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ABSTRACT
In this paper we propose a unsupervised and unified ap-

proach to simultaneously recover time-varying 3D shape,
camera motion, and temporal clustering into deformations,
all of them, from partial 2D point tracks in a RGB video
and without assuming any pre-trained model. As the data
are drawn from a sequentially ordered images, we fully ex-
ploit this information to constrain all model parameters we
estimate. We present an energy-based formulation that is
efficiently solved and allows to estimate all model parameters
in the same loop via augmented Lagrange multipliers in poly-
nomial time, enforcing similarities between images at any
level. Validation is done in a wide variety of human video se-
quences, including articulated and continuous motion, and for
dense and missing tracks. Our approach is shown to outper-
form state-of-the-art solutions in terms of 3D reconstruction
and clustering.

Index Terms— Non-Rigid Structure from Motion, De-
formation Segmentation, Sequential Data, Optimization

1. INTRODUCTION

RGB videos are nowadays present in everyone’s life thanks to
the rapid development of recording cameras. In the last years,
many solutions have been proposed to perceive the world in
3D without accounting for any extra sensor. While some
degree of success has been achieved when the structure ob-
served by the sensor is rigid [1, 2], recovering the 3D geome-
try of the vivid moving real world is still in its infancy. In this
case, the fact that many different 3D structure configurations
may have similar 2D projections produces severe ambiguities
that can be only resolved by incorporating more sophisticated
constraints than those utilized in the rigid case. In the com-
munity, this problem is denominated as Non-Rigid Structure
from Motion (NRSfM), and consists in estimating motion and
non-rigid 3D shape from 2D point tracks in a monocular video
without the need for a pre-trained model. The results can be
exploited in many application domains, including augmented
reality, medical image, multimedia, or in human-computer in-
teraction to name just a few.
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The simultaneous recovery of non-rigid 3D shape and
pose parameters usually results in a non-convex optimiza-
tion problem, that in combination with the orthogonality
constraints on the camera parameters, make the problem
even more complicated. Maybe, the most popular priors
are based on low-rank constraints over different modali-
ties [3, 4, 5, 6, 7, 8, 9, 10] that induce the deformations.
However, these approaches rarely exploit the full similari-
ties that the sequential data can provide. In this work, we
propose to fully exploit this physical temporal coherence, by
implicitly enforcing smooth motion and deformation, smooth
temporal similarities to infer the segmentation, and smooth
2D projections to complete missing entries; all of them, in
combination with low-rank priors. Thanks to our formula-
tion, we provide smooth patterns that produce more accurate
segmentations and 3D reconstructions than state-of-the-art
approaches.

2. RELATED WORK

Retrieving a non-rigid 3D structure together with the cam-
era motion from solely the observation of 2D point tracks in
a monocular video is an ill-posed problem that requires to
exploit the art of priors. The most used idea to address the
problem is to assume that the 3D shape lies in a low-rank
subspace defined by shape [5, 11], trajectory [6, 7], shape-
trajectory [12, 13, 14], or force [8] vectors. The main limita-
tion of previous approaches is the dimensionality of the sub-
space is known in advance, making them very problem spe-
cific. Later, other approaches have imposed the low-rank con-
straint by directly minimizing the rank of a matrix represent-
ing the 3D shape, considering the data lie in a single [15, 16],
in a union of temporal [9, 17], or in a dual union of spatio-
temporal [18] subspaces. In combination with previous ap-
proaches, smoothness constraints have also been incorporated
to provide robustness [3, 4, 5, 19, 20]. Unfortunately, the
temporal coherence in video data has not been fully exploited
in previous formulations. In this paper, we introduce tempo-
ral consistency in all model parameters we recover, providing
clean, robust and accurate estimations that outperform state-
of-the-art solutions. To achieve that, we present a novel un-
supervised formulation where all model parameters are esti-
mated in the same loop, penalizing deviations on consecutive
frames by means of the extensive use of smoothness filters.



