the TSS mass (and also flow) are split 

or merged according to the mass balance equation: 

 ∑ 𝑞𝑜𝑢𝑡
𝑖𝑛𝑜𝑢𝑡

′

𝑖=1
(𝑘)𝑡𝑠𝑠𝑜𝑢𝑡

𝑖 (𝑘) = ∑ 𝑞
𝑖𝑛
𝑗𝑛𝑖𝑛

′

𝑗=1
(𝑘)𝑡𝑠𝑠

𝑖𝑛
𝑗 (𝑘),                              (4) 

where 𝑞𝑖𝑛
𝑗

 is the flow variable (m3/s) through sewer j entering the junction; 𝑞𝑜𝑢𝑡
𝑖  is the flow 

variable (m3/s) through sewer i leaving the junction; 𝑡𝑠𝑠𝑜𝑢𝑡
𝑖  (kg/m3) is the TSS concentration for 

outflow i; 𝑡𝑠𝑠𝑖𝑛
𝑗   (kg/m3) is the TSS concentration for input flow j; and 𝑛𝑜𝑢𝑡

′  and 𝑛𝑖𝑛
′  are numbers 

of the outflow and inflow branches, respectively, at this junction node. 

3) Inlet TSS of WWTP 

Processing at a WWTP usually consists of three steps: pre-, primary, and secondary treatment. 

During these treatments, physical, chemical, and biochemical reactions take place before 

discharging treated water to the receiving environment (Martínez, et al., 2016). Here, the detailed 

WWTP reactions were simulated using a VR simulator (GPS-X) (Sofia, 2014). At each time step, 

specific calculations derive a prediction of the WWTP capacity, 𝑞𝑤𝑤𝑡𝑝
𝑙𝑖𝑚 (𝑘). 

2.2 Model predictive control formulations 

The optimal control problem of MPC seeks to derive ahead of time the optimal control 

strategies for gates and pumps in the SS based on the simplified models defined in Subsection 2.1 

and the performance function over a future horizon.  

According to the basic formulation of MPC (Maciejowski, 2002), the optimal control problem 

for MPC in the SS can be described using a state-space discrete-time representation of the model: 

                                                            min
𝒖(𝑘)

𝑱(𝑘)                                                                       (5a) 

s.t.:                                      ℎ(𝒙(𝑘), 𝒖(𝑘), 𝒘(𝑘)) ≥ 0,                                                            (5b) 

                                             𝑔(𝒙(𝑘), 𝒖(𝑘), 𝒘(𝑘)) = 0 ,                                                            (5c)   

                                               𝒙𝑚𝑖𝑛  ≤ 𝒙(𝑘) ≤  𝒙𝑚𝑎𝑥 ,                                                             (5d) 

                                              𝒖𝑚𝑖𝑛  ≤ 𝒖(𝑘) ≤ 𝒖𝑚𝑎𝑥 ,                                                             (5e) 

where J is the objective function,  𝒙 ∈ ℝ𝑛𝑡 is the system state vector, which represents the water 

volume vol and TSS mass m in all of the tanks; 𝒖 ∈ ℝ𝑛𝑔  is the vector of controlled flows through 

the gates and pumps in the SS with 𝑛𝑔  numbers of control gates; 𝒘 ∈ ℝ𝑛𝑑  is the sequence of 



 

 

disturbances related to rain runoff and incoming TSS through runoff with 𝑛𝑑  numbers of 
disturbances. The functions h(‧) and g(‧) include the general constraints of the MPC problem, 

𝒖𝑚𝑖𝑛,  𝒖𝑚𝑎𝑥, 𝒙𝑚𝑖𝑛, 𝒙𝑚𝑎𝑥, which are the vectors of physical limits, and 𝑘 = 𝑡, … , 𝑡 + 𝐻, where 𝑡 is 

the current time step, and 𝐻 is the prediction horizon. 

The following performance functions were included in the multi-objective cost function: 

 

 1) CSO volume minimization 

𝑱𝑐𝑠𝑜(𝑘) =  ∆𝑡 ∑ 𝑞𝑐𝑠𝑜
𝑖 (𝑘)2 +𝑛𝑐𝑠𝑜

𝑖=1  𝑞𝑏𝑦𝑝𝑎𝑠𝑠(𝑘)2,                                        (6) 

where 𝑛𝑐𝑠𝑜  is the number of CSO-diverting points, 𝑞𝑐𝑠𝑜
𝑖  is the flow of CSO i released to the 

receiving environment; variable 𝑞𝑏𝑦𝑝𝑎𝑠𝑠(𝑘)  is the bypassed CSO from the WWTP when the 

incoming water exceeded the treatment capacity. 

