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Perception of cloth in assistive robotic manipulation tasks
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Abstract Assistive robots need to be able to perform a large number of tasks that imply some type of cloth
manipulation. These tasks include domestic chores such as laundry handling or bed-making, among others,
as well as dressing assistance to disabled users. Due to the deformable nature of fabrics, this manipulation
requires a strong perceptual feedback. Common perceptual skills that enable robots to complete their cloth
manipulation tasks are reviewed here, mainly relying on vision, but also resorting to touch and force. The
use of such basic skills is then examined in the context of the different cloth manipulation tasks, be them
garment-only applications in the line of performing domestic chores, or involving physical contact with a
human as in dressing assistance.
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1 Introduction

Robots perform quite competently nowadays in structured environments, tackling hard tasks under tough
working conditions, and even handling incidences that could be anticipated. The requirements posed by
assistive settings, however, point in a quite different direction. The top concerns are no longer precision
and repeatability, but rather a high degree of adaptability to varying ambient conditions, ability to learn,
multimodal human-robot interaction capabilities, and integrated safety. It is obvious that robots cannot
replace humans entirely in assistive environments, probably they shouldn’t either. Nonetheless, it is desirable
that they be able to perform a variety of tasks within domestic and service environments such as hospitals or
care homes. Such tasks fall under what is commonly known as domestic chores, whose fulfillment ensures not
just tidy homes, but the very proper life conditions of physically disabled people, in acceptable standards
of human dignity and coverage of needs. Human companionship cannot be obviated, but the burden of
associated duties without added value in personal interchange can be certainly alleviated with a robotic
helper.

Among these tasks, those that involve the manipulation of textile items, including of course all types
of garments, but also other categories of fabric-made objects such as bed- and tablecloth, curtains, towels,
kitchen rags and dishcloth, etc. have to be highlighted. The omnipresence of such items in human daily
environments and the importance of handling them correctly are evident. The means of providing assistive
robots with the necessary abilities to perform cloth manipulation are not so clear. Ideally one would like
to replicate the human proficiency in manipulating clothes, but the robotic state-of-the-art is still far
from achieving the needed perceptual skills and the required dexterity. Cloth perception and manipulation
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are extremely challenging, due to the deformable nature of fabrics. Textiles are highly flexible, and slight
mechanical actions are amplified to large motion or draping variations Magnenat-Thalmann and Volino
(2005). As a consequence, even tiny changes in the initial configuration or in the conditions in which the
action takes place may lead the manipulated garment towards very different states. Deformations include
wrinkles, folds, and inside-out reversals. As deformations may occur anywhere along the piece of fabrics, the
range of possible shapes that the same garment displays (intra-garment variability) is practically infinite,
which exacerbates the difficulties in recognizing the cloth item. Moreover, the bending energy stored by such
deformations is really negligible, which means that cloth does not tend to recover the state previous to such
deformations by its own means. This intrincate behaviour of fabrics is due to the anisotropy and the nonlinear
mechanical response of this material, as well as to the fact that it has two priviledged dimensions, whereas
thickness is orders of magnitude smaller. However, these challenges do not mean that it is pointless to aim
at robots tackling cloth manipulation tasks, only that their versatility, ability to deal with uncertainties,
learning capabilities and dexterity need to be fostered by research. Among all the skills robots have to be
furnished with in order to manipulate textiles successfully, perception ranks possibly in the first place, due
precisely to the difficulties in predicting the response of cloth while being manipulated. Predictive models can
be certainly devised and used, but a constant monitoring of what is actually happening is needed. Perceptual
feedback may eventually trigger correcting actions, and in any case it provides the required instantiation of
the manipulation action parameters. Moreover, in the absence of predefined suitable models, such feedback
provides the needed input for learning, be it by imitation -observing human teachers perform actions such
as folding a shirt or helping a patient to dress up- or through reinforcement -stating the success or failure
of the robot own actions.

This survey is about perception for robotic cloth manipulation in an assistive context. Robots to be
deployed in domestic or other assistive environments will not gain their perceptual abilities from scratch,
but will already be equipped with a set of common or generic perception skills. Such perceptual primitives, to
be tuned through interaction with users, may include such different things as human gesture recognition or
natural language understanding. Here we focus on the basic skills required for versatile cloth manipulation.
Identifying textile items in a complex scenario, determining at which points a garment or a towel has to
be grasped (depending on what the robot plans to do with it), finding out what kind of textile object it
is, or which state along -for example- a folding process has been reached so far, all belong to this set of
basic skills -and the state-of-the-art in research is systematically revised. Next, we examine which role these
perception skills play in the context of the different assistance tasks. As we address assistance in an integral
way, we consider all the tasks that are developed within a domestic environment to guarantee the functional
autonomy of its inhabitants. Two types of tasks may be distinguished: a) tasks that involve manipulation
of cloth alone or interacting with other objects as for example tables, beds or hangers; and b) manipulation
of cloth in contact and interacting with a human user, that is, a person with disabilities. This distinction
shapes Sections 3 and 4 of this survey, respectively. Some final considerations on the research done so far
and what has still to be achieved are provided in Section 5.

2 Generic perceptual skills in cloth manipulation

Some basic perceptual skills such as determining the point where the cloth item has to be grasped or the
current state of a garment are common to the different assistive applications to be described below. Of
course, each such application provides its particular specifications to these tasks, but some shared generic
mechanisms can be identified. For this reason we leave out too specific perceptual skills like seam tracking for
sewing, which hardly will arise in an assistive context. Perception involves mainly computer vision, but there
are complementary perception channels such as force sensing or touch that supply added value to visual
perception. In what follows, these fundamental perceptual tasks are described, stressing their relevance in
the context of assistive duties, as well as the challeges they present and how they are tackled. Figure 1
shows the perceptual skills addressed in this section and their possible outcomes.

2.1 Cloth isolation and wrinkle detection

Objects made of fabrics as for example garments are generally in expected locations including the drawers of
a wardrobe, the hangers in a dressing room, the washing machine/drier or adjacent laundry baskets, hanging
on a clothesline, etc., but they can as well be hanging from the back of a chair, scattered over a sofa, or
thrown on the ground. Thus, the very first thing an assistive robot has to be able to do is to identify cloth
items as such. Just storing all the garments and other fabric parts in memory is not enough, as -due to their
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Fig. 1: Generic visual processes and the outputs they should provide. Here, cloth isolation is just background segmentation,
as in many of the surveyed papers. One way to identify an item as textile in a scene is through wrinkle detection, but
this basic procedure may also provide information to state estimation, for example in flattening processes. Grasping
point localization refers either to find a generic graspable point on the cloth item, for instance a wrinkle (and additional
information referring to the most suitable orientation of the gripper may also be given (circle)), or to determine the location
of specific features, the shoulders in this case (triangles), which are more appropriate if the dress has to be folded. The
output of classification is a label that designates a given cloth category, which can be as generic as “dress” or as specific
as “bearface girl dress”. Last, state estimation provides a pose description, “extended on a surface”, which in turn may
be used by the decision-making layer to compute the following manipulation action to perform, for example folding or
flattening.