3. NON-RIGID STRUCTURE FROM MOTION

We now review the NRSfM formulation that will be later em-
ployed to introduce our approach. To this end, let us consider
a set of N 3D points observed along F pictures represented
by xf

n = [xfn, y
f
n, z

f
n]> for the n-th point at frame f . Con-

sidering that the point is observed by an orthographic camera,
its 2D projection in the f -th image plane can be denoted as
pf
n = [ufn, v

f
n]>. After collecting all points in all images, the

3D-to-2D projection system can be defined as:p1
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where P is a measurement matrix to group the 2D point
tracks, G is a block diagonal matrix, made of the F truncated
2 × 3 camera rotations Rf , and X is a shape matrix with
the 3D point locations. It is worth noting that the previous
expression is obtained after removing zero-mean measure-
ments, i.e., the 2D translation. The NRSfM problem consists
in factoring the measurement matrix P into the motion G
and shape X factors, i.e., inferring camera pose and 3D
reconstruction from 2D point tracks in a monocular video.

In order to address the problem, the most standard ap-
proach is to enforce a low-rank constraint over P, since the
time-varying configurations in X can lie in a linear subspace
of rank 3K [21]. However, it was observed that another inter-
pretation can be considered, removing the use of unnecessary
degrees of freedom [15, 16, 22]. To achieve that, we can de-
fine the matrix X̂ that rearranges the entries of X into a new
3N×F matrix, where aK-rank constraint could be imposed.
Both matrices can be related by means of X = (I3 ⊗ X̂>)A

and X̂ = (X> ⊗ I3)B, where ⊗ is a Kronecker product op-
erator, I3 is an identity matrix, and A and B are binary ma-
trices of size 9N × N and 9F × F , respectively. Similarly,
we can define the matrix P̂ that rearranges the entries of P
into a 2N×F matrix, and the relations P = (I2⊗P̂>)C and
P̂ = (P>⊗I2)D with C and D other binary matrices. As we
will see later, both interpretations are used in our formulation.

4. ART OF PRIORS FOR SEQUENTIAL DATA

As it was introduced in the last section, our input data consist
in a RGB video, i.e., our input information follows a sequen-
tial pattern along the time, where most pictures are similar to
their neighbors. Thanks to this observation, we can exploit the
natural consistency of sequential data by incorporating some
penalty terms into our model. Without loss of generality, we
will use this type of penalties to enforce smooth relations in
all model parameters we consider.

From a physical perspective, the motion of a camera
should be faster than the deformation of a dynamic object.

Considering that, the level of temporal regularization needs to
be stronger in the shape parameters than in the camera ones.
However, this does not mean that only the 3D reconstruction
should be regularized, since its 2D projection is also related
according to the projection equation. Taking inspiration in
the theory of finite differences, for a sudden motion like that
followed by a camera, we can introduce a first-order filter
of the type Rf+1 ≈ Rf to enforce smooth movements, i.e.,
the location of the f -th camera in two neighboring pictures
does not change much. In contrast, for shape deformations
we need even more regularization, extending the influence of
the neighborhood in a temporal domain. This can be done by
using, for instance, a fourth-order central difference, where
five neighbors are considered for regularization as:

∂2x

∂t2
=
−xi−2 + 16xi−1 − 30xi + 16xi+1 − xi+2

12∆t2
, (1)

where ∆t denotes the temporal increase between frames, and
the variable x represents a generic 3D point. Omitting the
term ∆t, the previous equation can be represented by means
of a compact form by using a F × F matrix F as:

Fkj =



−30 if j = k, k = {3, . . . , F − 2}
−16 if j = k, k = {2, F − 1}
16 if j|k = k|j + 1, k|j = {2, . . . , F − 2}
−1 if j|k = k|j − 2, k|j = {3, . . . , F}
1 if j|k = k|j − 1, k|j = {2, F}
0 if otherwise

,

where first- and third-order filters are included in the bound-
aries to achieve a smooth transition. It is worth pointing out
that this matrix is highly sparse, allowing to enforce the tem-
poral filter at low computational cost.

5. MOTION, 3D TIME-VARYING SHAPE AND
CLUSTERING FROM 2D POINT TRACKS

Our goal is to simultaneously retrieve camera motion, 3D
time-varying shape and deformation clustering from incom-
plete 2D point tracks in a monocular video. In this section,
we formulate the full problem by considering the preliminary
concepts defined in sections 3 and 4. We also present a unsu-
pervised, efficient and unified optimization strategy to sort it
out, without assuming any training data at all.