 

2) WWTP usage maximization 

 

         WWTP usage is maximized through minimizing the difference between 𝑞𝑤  (the flow 

incoming to the WWTP) and 𝑞𝑤𝑤𝑡𝑝
𝑙𝑖𝑚  (the maximum flow that can be accepted by the WWTP). This 

objective is expressed as  

𝑱𝑤𝑤𝑡𝑝 (𝑘) = (𝑞𝑤(𝑘) − 𝑞𝑤𝑤𝑡𝑝
𝑙𝑖𝑚 (𝑘))

2

.                                          (7) 

3) Control smoothness  

 

          Smoothness of actuator control is achieved by minimizing variation in the control between 

two consecutive time steps to provide a smooth strategy for the control elements: 

𝑱𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (𝑘) = ∑ (𝑢𝑖 (𝑘) − 𝑢𝑖 (𝑘 − 1))
2𝑛𝑔

𝑖=1
,                                (8) 

where 𝑛𝑔 is the number of control gates as defined previously, and 𝑢𝑖 represents the flow set-point 

variable produced by controller i. 

 

4) Pollution minimization 

 

         The pollutant loads from CSO to the environment is minimized. This quality objective 

function to minimize the overflowed mass of suspended solids is provided by  

 

𝑱𝑚𝑎𝑠𝑠(𝑘) =  ∑ 𝑡𝑠𝑠𝑐𝑠𝑜
𝑖 (𝑘)𝑞𝑐𝑠𝑜

𝑖 (𝑘) + 𝑡𝑠𝑠𝑏𝑦𝑝𝑎𝑠𝑠(𝑘)𝑞𝑏𝑦𝑝𝑎𝑠𝑠(𝑘)𝑛𝑐𝑠𝑜
𝑖=1 ,                  (9) 

where 𝑞𝑐𝑠𝑜
𝑖  is the sequence of flows (m3/s) at CSO point i; 𝑡𝑠𝑠𝑐𝑠𝑜

𝑖  is the sequence of TSS 

concentrations (kg/m3) at CSO point i; 𝑞𝑏𝑦𝑝𝑎𝑠𝑠 is the flow (m3/s) at the WWTP inlet bypass; and 

𝑡𝑠𝑠𝑏𝑦𝑝𝑎𝑠𝑠 is the TSS concentration (kg/m3) at the WWTP inlet bypass. 

After combining these goals, the objective function for the MPC of SS can be expressed as: 

 

𝑱(𝑘) =  𝑎𝑐𝑠𝑜𝑱𝑐𝑠𝑜(𝑘) + 𝑎𝑤𝑤𝑡𝑝 𝑱𝑤𝑤𝑡𝑝 (𝑘) + 𝑎𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑱𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (𝑘) + 𝑎𝑚𝑎𝑠𝑠𝑱𝑚𝑎𝑠𝑠(𝑘),  (10) 



 

 

where 𝑎𝑐𝑠𝑜, 𝑎𝑤𝑤𝑡𝑝 , 𝑎𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 , and 𝑎𝑚𝑎𝑠𝑠  are tuning weights that can be adjusted according to 

the desired prioritization established by the system operators. This objective function must be 

summed along the horizon from instant k to k+H. 

2.3 Feedback coordination algorithm 

In current local control implementations, the SN is generally controlled separately from the 

WWTP by considering a nominal hydraulic treatment capacity. However, to protect the biological 

treatment process of the WWTP from harmful conditions that may eventually cause a failure or a 

loss in efficiency, we consider dynamic treatment capacity that continuously takes into account 

the WWTP operating conditions so that the updated treatment capacity is integrated with the SN 

optimization using a feedback coordination algorithm  (Sun, et al., 2015; Romero-Ben, et al., 2019). 

The communication between SN and WWTP is coordinated in a feedback loop (Fig. 1). At 

every sampling time ∆𝑡 iteration, the WWTP capacity calculator produces the predictive treatment 

capacity for the following predictive horizon 𝐻 and updates the bound of the MPC model in the 

SN. 