deformable nature- clothes may display infinite possible shapes, what we call configurations. Knowing the
color, texture, pattern or the canonical shape (i.e., its configuration when lying flat and completely extended)
of an object made of fabrics may be certainly helpful for identification, but there is one feature that reveals
its textile nature without this previous knowledge, namely wrinkles. Excepting plastic bags (or crumpled
paper, but this one shows sharper wrinkles), no other material in a house displays the characteristic fabric
creases. For this reason, and also because sometimes such wrinkles have to be removed, be it while ironing
laundry or while flattening a bedsheet, wrinkle detection and measuring is the first skill that the vision
system of a domestic or assistive robot has to master. The most popular computer vision technique to detect
wrinkles uses Gabor filters, which register abrupt intensity variations at different orientations. Wrinkles are
discriminated from other features that respond to such filters by tuning their frequency (wrinkles are low-
frequency features as opposed to edges or borders), as well as using the fact that the wrinkles usually appear
in groups with similar orientations Yamazaki and Inaba (2009). Together with pure 2D image processing
procedures such as the already mentioned Gabor filters, combining threshold function filtering with edge
enhancement Paraschidis et al. (1995), or Wavelet Transform techniques Sun et al. (2011), the popularization
of depth cameras has encouraged researchers to obtain directly volumetric information about the wrinkles,
which is often much more informative. For example, Sun et al. (2015) use a high-resolution stereo-based
sensor to capture a 2.5D depth map, from which the height and width of the wrinkles are computed by
geometric means. In this work, wrinkle descriptions are used to guide a flattening-by-pulling process, in
particular the main direction of the largest wrinkles. This work is continued in Sun et al. (2016a); Sun
et al. (2018), where a hierarchical visual architecture is described: low-level features consisting in surface
curvatures are computed from the b-spline surface fitted to the raw data, from these Shape Index features
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are derived as mid-level features (they capture the local topology of the surface, i.e., whether it is a cup,
a trough, a saddle, a ridge, a dome, etc. up to nine features), which finally allow to detect and quantify
wrinkles as high-level features (fifth-order polynomials fitted to the ridges, while ruts and domes are used
for splitting wrinkles).

2.2 Grasping point localization

The success or failure of any manipulative action on cloth depends largely on the adequacy of the grasps.
In the well-studied case of rigid objects, the suitability of grasps is confirmed by form and force closure
tests. Moreover, if different alternatives exist as for where to grasp, the choice responds to accessibility and
stability criteria, not only while holding the part but also with regards to the final positioning of the part.
When the objects to be manipulated are deformable, and in particular, if they are made of cloth, then
the most suitable localization of grasping points depends largely on the manipulation goal, which generally
involves some sort of deformation from the current state. For example, if we want to fold a shirt in the air,
the most appropriate grasping points will be located at the shoulders, whereas if the very same shirt has
just to be separated from a laundry heap, the localization of the grasping point will not be so relevant, as
long as a stable grasp is guaranteed. Next, we explore these two alternatives (generic vs. specific grasping
point) in more detail.

2.2.1 Generic grasping point selection (GGPS)

When the location of the grasping point is not relevant, the concern is just to ensure a stable grasp. This is
the setting we may find for example in a laundry sorting scenario, where the clothes in a pile have just to be
picked up. The exact location of the grasping point is unimportant here, what matters is that the garment
be effectively grasped. Sometimes finding such a grasping point is just the first step within an active vision
strategy where more specific grasping localizations are searched once the cloth item has been picked up. Such
strategies often have an added benefit, namely solving automatically the problem of grasping more than one
garment by accident: the regrasp by a second hand ensures that only one garment is held afterwards, and
the other one, unless tightly entangled with the first, falls back to the pile Maitin-Shepard et al. (2010).

Earlier works required the use of at least a couple of cameras, either combining one zenithal (plan or
top view) camera capturing the scene and another lateral one measuring the height of candidate points at
wrinkles Hamajima and Kakikura (1996, 2000), or capturing the depth by stereovision (the two cameras
are arranged side-by-side) Maitin-Shepard et al. (2010); Kita et al. (2011); Bersch et al. (2011); Willimon
et al. (2011a). The first step consists in isolating within the image the part corresponding to the textiles,
or, in other words, eliminating the background, which –depending on the particular layout– can be done
by a simple method as for instance binarization Hamajima and Kakikura (1996, 2000). To this end, or
to distinguish between different clothes in the pile, often some sort of image segmentation into regions is
performed. Such segmentation may be a simple histogram-based procedure, or a more sophisticated method
that takes the varying appearance of the parts of the same cloth piece into account Willimon et al. (2011a).
The largest region is then chosen for grasping: for clothes of similar size, this can be an indication of being at
higher positions on the pile. The selection of the grasping point within such region can proceed in different
ways: just aim at the highest point Bersch et al. (2011), or take the centroid Hamajima and Kakikura
(2000); Maitin-Shepard et al. (2010) (alternatively the farthest interior point to the border Willimon et al.
(2011a)) of the region and measure its height before grasping. Figure 2 shows how the centroid is not always
the best candidate for grasping, and for non-convex shapes some interior point has to be chosen instead.

Wrinkles are good candidates for grasping: the fingers of the gripper are positioned at both sides of the
crease and a successful pinch grasp follows (see Figure 2). Thus, wrinkle-centered approaches are suitable
alternatives to the region-oriented approaches above. This was already the perspective taken in Hamajima
and Kakikura (1996), via 2D image analysis technique plus height measuring with lateral cameras. The
advent of range cameras, as mentioned at the end of Section 2.1, paves the way to such approaches even
more, by providing directly a full 3D description of the wrinkles. See for example Ramisa et al. (2011), which
includes an experimental study of different grasping strategies. Also Sun et al. (2018) use their hierarchical
vision architecture (recall Section 2.1) to compute, from the shape index and surface topologies, adequate
grasping-triples (one ridge point and two wrinkle contour points on either side of the wrinkle).
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Fig. 2: For non-convex shapes of the cloth item, neither the centroid (small square) nor the center of the convex hull (blue
dot) may provide suitable grasping points. Instead, the farthest interior point to the border (the center of the yellow circle),
or some point -for example the middle point- along the shape’s skeleton (here we have depicted just the central “spine”, in
red) are good candidates for grasping. On the right, an outstanding wrinkle provides a good potential grasping point. The
orientation of the gripper is determined by the direction of the main axis (the ridge) of the wrinkle.