5.1. Problem Statement

To solve for motion, 3D shape and deformation clustering
from incomplete sequential data, we assume the shape de-
formation can be modeled by means of a union of temporal
subspaces. To do that, we consider a low-rank F × F simi-
larity matrix T to encode higher entries for pairs of pictures
of the same cluster, such that X̂ = X̂T + N, where N is a
3N×F residual noise. As it was introduced in section 3, X̂ is



also low-rank, and therefore, both matrices can be computed
by minimizing their rank without assuming any prior infor-
mation. Since this is a non-convex NP-hard problem we used
the nuclear norm instead, which is its convex relaxation [23].
Additionally, we exploit the sequential-data prior by adding
extra constraints by means of the matrix F we introduced in
section 4. This can be done enforcing a couple of hard con-
straints over the non-rigid 3D shape X̂F = 0 (as in [9]) and
over the 2D point tracks P̂F = 0, respectively. Moreover, we
also enforce this constraint in temporal similarities, using the
term TF, forcing consecutive columns of T to be similar.

With these ingredients, we denote the set of all model pa-
rameters to be recovered by Ψ ≡ {P, P̂,G,X, X̂,T,N}.
Our input data consists of partial 2D point tracks in a RGB
video P̄, and the corresponding observability matrix O ∈
RF×N , with {1, 0} entries indicating whether a point in a
specific frame is visible or not. Taking into account the or-
thonormality constraints on camera rotations, our problem is:

arg min
Ψ

‖ (O⊗ 12)�
(
P− P̄

)
‖2F + β‖P‖∗ + ζq(G)

+ γ(‖X̂‖∗ + ‖T‖∗) + λ(‖TF‖1 + ‖N‖2,1) (2)

subject to P = GX
GG> = I2F

X̂ = X̂T + N

(I3 ⊗ X̂>)A = X

(I2 ⊗ P̂>)C = P

X̂F = 0

P̂F = 0

where 1 denotes a vector of ones, and� represents a Hadamard
product. ‖ · ‖∗, ‖ · ‖1 and ‖ · ‖2,1 indicate the nuclear norm,
l1-norm and l2,1-norm, respectively, and ‖ · ‖F is the Frobe-
nius norm. {β, ζ, γ, λ} are penalty coefficients. In Eq. (2),
we denote by q(·) the function to impose smooth solutions on
the camera rotation, as it was commented in section 4.

5.2. Optimization

The problem in Eq. (2) is non-convex, and it can be approxi-
mated by a two-step strategy that will be iteratively combined
to achieve a solution. On the one hand, we have to compute
the camera rotation G by considering the terms in Eq. (2)
where that variable is implicated, writing the problem as:

arg min
Rf∈SO(3)

1

2

F∑
f=1

P∑
p=1

‖pf
n−Rfxf

n‖2F +ζ

F−1∑
f=1

‖∇fR‖2F , (3)

where every Rf matrix lies in the SO(3) manifold (see sec-
tion 3). This problem can be solved by using the trust-region
solver in the Manopt toolbox [24].

On the other hand, we need to solve for the rest of model
parameters. To this end, we present the energy to be mini-
mized by considering all model parameters except the camera

rotation. Applying Augmented Lagrange Multipliers (ALM),
the equivalent Lagrangian function is:

arg min
Ψ̄

‖ (O⊗ 12)�
(
P− P̄

)
‖2F + β‖P‖∗ (4)

+ γ(‖X̂‖∗ + ‖J‖∗) + λ(‖U‖1 + ‖N‖2,1)