Using the WWTP capacity prediction, among other required data, the MPC produces an 

optimal gate/pump operation sequence which ensures that the SN sends permissible wastewater 

flows to the WWTP.   

Here, the SN was simulated in InfoWorks (MWH, 2010), and the WWTP was simulated in 

GPS-X (Sofia, 2014). The calculator module was based on the state point analysis criterion 

(detailed in (Keinath, 1985)). The MPC-based integrated management strategy was implemented 

using the GAMS optimization library (Rosenthal, 2013) with a 30-min prediction horizon and a 5-

min control interval. 

           

                                          Fig. 1. Feedback coordination algorithm. 

 

2.4 Closed-loop VR simulator 

The results of the MPC control strategies were accessed and validated through a VR 

simulation framework based on software tools InfoWorks and GPS-X.  



 

 

 

Fig. 2. Closed-loop simulation framework. 

The simulation framework works in a closed loop with the MPC-based optimization where 

the simulators and controller exchange information involves the following at each time step: 1) 

Running the detailed simulators (InfoWorks and GPS-X) with a rain forecast to estimate the 

current state of the network and predict subsequent values of runoff and TSS at the different inlets 

in the sewer. 2) Using the WWTP capacity calculator to derive a prediction of WWTP capacity 

for the next horizon, in this case 30 min ahead. 3) Retrieving the current state, the input runoff 

flow, TSS predictions and the predicted WWTP capacity to execute the MPC and obtain optimal 

strategies for the next time horizon in GAMS. 4) Applying the set point for the first time step in 

the horizon to the SN actuators, moving forward one-time step, in this case 5 min, and starting 

again from action 1).  

3. Case study 

3.1. Case study  

The case study in this paper is based on the Badalona SS, an area of approximately 20 km² in 

the east of Catalonia (Spain) with approximately 200 000 inhabitants and facing the Mediterranean 

Sea (Fig. 3). 

 

Fig. 3. Map of Badalona location (in violet). 



 

 

Badalona has a Mediterranean climate, with 50% of the rainfall occurring during two or three 

heavy rainfall events in the summer and autumn. During the most intense storm events, a portion 

of the stormwater cannot enter the WWTP, leading to CSOs on the beaches of Badalona with 

serious environmental, social, and economic consequences. 

The case study includes a combined SN (blue line in Fig. 4) and a WWTP. The main detention 

infrastructure is the Estrella tank (blue cylindrical element labeled “DLES” in Fig. 4). The Besòs 

WWTP is located on the coast. The flow sent from the Badalona Municipality SN to the WWTP 

is constrained by the pumping station. Along the coast, there are several outfall points from which 

CSOs are released (in red in Fig. 4). 

 

Fig. 4. Badalona sanitation system (SS). 

3.2. Detailed model for simulation 

The detailed model of the SN at the Badalona pilot (Fig. 5) was implemented in InfoWorks 

Integrated Catchment Modelling (InfoWorks ICM) (MWH, 2010) from the Innovyze Company. 

To simulate the Badalona pilot, the hydraulic models based on full one-dimensional Saint Venant 

equations and InfoWorks (Joseph-Duran, et al., 2014) were used. Furthermore, InfoWorks ICM 

offers the Ackers–White model, Velikanov model (Combes, 1982), and KUL model  (Joseph-

Duran, et al., 2014) for simulating the erosion, transport, and deposition of sediments as pollutants 

travel in suspension or attached to solid particles. We used the Velikanov model, and the TSS was 

used as the quality indicator. 



 

 

 

Fig. 5. InfoWorks Badalona detailed model. 

The detailed WWTP model was implemented in GPS-X (Sofia, 2014), which provides a 

modular multipurpose modeling environment and uses an advanced graphical user interface to 

facilitate dynamic modeling and simulation. The GPS-X simulation was built using the Advanced 

Continuous Simulation Language (Sofia, 2014), which has powerful integration capabilities and 

general simulator features. The GPS-X WWTP model layout is shown in Fig. 6 and includes the 

typical treatment processes of conventional WWTPs: gravity clarifiers as the primary treatment, a 

conventional suspended growth biological process as the secondary treatment, and a simplified 

sludge line with thickening and dewatering processes.  

 

Fig. 6. Wastewater treatment plant (WWTP) layout of Badalona pilot in GPS-X. 