2.2.2 Specific grasping points selection (SGPS)

Successful manipulation often requires the garment to be grasped at specific points. Such is the case of
folding a shirt in the air, to name an example, which has to be grasped at the shoulders before rotating it
backwards and making it lay on the table. Usually such points are recognizable cloth features (in the sense
that they can be identified by vision), which can be classified into three main groups:

– Generic contour features, that is, edges and corners.
– Garment features, i.e. collars, cuffs, pockets, and the like.
– Node points of a cloth model.

These three approaches are illustrated in Figure 3.
Regarding the first group, typical applications include detecting corners for unfolding cloth items laying

on a surface, and active sensing strategies to bring the cloth item into a desired configuration while hanging
in the air:

– Unfolding on a surface. Here we can cite the work Ono et al. (1998) where, after a foreground-
background segmentation and encoding the outline information, the obtained sequence of edges and
corners is matched against the stored contour of the cloth item in the canonical configuration. By
comparison of the two contours, the potential location of folded corners can be estimated, thus guiding
the robot towards the grasp location for unfolding. In Triantafyllou and Aspragathos (2011) the location
of corners is computed via the Canny edge detector from local maxima of contour curvature. The edge
opposite to the corner constitutes the corresponding “unfolding axis” around which the unfolding motion
has to be performed. This work includes also a taxonomy of possible corner ocurrences, with real corners
as well as with pseudocorners arising from folds. Moreover, performance of their method is enhanced
by exploiting varying illumination conditions. A third quite interesting work is presented in Willimon
et al. (2011b), who proceed in two phases: a first maximal edge-detection phase on the binarized image
of the garment along eight discrete directions, which are chosen for grasping and pulling (this already
eliminates some folds), and a second corner-detection phase that combines depth information with the
Harris corner detector to locate corners for unfolding.

– Regrasping strategies of hanging garments. The cloth item is assumed to be already grasped and
hanging from the robot’s gripper. There is a high probability that the lowermost point corresponds to
a corner of the garment, as observed in Osawa et al. (2007). This reference is a good example of active
vision strategies, as it combines shaking for disentangling with rotation to obtain the view where the
lowermost point displays maximum curvature. Repeated grasping of the lowermost point (alternating the
two hands of a bimanual robot) progressively reduces uncertainty until the cloth item can be classified.
The lowermost point is also considered in Hamajima and Kakikura (2000), combined with two hemline
detection procedures. More recent research aims at corner detection by using 3D information. Two
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Fig. 3: Top-left: corners are easily detected generic features that provide good grasping points for applications similar to
folding or unfolding on a surface. Only convex vertices with sufficiently long adjacent edges are considered. Top-right:
User-defined grasping areas such as the shoulders (yellow circles) or garment features (green circles) belong to the second
type of specific grasping points. Bottom: the correspondence between the model and the images allows the system to consider
the nodes of the former as possible grasping candidates.

consecutive corners in the outline of a towel are searched in Maitin-Shepard et al. (2010) in order to
perform a fold afterwards. Corners are detected combining a stereo multi-view border classification
algorithm (which distinguishes actual towel borders from folds) with a RANSAC algorithm. At each
iteration the towel is shaken and then rotated in front of the cameras at small discrete steps to find the
most suitable grasp corner. Depth is also used in Triantafyllou et al. (2016) by computing edges from
a combination of Canny’s edge detector, the Douglas-Peucker algorithm (separating edges of different
orientations) and some geometric criteria. The outcome is a set of outline points, that once grasped
brings the garment into a half-folded state, which is then matched against a polygon model of the folded
garment. In this model, grasping point pairs are defined to be regrasped in order to complete the pre-
established unfolding actions. Still within this category we could mention the seam-tracking method in
Salleh et al. (2006, 2008). Although seam tracking and corner detection are based on a special gripper
design with an integrated fototransistor-sensor pattern, an external 8-bit grayscale CCD camera confirms
corner detection and provides 3D coordinates of the corner for grasping by a second hand (the latter by
using motion stereo).

As for the second group, garment features cannot be identified by simple geometric cues (remember
that they are also subject to deformations), and researchers have resorted to learning instead. Under this
assumption, we may distinguish three different approaches:

– Learned generic user-defined grasping features. In Gibbons et al. (2009) no specific features are
addressed, but the authors try to identify possible grasping areas from samples that human users con-
sidered graspable. These include but are not limited to edges, wrinkles and folds. A cross-correlation
approach of appearance-based filters is followed.

– Learned specific garment features. In contrast, Ramisa et al. (2012) explicitly aims at polo shirt
collars as suitable grasping candidates, which are identified by means of a Bag of Features (BoF, aka
Bag of Visual Words, BoVW) detector combining appearance and 3D geometry. Logistic regression is
used for a first rough classification of the images corresponding to a sliding window along the original
image of the polo shirt, and then a more costly but also more reliable χ2 Support Vector Machine (SVM)
classifier is applied for further ranking of the candidate windows. Finally, among the best candidates,
grasping points are selected by using a wrinkledness measure developed earlier Ramisa et al. (2011). The
set of garment features to be detected (although not explicitly for grasping purposes) was later expanded
to 11, including collars, sleeves, hemlines or hips of different garment types (jeans, polo shirts, T-shirts,
shirts and sweaters) Ramisa et al. (2014). The approach is quite similar: a multitude of appearance- and
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depth-based detectors are grouped together in a BoVW and again logistic regression is combined with
local χ2 SVM for classification. The difference with respect to earlier work lies in the particular detectors
used: Scale-Invariant Feature Transform (SIFT) features for appearance, and Geodesic-Depth Histogram
(GDH), Fast Point Feature Histogram (FPFH), Heat Kernel Signature (HKS) and Fast Integral Normal
3D (FINDDD) descriptors for depth.

– Learned specific grasping features within an active vision strategy. With an alternative setting
(clothes hanging from the gripper instead of lying on a table) and also different descriptors, the approach
in Doumanoglou et al. (2014a) looks for shoulders of shirts and T-shirts or the corners of the waist
of trousers and shorts as possible grasping points. An active vision strategy with regrasping, guided
by a Partially Observable Markov Decision Process (POMDP) that encodes the hanging states at the
predefined set of grasping points and the transitions between states, is followed, and the used descriptors
are Hough forests (similar to random trees but with additional information on the location of grasping
points).

Finally, with respect to the third group, the nodes of an existing mesh model of the garment (or garment
type), or a subset of such nodes, provide the grasping point candidates. Often it is one such pair of nodes (for
bimanual grasps) that is predefined as the target locations for grasping. These nodes may not necessarily
coincide with cloth features similar to the ones described above. In any case, an accurate correspondence
between the 3D mesh model and the current image of the garment has to be established. As in the corners-
edges case, contributions can be grouped into settings where the garment lies on a surface and others where
it is hanging:

– Garment on a surface. The method presented in Miller et al. (2012) consists in fitting their skeletal

model (a skeletal mesh with additional parameterized landmark nodes) to the contour of the garment
in the image, relocating the landmark points of the model to the nearest neighbor on the contour.
The procedure is applied to the different folded sates that have been predetermined in a cloth folding
application. Another approach Cusumano-Towner et al. (2011) begins with a disambiguation phase in
a hanging state (an active sensing classification and state estimation method described below, with
regrasping of the lowermost point), but in a second reconfiguration phase the cloth item is repeatedly
laid on a table and regrasped. Contour matching via a dynamic time warp algorithm allows the robot
to determine the location of nodes and to select a pair of points to grasp, lift, and lay again the garment
following a path in the previously constructed graspability graph that corresponds to the desired sequence
of actions.