+〈M1,P−GX〉+ α

2
‖P−GX‖2F

+〈M2, X̂−X̂T−N〉+ α

2
‖X̂−X̂T−N‖2F

+〈M3, (I3 ⊗ X̂>)A−X〉+ α

2
‖(I3 ⊗ X̂>)A−X‖2F

+〈M4, (I2 ⊗ P̂>)C−P〉+ α

2
‖(I2 ⊗ P̂>)C−P‖2F

+〈M5, X̂F〉+ α

2
‖X̂F‖2F +〈M6, P̂F〉

+
α

2
‖P̂F‖2F +〈M7,U−TF〉+ α

2
‖U−TF‖2F

+〈M8,T− J〉+ α

2
‖T− J‖2F ,

where two dual variables U and J are included, and Ψ̄ ≡
Ψ∪{U,J} \G. In addition, we also introduce the Lagrange
multipliers: {M1,M4} ∈ R2F×N , {M2,M5} ∈ R3N×F ,
M3 ∈ R3F×N , M6 ∈ R2N×F , and {M7,M8} ∈ RF×F ;
and α > 0 is a penalty weight to improve convergence. The
problem in Eq. (4) can be efficiently sorted out by recovering
each model parameter independently and in closed form while
keeping fixed the rest of parameters, as it is proposed in [25,
26]. For initialization, we follow the first two steps proposed
in [18]. That is, we first assume a low-rank prior to solve
a matrix-completion problem to retrieve P from incomplete
data P̄, and then computing the rotation G. For simplicity,
no temporal regularizations are enforced in these steps. After
that, we alternatively solve Eqs. (3)- (4) until convergence.

6. EXPERIMENTAL EVALUATION

We now report our experimental evaluation on several human
motion videos, including articulated and continuous deforma-
tion, several body configurations and scenarios with missing
or dense entries. For quantitative evaluation, we apply our al-
gorithm on the articulated human motion dataset introduced
in [6], which includes five types of activities. As in the lit-
erature [7, 13, 15], we will provide the normalized mean 3D
error eS , and the mean rotation error eR. For further details,
we refer the reader to these papers. Additionally, we also re-
port the object clustering error eC as defined in [18], after
applying spectral clustering [27] over the estimated matrix T.

To establish a comparison, we consider eight state-of-the-
art methods: EM-PPCA [5], MP [11], PTA [6], CSF [13],
KSTA [12], BMM [15], PPTA [7], and URS [9]; under two
situations: noise-free and noisy 2D point tracks as it was
done in [7]. We do not consider modern unsupervised deep-
learning approaches [28] as they require large amounts of
training data to obtain competitive solutions [29]. It is worth



PPPPPPPPData
Met.

EM-PPCA [5] MP [11] PTA [6] CSF [13] KSTA [12] BMM [15] PPTA [7] URS [9] (Ours)

eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS(R) eR eS eC [%] eR eS eC [%]
Noise-free observations

Drink .186 .261(7) .330 .357(12) .006 .025(13) .006 .022(6) .006 .020(12) .007 .027(12) .006 .011(30) .006 .009 0.8(2) .006 .009 0.6(2)
Stretch .749 .458(7) .832 .900(8) .055 .109(12) .049 .071(8) .049 .064(11) .068 .103(11) .058 .084(11) .058 .061 4.1(3) .058 .060 4.1(3)
Yoga .688 .445(8) .854 .786(2) .106 .163(11) .102 .147(7) .102 .148(7) .088 .115(10) .106 .158(11) .106 .143 0.3(2) .091 .133 0.2(2)
Pick-up .417 .423(14) .249 .429(5) .155 .237(12) .155 .230(6) .155 .233(6) .121 .173(12) .154 .235(12) .154 .221 3.7(3) .147 .209 3.0(3)
Dance – .339(4) – .271(5) – .296(5) – .271(2) – .249(4) – .188(10) – .229(4) – .165 – – .150 –
Average error: .385 .549 .166 .148 .143 .121 .143 .119 .112
Relative error: 3.44 4.90 1.48 1.32 1.28 1.08 1.28 1.06 1.00