3.3. Simplified network structure for optimization 

For the computation of control strategies using MPC, a simplified model structure described below 

(Fig. 7) was used to represent the basic dynamics of the SN. Details of the simplified modeling 

approach and its calibration are provided in (Martínez, et al., 2019). The simplified network 

contained eight catchments (C1–C8) and Baux. The catchments were connected by 35 links. Also 

present a detention tank (T1); two gates, which controlled the flow of water into the tank; pumping 

stations to empty the tank; and four overflows (CSO1–CSO4) and the overflow of the TWWTP 



 

 

tank, which was considered the CSO point in the optimization process. In Fig. 7, water flows from 

the upper to the bottom left portion of the figure. 

 

Fig. 7. Diagram of simplified model of Badalona SN. 

3.4. Real-time control strategies 

Three different scenarios were employed to validate the control approaches using the 

Badalona case study under different rain events (Fig. 8). Given that the characteristics of rain 

events can vary tremendously, different time scales were used to capture a wide range of rainfall 

scenarios. Each one of the three scenarios was simulated using all the compared control 

approaches: the local control, non-integrated volume-based MPC and the integrated pollution-

based MPC. The local control represents the rule-based RTC approach where the control actions 

are generated by a set of predefined rules provided by the local water operators regarding only 

hydraulic measurements. The non-integrated volume-based MPC is the MPC approach which only 

considers the hydraulic dynamics and performance function with CSO volume (exclude the 

equations 2,3,4,9). The integrated pollution-based MPC is the one proposed in this work, and the 

integration refers to the WWTP limitations considered during the optimization process. 

Scenario 1: MPC vs. Local Control. This scenario permits the efficiency of the optimization-based 

approaches to be validated relative to a rule-based Local Control approach. Thus, both volume-

based MPC and pollution-based MPC are compared to the local control utilized by the water 

operators, and several conclusions can be extracted about exploiting advanced of the MPC 

strategies for the SS. 

Scenario 2: Pollution-based MPC vs. Volume-based MPC. The two presented MPC-based 

approaches are also compared, i.e., the volume-based strategy with respect to the pollution-based 

procedure. In this study, the benefits of including quality measurements in the optimization process 

are highlighted. 



 

 

Scenario 3: Integrated MPC vs. Non-integrated MPC. As aforementioned, the second difference 

between the volume-based and the pollution-based strategies consists of the WWTP integration.  

The volume-based approach does not consider the WWTP limits during the control action 

computation, whereas the pollution-based MPC indeed considers these limitations to optimize the 

water input to the treatment facility. Hence, the effects of integrating the WWTP in the control 

procedure are shown. 

The selected rain episodes used for comparisons were: 

 07/05/2016. An episode with low intensity and duration of rainfall, which is one of the most 
common types of rainfall events throughout the year. 

 13/02/2016. A small rain event with an increasing intensity in rain compared with smaller 

episodes. 

 24/03/2017. A medium rain event given the accumulated amount of precipitation. These types 
of rainfall episodes are rare in Badalona. 

 T10. To challenge the tank management operation proposed by the distinct control approaches, 

an artificially large rainfall event in terms of both intensity and duration was designed. 

 18/06/2016. Before validating the proposed control approach, the coordination of the different 
subsystems in the closed-loop VR simulator was tested using an independent medium rain 

episode on 18/06/2016. 

 

Fig. 8. Rainfall scenarios examined for the Badalona SN. 

According to the defined TSS models, the TSS mass in the detention tank primarily considers 

the mixture behavior [as Eq. (2)]. The transportation at the junction node fits the mass balance 



 

 

Eq. (4). In addition, TSS transport in the sewer satisfies the linear and instantaneously defined 

conceptual model in InfoWorks.  

1) Closed-loop VR simulator 

For Local Control, water flows and TSS were computed using an independent simulation 

with embedded rule-based control regulations. For the MPC, the flow and TSS dynamics were 

computed using the MPC models. For the Closed Loop modes, the optimal MPC strategies were 

sent as set points to the actuators in the simulator. Under the rain event of 18/06/2016, the two 

computed sewer flows during the optimization (MPC line) were highly similar with the Closed 

Loop plot (obtained from the results of the detailed model simulation), demonstrating the adequacy 

of the implemented SS simplified model at the optimizer and the robust operation of the closed-

loop procedures (Fig. 9). 