– Hanging garment. In their first works, Kita et al. (2004) combined separated 2D visual information
for matching right and left images to reconstruct via correspondence the 3D location of grasping point
candidates. Later, Kita et al. (2009b, 2010, 2011) performed directly the matching of 3D observations
with the 3D deformable triangular mesh models with their new trinocular stereo vision system, with
an additional computation of the necessary orientation of the gripper for successful grasping Kita et al.
(2009b). In Li et al. (2015a) a regrasping strategy is defined on the nodes of the garment’s model. At
execution, the garment is picked up and its pose estimated, afterwards the regrasping point is found by
optimizing an objective function measuring the closeness to the desired grasping points. The correspon-
dences between the model mesh and the target mesh obtained from 3D scans of the grasped garment are
computed via scaling, rigid transformation and non-rigid registration. 1-2 regrasps are generally enough
for unfolding and holding the garment at the desired point. Finally, the work in Bersch et al. (2011) is
worth mentioning despite their use of coded fiducial markers to short-cut the costly state recognition
process, for their regrasping strategy. First, the held point at which the garment is hanging is quickly
identified as the one minimizing the difference between the geodesic distance on the cloth surface and
the Euclidean distance to the other points (corresponding to the markers). Then, the next grasping
point is the one that brings the next grasp closer to the target configuration. The gripper orientation is
determined through a collision detection procedure of the gripper’s fingers and the point cloud next to
the candidate grasping point. Their approach requires both active sensing (including multiple rotations
in front of the fixed camera and vertical motions of the camera mounted on the free arm of the bimanual
robot) and a previous training of a score function that evaluates the probability of success of the grasp
depending on the local point-cloud features.

2.3 Classification and state estimation

As we have just seen, some grasping point detection algorithms require some sort of state estimation
(and thus, many of the works referenced above appear again in this section). But classification (that is,
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identifying to which category a given garment belongs) and state (or pose) estimation are computer vision
procedures that are required in any type of meaningful cloth handling processes. Most contributions perform
classification and state estimation in a simultaneous fashion, but there are also some references that assume
the cloth type already known beforehand Kita et al. (2004, 2009a,b, 2010, 2011), or that just perform
classification as required by the application (like laundry sorting Willimon et al. (2011a); Yamazaki and
Inaba (2013); Willimon et al. (2013)) or because the garment is assumed to be in a canonical state Miller
et al. (2011). The following structure of this section is based on whether the whole shape of the garment or
just specific features are considered in these processes.

2.3.1 Shape recognition methods

The shape of a cloth item in an image is compared either with images of the cloth model Kaneko and
Kakikura (2001); Kita et al. (2004, 2009a,b, 2010, 2011); Cusumano-Towner et al. (2011) or with images
of real clothes Osawa et al. (2007); Willimon et al. (2011a); Miller et al. (2011); Wang et al. (2011);
Doumanoglou et al. (2014a); Stria et al. (2014a,b) in a database. We may categorize these contributions as
follows:

– Geometric features. The point in these approaches is to compare geometric magnitudes that are easily
obtained from the image. The convex closure of the binarized image of a garment held and stretched at
two distant points allows Kaneko and Kakikura (2001) to define characteristic measures of the different
regions appearing inside (both occupied and unoccupied by the cloth) that are used in a decision tree to
determine both the cloth type and its hung-up state (only a finite set of discrete states are considered).
Such characteristic measures have been previously obtained on cloth models. Instead, real stored images
of clothes picked up at random points are used in Willimon et al. (2011a) for comparison with test images
of garments also repeatedly grasped at random locations (two views rotated at π

2 are taken). Matching is
performed via a nearest-neighbor algorithm, with features such as the absolute difference in area of the
two silhouettes, the absolute difference in eccentricity, the Hausdorff distance between their edges, and
the Hausdorff distance between the Canny edges of the original grayscale images. Geometric features
for garment classification are also applied for recognizing loosely extended garments on a surface in Hou
et al. (2017); Hou and Sahari (2019). A set of measures obtained from the axis-aligned contour of the
garment characterizes the garment type (not the absolute value of such measures but the relationships
between them). These measures consist just in the contour width and height at regular intervals (e.g.,
a towel has always the same width and the same height).

– Planar contour. Different contour matching algorithms have been considered in literature:
– Region overlap, i.e. the coincidence of the cloth region in the input image with the planar projection

of the cloth model. This procedure is applied in Kita and Kita (2002); Kita et al. (2004), where
one-hand held garment models are projected on a vertical plane, as corresponds to the real setting.
These projected model images are transformed (vertical displacement and width normalization) to
improve matching quality and the overlap region ratio to both the total cloth model region and
real image region is considered. The cloth category is assumed to be already known and only state
estimation is done (that is, determining at which node of the corresponding model tha garment
is hanging from). In some cases this simple criterion performs poorly. In the context of a folding
application on a table, region overlap is also used in Colomé and Torras (2018) as a reward function
during a reinforcement learning process. Folded shapes are assumed to be rectangular and thus the
occupancy of the segmented cloth region wrt the enclosing rectangle is evaluated.

– The average Nearest neighbor distance between the contour generated from the model parameters
and the contour of the image is a measure of contour fit used within the energy function of an
optimization algorithm in Miller et al. (2011). The real cloth image belongs to the category that
displays the lowest energy (the state is known beforehand: garments are loosely spread out on a
table).

– A more accurate contour matching algorithm as for example Dynamic time warping (DTW) is justified
in Cusumano-Towner et al. (2011) by the fact that they determine both the cloth type and its hung-
up state (i.e., the pair of nodes of the corresponding mesh model at which it is grasped). The DTW
algorithm provides a similarity measure for the two contours, considering pixel coordinates as well
as first and second derivatives with respect to arc lengths (the derivatives correspond to corners and
the like). A simplified polygonal contour of the test image and the polygonal models of the garments
spread-out on the table is computed in Stria et al. (2014a,b) previously to the application of the
DTW algorithm, which uses the vertices of the contours (their inner angles) as the chosen feature
for similarity measure (in Stria et al. (2014b) also relative segment lengths are taken into account).
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– 3D shape. These methods rely on direct comparison of spatial information gathered through stereo
vision or depth cameras with the 3D models of garments or volumetric information of real training
images:
– 3D models. As in their previous work, Kita et al. (2009a,b, 2010, 2011) assume the cloth type is

known beforehand. The 3D triangular meshes used as models are allowed to deform to some extent
gradually from the fixed grasped patches tending towards matching the 12, under a force model that
drives and bounds such deformations. As in their contour matching work, overlap criteria between
projected regions of model and observed data are used to decide the current state. In contrast, Li
et al. (2014a,b, 2015a) perform the two tasks of classification and state estimation, and they do it
directly with the 3D models, via SIFT features and a SVM classifier Li et al. (2014a), or binary cell
occupancy vectors with a nearest neighbor procedure based on Hamming distance Li et al. (2014b,
2015a). Test images are gathered with a Kinect sensor.