Noisy observations
Drink .231 .250(7) .329 .517(12) .043 .045(13) .043 .044(6) .043 .042(12) .044 .056(12) .042 .038(30) .042 .044 3.6(2) .036 .034 1.4(2)
Stretch .819 .886(7) .872 .975(8) .091 .144(12) .091 .121(8) .091 .166(11) .098 .183(11) .091 .123(11) .091 .119 8.4(3) .091 .119 5.1(3)
Yoga .700 .507(8) .858 .791(2) .124 .174(11) .125 .168(7) .125 .172(7) .136 .195(10) .124 .174(11) .125 .167 0.0(2) .112 .162 0.2(2)
Pick-up .499 .807(14) .250 .407(5) .148 .228(12) .148 .224(6) .148 .222(6) .141 .212(12) .148 .228(12) .148 .207 3.1(3) .147 .205 2.5(3)
Dance – .336(4) – .282(5) – .299(5) – .266(2) – .248(4) – .236(10) – .222(4) – .164 – – .157 –
Average error: .557 .594 .178 .165 .170 .176 .157 .140 .135
Relative error: 4.12 4.40 1.32 1.22 1.26 1.30 1.16 1.04 1.00
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Table 1. Quantitative and qualitative evaluation on human motion capture videos. Left: We provide rotation eR and
3D reconstruction eS errors for competing techniques: EM-PPCA [5], MP [11], PTA [6], CSF [13], KSTA [12], BMM [15],
PPTA [7], and URS [9]; and for our approach, considering both noise-free and noisy observations. For every solution, we also
indicate in parentheses the rank K of the linear subspace that produced the lowest eS error. Relative error is always computed
with respect to our reconstruction. For ours, we also provide clustering error eC [%], and the number of motion clusters in
parentheses. The symbol “−" denotes that ground truth data is not available. Right: Our estimated similarity matrix T (top)
and the ground truth (bottom), together with the associated clustering bar, for the sequences Stretch (left) and Pickup (right).
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Fig. 1. Qualitative evaluation on real videos. In both cases,
we display the same information, for (from top to bottom)
Face, Back and Heart sequences. Left: Deformation similar-
ity matrix we recover, and the corresponding clustering bar.
Right: Images together with its 3D reconstruction using an-
other point of view. Every color corresponds to a deformation
cluster. Blue crosses represent missing points.

noting that for some methods, the subspace rank K needs to
be tuned by hand, rather than our approach that does not re-
quire tuning any rank. Table 1-left summarizes the 3D recon-
struction and rotation errors for all methods, sequences, and
situations. Note that our method outperforms consistently the
state of the art in terms of 3D reconstruction, reducing the 3D
error of other approaches by large margins between the 6%
and 490% for noise-free, and between the 4% and 440% for
noisy observations, respectively. As our approach, is the only
one that estimates all model parameters in the same loop, may
become less robust to artifacts than the rest, but though, this
is a key factor to achieve more accurate solutions. Regarding

segmentation, our method provides more smooth and clean
similarity matrices than [9], producing better segmentations.
In table 1-right, we display a qualitative comparison between
our similarity matrix T and the ground truth, along with the
clustering bars. As it can be seen, though our estimation is
somewhat noisy, the clustering we obtain is quite accurate.

We also show the robustness of our algorithm against
occlusions, by processing an American-sign-language se-
quence, where a human face is moving and gesturing [8].
Figure 1-top shows some images and our 3D reconstruction
even for missing point tracks, as well as the deformation sim-
ilarity and its clustering bar (we detect three clusters: closed
mouth, and open mouth with closed and open eyes). Finally,
we also validate our method on dense data by running two
video sequences with 20,561 and 68,295 2D point tracks
taken from [16], where a back and a heart are moving and
deforming, respectively. In Fig. 1-middle/bottom is displayed
the 3D reconstruction we obtain for some pictures, along with
the estimated similarities and clusters. In spite of being only
qualitative, our 3D reconstruction seems to be very accurate
and coherent with the deformation clusters. Again, our algo-
rithm obtains cleaner similarity matrices than [9], producing
better temporal-consistency segmentations.

7. CONCLUSION

We have proposed a novel formulation to solve the Clustering-
NRSfM problem in a unified, efficient and unsupervised
fashion. To do that, we have introduced an energy-based for-
mulation that can be minimized in the same loop, where the
sequential nature in video data is completely exploit to infer
all model parameters we consider. Experimental results show
our solution provides more accurate solutions than the rest of
competing methods to retrieve human motion in terms of 3D
reconstruction and clustering, being applicable in situations
with dense and missing tracks. Our future work is oriented to
extend our model to full perspective cameras.
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