 

 

(a) CubetaSJ                                                 (b) CubetaTB 

                                                            Fig. 9. Sewer flows. 

After the optimization process, optimal gate flows were sent as set points to the simulator. 

Gate flows in the Closed Loop were then compared with those computed by the MPC. Figure 10 

shows that the optimizer and the simulator were working jointly so that the computed set-point 

flows produced by the optimizer could obtain similar flow values in the detailed network. 

Figure 10(a) and (b) present the flows at the inlet sewers of the retention tank, while Fig. 10(c) 

presents the flow pumped out from the tank. The similar behavior of both the MPC and the Closed 

Loop reveals the proper functioning of the closed-loop simulation scheme. 



 

 

 

                                (a) S3                                                                 (b) S4 

 

(c) S8 

Fig. 10. Gate positions and regulator actions in closed loop. 

 

2) Comparison of performance of different control strategies 

Comparisons of the implemented control strategies are shown in Table 1. The two considered 

CSO points in the analysis were CSO4 and CSO5, as the rest of CSOs were passive and thus their 

flow could not be controlled. 

 

Table 1. Comparison of CSO results. 

  Local Control 
Volume-based 

MPC 

Pollution-based 

MPC 

07/05/2016 
CSO Volume (m3) 8013 7454 7453 

CSO Mass (kg) 7805 7209 7209 



 

 

13/02/2016 
CSO Volume (m3) 23 053 21 075 21 072 

CSO Mass (kg) 10 938 10 063 10 060 

24/03/2017 
CSO Volume (m3) 145 290 123 510 123 496 

CSO Mass (kg) 26 312 23 761 23 735 

T10 
CSO Volume (m3) 80 935 76 549 76 804 

CSO Mass (kg) 23 215 19 427 16 196 

 

Scenario 1: MPC vs. Local Control 

Table 1 compares the performances of the two proposed MPC approaches with that of a local 

control strategy. MPC control reduced CSO volume by 7–8.5% for small rain events. This value 

increased to 15% for the 24/03/2017 episode despite the increased rainfall given that medium-

intensity rainfall does not pose major difficulties for tank management. However, the tank 

operation deteriorated in the T10 event because of the more intense precipitation, resulting in a 5% 

decrease in CSO volume in the performance of the local control scheme. This reduction was similar 

for both the volume and pollution-based approaches. 

The decrease in pollutant mass released to the receiving body for the three real episodes ranged 

from 7.6% to 9.7%, and the results were similar for both MPC strategies. The explanation for the 

difference between the pollution-based and volume-based MPC will be provided in the next 

scenario. Finally, in scenario T10, there was a 16.3% reduction in the spilled mass when a volume-

based strategy was used; in contrast, a pollution-based approach resulted in a 30.2% decrease in 

spilled mass compared with the local control. 

Hence, the proposed MPC approach permitted a reduction in the CSO volume and mass released 

to the environment relative to the local control strategy. 

 Scenario 2:  Pollution-based MPC vs. Volume-based MPC 

Similar volumes were spilled in volume-based control and pollution-based control 

approaches (the differences in the percentages were lower than 0.1%; Table 1). The performance 

was also similar for the polluted mass released, except for the T10 episode. In this event, the high 

intensity and large quantity of rainfall rapidly and completely filled the tank, making it essential 

to optimize the quality of the stored water. Therefore, pollution-based control is capable of 

reducing 16.6% of the pollutants reaching the environment relative to the volume-based strategy.  

Nevertheless, the efficacy of these approaches is ultimately determined by their integration 

with WWTPs, as the flow sent to the treatment facility is adjusted to the WWTP capacity in the 

pollution-based approach but not in volume-based control. Hence, integrating these controls with 

WWTPs can lead to an improvement in the mitigation of CSO in terms of both spilled volume and 

mass. 

Scenario 3: Integrated MPC vs. Non-integrated MPC 

Finally, the integrated and non-integrated MPC controllers were compared. Figures 11–14 

highlight the benefits of integration. The first subplot in these figures shows changes in the WWTP 

primary treatment flow capacity computed by employing the WWTP model, while the second 



 

 

subplot shows changes in the inflow to the WWTP. For the volume-based case, MPC was 

unaffected by predictions of WWTP capacity given that there was no integration; thus, the influent 

to the treatment plant was not limited. There was no difference between the integrated and non-

integrated approaches in some small rain scenarios (07/05/2016), as the operation of the WWTP 

never reached its limit because the rainfall intensity in this scenario was not high (Fig. 11). 