– Real training images. Random Forests Doumanoglou et al. (2014a) and Active Random Forests
Doumanoglou et al. (2014b) are the chosen classifiers that provide to an active sensing POMDP
strategy the probabilities to belong to a given class and a given state, after the garment has been
regrasped at the lowermost point. These classifiers have been previously trained on depth images of
the set of garments and lowermost point regrasps. Instead, Sun et al. (2016b) implement classification
as a Gaussian Process, on depth data obtained with the same cameras as for wrinkle computation
Sun et al. (2015) (recall Section 2.1). The features used include the Shape Index histogram, Topology
Spatial Distance and Multi-Scale Local Binary Patterns (LBP).

– Both synthetic and real training images. It is a well-known fact that deep convolutional neural
networks (CNN) require large amounts of training data. Thus, the two-layered CNN architecture
developed in Mariolis et al. (2015) (the first one corresponding to classification, and the second, much
larger, to state estimation, that is, determining the node from which the garment is hanging) has
been first designed using synthetic data1. Once the most suitable layout has been found, the CNNs
are retrained with real RGB-D data gathered with an Xtion camera. In a later work Kampouris
et al. (2016), CNNs are combined with Random Forests on Histogram of Oriented Gradients (HOG),
in a setting including not only vision but also photometric and tactile sensing, to obtain garment
type, fabric pattern and material recognition. In Corona et al. (2018) the CNN (consisting of four
non-square sized convolutional layers, plus four max-pooling layers between the convolutional ones,
and two fully connected layers) is also first trained with the huge synthetic dataset and then refined
with the smaller real depth images set. Only classification (no state estimation) is performed, and
to this end the physical engine simulates the garment hanging at points all over its surface, and
each view is captured by 36 virtual depth cameras. They also resort to deep learning to localize the
predefined grasping points, now using only synthetic images. This avoids costly manual annotation:
the predefined grasping points, with known location in the model, are projected on the image plane.
After the first point is grasped, the set of possible cloth poses follows a normal distribution centered
at the correct grasped pose. The networks also inform whether the grasping points are visible or not in
the image. A similar approach is undertaken in Saxena and Shibata (2019) for garment classification
and grasp point detection, as a first step in a dressing assistance context: the output of this step is
the robot grasping the garment at two points of the hem- or waistline and presenting it to the patient
(as the user is face-to-face to the robot, in the case of shirts the garment back is facing the robot, but
not with trousers, otherwise the grasping points have to be swapped). Again the garment classes are
learned via deep learning, on a real image dataset, and the trained convolutional networks used later
for classification (three outputs in this case). Depth images are used so that the system is robust
to colour or textile pattern variations. Also the grasping pairs of points are learned via convolution
networks, now from two synthetic depth image datasets, the first one (SGD-I) following a similar
strategy to Corona et al. (2018) (i.e., uniformily scattered grasping points on the garment), and the
second one (SGD-II) consisting in points on distinctive features such as sleeve openings, hemlines,
collars or waistlines (together with the two desired grasping points). Furthermore, whereas previous
works required images of the whole garments, here most of the time only partially visible images
are available, but despite this fact good classification results are obtained. The classification network
(real image as input, one of the three considered garment types as output) as well as each one of the
class-specific grasping point detection networks (synthetic image as input, spatial coordinates of the

1 It should be noted that the use of deep neural networks not always entails the need of a costly off-line learning phase: in
a cloth manipulation-related but different application, servocontrol learning of the position and deformation of soft material
from the 3D point cloud, an online deep learning algorithm is presented in Hu et al. (2019). That is, the mapping between
the manipulated and the feedback points of the deformable object is determined while manipulated.
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two grasping points (SGD-I) or of all the feature and the two grasping points (SGD-II) as output)
have similar architectures: four convolutional, four max-pooling and one hidden layer (SGD-II has
two hidden layers), whereas the output layers are obviously different in each case.
Mentioning the problem stated at the beginning of this paragraph, but without adhering to a partic-
ular learning framework, Hou and Sahari (2019) propose obtaining a particle mesh model from the
real image of a spread-out garment, whose hanging shape at each one of the nodes is then simulated
at different orientations. In this way, a large dataset can be generated wihout having to resort to the
real hanging images (nor constructing a model by hand).

2.3.2 Feature recognition methods

The aim of these approaches is to identify category-specific features in order to classify the cloth item at
hand. Thus, despite the relative position of some features may provide clues for state estimation, these
approaches are generally restricted to the classification problem. Class recognition is more reliable the more
of such features are employed. Next, we review some work done in feature-based classification:

– Fabric type. The material and weaving (or knitting) pattern may already discriminate large groups
of garment types: underwear is unlikely made of knitted wool, satin may help to distinguish a blouse
from a rougher shirt, denim may be the material of which trousers, shirts or jackets are made but not
pullovers, etc. The aspect of the wrinkles that appear when the garment is randomly thrown over the
table helps Yamazaki and Inaba (2013) to identify the fabric type, using the Gabor filtering technique
presented in previous work Yamazaki and Inaba (2009); Yamazaki et al. (2011) (see also Section 2.1).
Not only wrinkles but also other features such as cloth overlaps, scale space extrema and contour (of
the crumpled item, not to be confused with the contour methods of Section 2.3.1) and a SVM classifier
help to determine the garment class. The same idea, material defining or at least constraining the set
of garment types, inspires the work in Sun et al. (2017), who stress the robustness of this approach
to occlusions and random configurations. As in their previous work, they resort to SI and LBP as
descriptors for global features, together with a histogram of Topological Spatial Distances (TSD), which
estimate the wrinkles’ width and height. They also use local features, the Local B-Spline Patch (BSP)
representation (restricted to the wrinkles, not the whole surface), encoded by LLC (Locality-constrained
Linear Coding). Again, SVM is the chosen technique for classification, after fusing all descriptors.

– Multi-level approach. Combining low-level features (global ones including Color Histogram, Histogram
of Line Lengths, Table Point Feature Histogram, and local such as SIFT and Fast Point Feature His-
togram (FPFH)) allows Willimon et al. (2013) to determine via SVM some mid-level characteristics

(buttons, pockets, hemlines...) which in turn are used in the high-level garment classification process.
– Heels, toes and openings for state estimation. The garment class (socks) is already known, but iden-

tifying these features from texture-based (MR8 filter bank and LBP) and shape-based (HOG) features
allows Wang et al. (2011) to classify each sock within one of the canonical categories (sideways, heel up,
heel down, and bunched states, all in the rightside-out or inside-out variants.)

Figure 4 summarizes the common computer vision skills seen so far.

2.4 Active vision strategies

Vision-guided manipulation does not only aim at fulfilling the nominal goals of the robot task, but also at
enhancing the very same perception process, mainly by reducing uncertainty and ambiguity during grasp
point localization, classification and state estimation. Most of the works that include such actions have been
already referenced in the foregoing sections. Here we present a summary of the followed strategies:

– Hanging clothes

– Rotation: The grasped and hanging cloth item is rotated before the camera(s), so that multiple
views can be taken of the cloth in the same state, which increases the matching probability with
stored garment types and/or states. This strategy has been followed in Osawa et al. (2007); Kita
et al. (2009a, 2010); Maitin-Shepard et al. (2010); Bersch et al. (2011); Doumanoglou et al. (2014a);
Mariolis et al. (2015); Kampouris et al. (2016); Saxena and Shibata (2019). In simulation, this method
is equivalent to distributing several virtual cameras around the garment model Corona et al. (2018);
Saxena and Shibata (2019).
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Fig. 4: Generic vision skills needed in assistive robot cloth manipulation.

– Shaking: Fast short motions of the grasped cloth item help to disentangle possible crumpled regions
and to present the cloth in a more canonical way. See Osawa et al. (2007); Maitin-Shepard et al.
(2010) for references using this strategy.

– Repeated lowermost point regrasping: This strategy aims at a progressive reduction and thus disam-
biguation of the possible states of the grasped item (up to symmetries). At each step the lowermost
garment point is detected and grasped with a second robot, while the previously grasped point (by
the first robot) is released. The final step generally involves no more release, but the two robots are
now grasping the cloth item at different points. See Osawa et al. (2007); Cusumano-Towner et al.
(2011); Saxena and Shibata (2019) for more details on specific implementations of this strategy.

– Spreading by pushing: This is also a bimanual active vision strategy, which consists in spreading the
cloth part by pushing it with a second hand in front of the vision system Kita et al. (2010).

– Clothes lying on a surface

Pulling at the corners and other flattening strategies help to attain a canonical configuration of a spread
out garment which clearly enhances the classification chances of that particular item. A more specific
method is described in Sun et al. (2016b), who define and apply the action Grasp-Shake (followed by
dropping the garment back on the table, thus favoring the spreading-out of the cloth), and combine it
with the action Grasp-Flip, which aims at displaying previously hidden parts of the garment. Applicability
conditions for these two actions are defined, and if both are applicable they are randomly chosen.

– Continuous perception

One step further consists in resorting to video sequences instead of fixed images: the vision process is
now coupled with robot motion in a continuous fashion. For example, by recording the whole sequence
of images while grasping and lifting garments in random configurations. This is the setting presented in
Mart́ınez et al. (2019) as a continuation of Sun et al. (2016b); Sun et al. (2017). They naturally resort to
the same descriptors that had provided satisfactory results in their previous single-shot or static image
works, plus other local and global descriptors, and the influence of each one on the overall performance
has been thoroughly analyzed via an ablation study. Classification is now performed over sequences of
frames, by using the Locality-Constrained Group Sparse Representation (LGSR) classification method.

2.5 Touch and Force

Robots that have to work in close proximity to people, even touching humans if required, must have some
kind of sensory feedback both on contact and on the exerted force. Ideally, robots would be covered with
an artificial sensitive skin or at least with a large number of touch sensors, and optimal performance would
require humidity and temperature sensors as well. When it comes to manipulating cloth, touch and force
may inform about issues including whether the cloth item has actually been grasped, whether one or more
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garments have been picked up, the kind of textile material and quality of the fabric, or the exerted forces
while dressing a patient. Next we review the achievements reached by research on these fields up to date.

2.5.1 Touch

The obvious way to provide some touch capabilities to the robot is to mount sensing devices on the gripper,
more specifically on the fingertips. Such devices may be just simple binary presence detectors or sophis-
ticated form-sensing matrices of sensors and force-measuring instruments. Tactile sensing technologies are
systematized in Paul and Torgerson (1990) as for their different uses in cloth handling. Here we reproduce
the resulting classification, together with some developments and devices:

– Tension measuring while stretching. In Gershon and Porat (1986); Gershon (1990) an implementation
of a force-measuring device in a finger is mounted to this end, in the context of automated sewing,
although this function is transferred to wrist-mounted F/T sensors in later works. In the context of
assistive robotics, tensile force measuring is necessary in different applications such as bed-making or
dressing.

– Edge tracing. In Salleh et al. (2006, 2008) special grippers and strategies have been developed for edge
tracing while spreading a towel. The goal is to hold the towel at two consecutive corners. A pattern of IR
LED – fototransistor couples is integrated in the fingertips of both the fixed gripper holding the towel at
one corner and the gripper tracing the edge. These sensors report whether the gripper holds the towel
or not, and in the first case if the grasp is at the interior, at the edge or at the corner of the cloth part
(the latter being confirmed or not by an external CCD camera). Strain gauges are also included to keep
the grasping force between the limits that ensure not losing contact while avoiding dragging the towel.

– Texture measuring. Recent projects like CLoPeMa (FP7-ICT-288553) have considered the need of
distinguishing different fabric qualities by touch. By performing lateral finger movements, the tactile
sensors mounted on the gripping surfaces described in Le et al. (2013) allow to gather data about textile
roughness. The tactile experience can be enhanced if visual images are simultaneously considered (or
vice-versa) in a multisensory integration approach, as done in Lee et al. (2019). The relationship between
the two domains is learned via cGANs, a variant of Generative Adversarial Networks.

– Fabric thickness. A special finger design Ono et al. (1989, 1990) enables the measuring of the thickness
of cloth between the fingers between 0.1 and 3.0 mm. The measuring device is a strain gauge mounted
on the curved thin phosphor bronze finger, and the opposing finger is made from balsa wood. This
device allows additionally to control the tension applied on the held fabric between 0.09 and 0.12 N.
The authors report use of this gripper in pick and place Ono et al. (1990, 1991) and unfolding Ono et al.
(1995, 1998) applications.

Some of these devices can accomplish also the basic tasks of cloth presence/absence detection (the optical
sensors in Salleh et al. (2006, 2008) and the bronze finger in Ono et al. (1989, 1990)) or of contact detection
with a surface, be it a table or a stack of fabric items (again Ono et al. (1989, 1990), although a simple
touch sensor can do this as well Kemp et al. (1984)).