             

 

Fig. 11. Calculated WWTP capacity and entrance flow to the plant for the rainfall episode on 07/05/2016. 

 

 

Fig. 12. Calculated WWTP capacity and entrance flow to plant for rainfall episode on 13/02/2016. 

 



 

 

Fig. 13. Calculated WWTP capacity and entrance flow to plant for rainfall episode on 24/03/2017. 

 

Fig. 14. Calculated WWTP capacity and entrance flow to plant for rainfall episode T10. 

However, there were differences in the performance between integrated and non-integrated 

MPC for the other three rainfall scenarios. The most significant improvements were observed in 

the rainfall event of 24/03/2017 (Fig. 13). 

In the integrated approach, integration reduced the inflow to the WWTP because, since t = 

300, the retention tank began to empty such that the flow reaching the plant was mostly affected 

by the tank outflow. Thus, the WWTP was overall less stressed during its operation. As a result, 

the WWTP accepted most of the incoming water, thereby reducing the CSO spilling that occurred 

inside the treatment facility. Because of the difference in the management of the actuators arising 



 

 

from the consideration of WWTP capacity in this rainfall episode, the integrated control reduced 

the released CSO from the WWTP by 8.1% compared with the non-integrated control. 

3) Discussions in results 

From Table 1 and Figs. 11–14, several discussions can be obtained. 

 Substantial improvements were made by the implementation of MPC approaches 
comparing to the local control for all of the considered rain episodes. However, this 

reduction in the volume and mass of CSOs was limited by the low complexity of the 

topology of the pilot SN. The fact that the network only had one retention tank (with only 

five actuators) significantly decreases the number of different control strategies that could 

be implemented among the different RTC approaches, as the degrees of freedom were 

exclusively derived from the management of the tank-filling and emptying operations.  

 Support for the hypothesis that the simple network topology constrained the efficacy of 

these MPC approaches was confirmed by comparing the volume-based and pollution-based 

approaches. The incoming water to the tank came from only two basins. Thus, if there was 

not a significant difference in the concentration of pollutants between the incoming flow 

from these catchments, there would be no need to include a quality objective in the 

optimization process. In this case, the volume-based and pollution-based approaches would 

be equally effective. 

 The reduced scope for the action of the control approach also reflects the inability of the 

network to track WWTP capacity; thus, under low-intensity rains, integration of the SN 

with WWTP does not significantly affect the control performance. However, the benefits 

of integration are most evident for high-intensity rainfall scenarios, such as the T10 event 

(Fig. 14). Therefore, the principal utility of integration is realized during rainfall events 

that stress the treatment plant. 

4. Conclusions 

In this work, we proposed an efficient integrated pollution-based RTC approach based on 

MPC for SSs to mitigate the impacts of pollution from CSO. Moreover, a feedback coordination 

mechanism has been proposed to integrate the subsystems of SN and the WWTP of SS. The MPC 

model additionally considered TSS dynamics as a quality indicator. The case study based on the 

Badalona SS was reproduced using a VR simulation framework under various scenarios. The 

results showed that the integrated pollution-based MPC approach provides the following 

conclusions: 

1) The MPC strategy can hydraulically reduce the CSO released to the receiving environment 

comparing to the rule-based local control strategies currently in use; 

2) When quality models are factored into the optimization, a mass reduction in CSO can be 

achieved comparing to only considering the hydraulic model; 

3) The integrated control scheme can help in reducing the CSO volume through reading the real-

time WWTP capacity. 

However, the potential improvements of the proposed approach are affected by several 

factors: climate; the spatial distribution of the pollution; the available online measurements; the 

level of automation; the number of detention and storage elements; and the retention volume of 



 

 

rainfall inputs. To continue improving applications of this approach, the following topics require 

future attention: 

1) Certain degree of uncertainties need to be formally incorporated into the optimization 

module to confirm robustness and accuracy of the control approach.  

2) Advantages of digital methods can be exploited into the optimization process with efficient 

and effective consideration. 

3) Another online pilot with different climate is encouraged to be implemented in order to 

improve the scalability of the proposed approach.  
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