2.5.2 Force

We have just seen that there exist the possibility of measuring tensile forces with devices mounted on the
gripper. Other possibilities include measuring the torques exerted at the actuators of the robot or to resort
to a wrist-mounted force/torque (F/T) sensor.

– Actuator torque measuring. Actuator torques are not registered during the demonstration phase in
the kinesthetic teaching setting for cloth handling in Lee et al. (2015), which compels the authors to
perform this measuring while replaying the learned trajectory with high position and velocity gains.
Alternatively, the external force applied to the robot can be inferred from its dynamic behavior, as
done in Colomé et al. (2012, 2013, 2015). In their first works, just end-effector forces were computed, in
particular to determine, by their weight, how many garments –if any– had been picked up by the robot
from an unordered pile of clothes. This was achieved by learning the local Inverse Dynamic Model (IDM)
of the employed Barrett’s WAM robot arm with a Locally Weighted Projection Regression algorithm,
together with a robust disturbance state observer Colomé et al. (2012, 2013). Later the authors aimed
at determining the forces exerted anywhere along the arm Colomé et al. (2015). Here the accent is put
on obtaining a precise model of the friction term, as for low velocities and no external applied forces,
friction is the second highest torque acting at each joint, after gravity. The parameters provided by the
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Fig. 5: Touch and force sensing in assistive robotic cloth manipulation.

robot’s manufacturer allow to obtain an explicit model of the robot’s IDM, and the inertia, Coriolis
and gravity terms can also be computed. The integration of the complete IDM, together with a PD
controller, in a Computed Torque Controller allows the robot to obtain a quite compliant response in
the behavior of the robot. This compliance is a must in the scarf-wrapping application devised by the
authors, where simple pushing of the arm enables the user to alter its trajectory online.

– Wrist-mounted F/T sensors. Besides being extensively used in sewing applications (see, for example,
Schrimpf et al. (2014); Koustoumpardis and Aspragathos (2014) to cite some of the most recent ones),
F/T sensors have been used to provide feedback on stretching out a held-up piece of cloth Consortium
(2015). But the most interesting application, in the context of this survey, is the feedback they provide in
dressing assistance tasks where vision alone proves to be insufficient, due to deformations and occlusions.
In Kapusta et al. (2016) different force profiles are registered by a wrist-mounted F/T sensor in the case
the insertion of the hand in the sleeve of a medical gown is missed, the case it is stuck during traversal,
or the case the sleeve is successfully put along the patient’s arm. Discrimination between these three
situations is provided by a HMM classifier trained with 12 volunteers. A higher classification accuracy
is obtained later by the same authors by first training on real subjects, and then extending training by
physical simulation with the parameters obtained in the first phase, thus avoiding long and tiresome
testing on persons Yu et al. (2017). In the same context, such a sensor enables the system to discriminate
between different base layers, i.e., the underlying fabric type, when putting a jacket on a human user
Chance et al. (2017b). Almost the same accuracy can be achieved using the cheaper inertil measurement
unit (IMU) together with the robot’s (a Baxter) internal sensors (whereas the accuracy drops drastically
if they are used independently).

It should be noted that, in the same fashion as touch sensors, force sensing can also provide feedback on
basic tasks such as contact assessment with the working surface. Figure 5 summarizes the reviewed touch
and force skills.

Deep learning has also been resorted to as training paradigm of force-based interactions between a
human and a robot in a dressing assistance scenario Erickson et al. (2018). A deep recurrent model trained
with haptic and kinematic measurements in a physical simulation scenario can be used, as demonstrated
by the authors, by the real robot system to predict the effects of the real robot’s actions and consequently
lower the physical impact on the patient if needed. The task is pulling a sleeve along a person’s arm, and
thanks to using Model Predictive Control (MPC) actions can be replaned online in real time.

3 Cloth manipulation in daily domestic chores

A robotic system aimed at providing autonomy to a disabled user should be able to perform (or at least
to assist at performing) the different domestic chores needed for daily living. Among these, we consider
all those that involve some kind of manipulation of fabrics. These tasks require no physical contact with
the human, as opposed to dressing, which is tackled in Section 4. In what follows, we analyse these tasks,
their variants, and the specific perception needs for successful completion. Recall Figure 1 and the previous
sections to be aware of the role each perception skill has to play.



14 Pablo Jiménez, Carme Torras

3.1 Cloth picking

In assistive environments, to pick up a cloth item is a task that arises in diverse situations, and thus requires
different approaches, both on the perceptual and the manipulative sides. One such situation is to pick up
garments thrown over a chair or on a bed, or even dropped on the floor. Depending on the garment type
and its state, the appropriate action will be to put it on a hanger (e.g. a jacket) or to put it in the laundry
bin (e.g., dirty socks). The involved perception assignments include:

– Cloth localization within a scene, in the fashion of Yamazaki and Inaba (2009), who survey a domestic
scenario in search of the characteristic wrinkles that distinguish fabrics from other materials.

– Classification: by garment type, to decide a possible destination depending on the class.
– State estimation: rather than folded states or the mesh node it is hanging from, as seen in Section 2.3,

what is required here are rough evaluations of the type dirty/clean, wet/dry, crumpled/flat, etc.
– GGPS, in the case the cloth item has to be just put away, in a laundry bin, or on a heap; otherwise:
– SGPS, e.g. the shoulders of a coat that has to by put on a hanger. This may require a regrasping strategy.

Another situation is to gather a folded item lying on a table to be put inside a drawer, or to take a
garment from a drawer or hanger and present it to the user for dressing. Again, the casuistry is far from
simple, as the duties of the perception systems will differ depending on the requirements of the user: e.g.
whether any shirt or a specific one is wanted, in the latter case pattern and/or color matching will be
necessary. The origin and destination of the cloth item (table, shelf, drawer, hanger) conditions the grasp
type that best suits the involved manipulation (i.e., form preserving underneath grasps of folded items, or
grasps at the shoulders for hanging, etc.) and thus the perceptual skill of grasping point localization.

A third situation is the laundry scenario. Dirty clothes have to be put inside the washing machine,
washed clothes into the dryer or hung on a clothesline, clean and dry clothes may undergo ironing and/or
folding processes. Some of the related perceptual skills are:

– GGPS: the aim is to grasp and pick up any item from a pile of washed clothes, what in Hamajima
and Kakikura (1996, 2000) is called the isolating task (see also Monso et al. (2012) fora more recent
approach). This task arises also in the previous step of “feeding” the washing machine from a heap of
dirty clothes.

– Classification: previous to washing, some discriminating criteria may apply different from the garment
type classification reviewed in Section 2.3, including colour/white, resistant/delicate, and the like.

– Classification: after washing and previous to drying, sorting by dryer-compatible or not (despite intrin-
sically being an issue related to fabrics material and quality, in general it can be shortcut by identifying
the garment type).

– Classification: after drying, sorting by garment type for ironing and/or folding.

3.2 Folding

Folding is a common domestic chore, also performed in other assistive environments, through which cloth
items are reshaped into manageable configurations suitable for storage. The task is accomplished by a
sequence of individual bends affecting one (at the beginning) or more cloth layers. The most common folds
involve the simultaneous grasping of two corners along an edge (thus assuming bimanual operation) and
their transfer and release over the opposite edge or some intermediate location. Most foldings are done with
the cloth item lying flat on a table Karakerezis et al. (1994); Paraschidis et al. (1995); Paul (2004); Osawa
et al. (2006); Berg et al. (2011); Miller et al. (2012); Lakshmanan et al. (2012); Lee et al. (2015); Li et al.
(2015b), although some researchers assume the cloth being already grasped and put the accent on the initial
laying on the surface Zoumponos and Aspragathos (2010); Balaguer and Carpin (2011), and others consider
foldings in the air Yamakawa et al. (2011); Colomé and Torras (2018).

The vision system has to provide feedback in the following tasks:

– SGPS, usually corners on the same edge. Often two or more cloth layers have to be grasped, which can
be confirmed not only by visual means but also by sensors in the grippers.

– Classification allows the robot to trigger garment class specific folding procedures. That is, for each cloth
type a predefined sequence of folds, starting at the extended canonical configuration, can be executed.

– State estimation is required at the beginning of a folding process, both for the hanging as well as for
the lying situations. Although an initial canonical state may be assumed for simplicity, more versatile
systems should be able to determine the state the cloth item is actually in, and execute the necessary
regrasp or unfolding actions to bring the cloth item to the start configuration of the folding sequence.
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– State estimation during a folding process evaluates the degree of attainment of the predicted folded
states. Recall for example the rectangleness criterion of folded shapes explained in Section 2.3.1. By
using a Kinect camera, Colomé and Torras (2018) not only resort to this geometric criterion, but also
to a wrinkledness measure to determine the degree of attainment of a proper folded state.

3.3 Unfolding, spreading

The most common ways to unfold and spread cloth is either by performing the reverse fold operations on
the item lying on a surface, together with pinching and dragging actions Ono et al. (1998); Willimon et al.
(2011b), or via regrasps of the garment held in the air Hamajima and Kakikura (2000); Li et al. (2015a).
More dynamic actions via swift manipulations and exploting inertia for a first laying on a surface can also
be considered (see Triantafyllou and Aspragathos (2011) for small rectangular parts, larger items including
tablecloth still deserve research).

Perception duties include:

– SGPS, usually corners to unfold or to lift. While hanging, possibly the lowermost point is searched for
regrasping.

– State estimation is required to determine whether the cloth item is completely spread out or still some
folds remain.

3.4 Flattening

Maybe all the folds are removed, but still wrinkles prevent the cloth to be considered in its final state.
Wrinkle removal can be done in various ways, depending on the previous state of the cloth item. Persistent,
unaesthetic wrinkles (e.g. the ones on a shirt out of the dryer) are removed via ironing, whereas momentary
wrinkles such as the ones appearing while spreading a tablecloth on a table are best removed by pulling
and brushing. Ironing combines the proper iron drawing motions with repositioning, unfolding and folding
actions. Iron drawing actions performed by human professionals have been analized in Dai (2012), to extract
both basic ironing profiles and ironing paths (typical combinations of profiles) for an ironing robot. As for
the second type of flattening actions, combinations of longitudinal brushing over wrinkles with pinching
and pulling by a single-armed robot have been addressed in Sun et al. (2015, 2016a) and by bimanual
manipulation Lee et al. (2015). More recently, Sun et al. (2018) do also resort to a dual-arm flattening
setting, using the hierarchical visual architecture mentioned in Section 2.1.

In all cases, the main issue is to detect the wrinkles in order to proceed to their removal, but other
sensing tasks are needed as well:

– Wrinkle detection. In the context of ironing, wrinkles are distributed more or less generally all over the
cloth surface, and the motions of the iron are intended at covering the whole area. Some specific larger
creases, appearing if the cloth has not been sufficiently extended, have to be monitored (or directly
eliminated by pulling) as ironing over them may create sharp, costly-to-remove wrinkles. In the case
of flattening by sweeping and dragging, the largest wrinkles are to be detected and measured. Pulling
efforts are most effective orthogonally to the main direction of the wrinkle, whereas smaller wrinkles
may be eliminated by gently sweeping over them.

– Edge and corner detection is necessary for grasping and pulling the cloth for wrinkle elimination. In this
case, as mentioned before, the features to be grasped have to be searched in a direction perpendicular
to the wrinkle.

– Force measuring and control is required in these operations, mainly while pulling the cloth: the dragging
force has to be larger than the cloth-surface friction forces to allow the elimination of the wrinkle, but
not excessively large to avoid pulling the whole cloth around and possibly creating new wrinkles.

3.5 Bed making

This task has been little explored in the Robotics literature despite being a fundamental domestic and
hospital chore. It is a complex task that involves several simpler manipulations of diverse cloth elements,
including bed sheets (both flat and fitted), blankets, duvets (and covers), comforters, quilts, and pillows (and
pillowcases). Larger elements have to be extended, which means unfolding and possibly dynamic spreading
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over the bed. Specific manipulations in bed making include extending the fits of a fitted bottom sheet over
the mattress corners, tucking portions of bed sheets (flat bottom and top sheets) under the mattress, which
in turn may require several manipulations as for example in the case of the so-called hospital corners, or
fluffing the pillows before placing them at the head of the bed. Additional tasks may be quite complex as
well, like putting the cover on the duvet. Other operations are more common to the cloth handling repertoire,
such as flattening by pulling and sweeping, or removing items by grasping them at arbitrary locations. Bed
making has been addressed in a quite recent work Seita et al. (2019), via detecting suitable pick points and
pulling of the grasped bedcloth towards still uncovered parts of the bed. Details are provided below.

As for requirements on the perception side, the following tasks have to be addressed:

– GGPS, for removing pillows, duvets, top blankets, etc. before starting to make the bed. Larger elements
will have to be grasped at two points, which should not be too close to each other.

– SGPS, basically the corners of the different elements. For the larger elements, the corners are too distant
from one another, and convenient points on the same edge will have to be grasped instead for operations
such as spreading (bimanual grasps) or pulling for flattening (single or bimanual). Suitable grasping
points are determined in Seita et al. (2019) by deep transfer learning from depth images. The grasp
detection network architecture includes a pre-trained YOLO single shot object detection network for
feature extraction, plus two convolutional and two dense networks. Training was performed with human
demonstrations. As for tucking portions of sheets under the mattress, this is not properly grasping but
rather pushing (maybe while slightly lifting the mattress with the other hand), but this requires as well
identifying the most suitable location on where to push, next to the portion that is already below the
mattress.

– State estimation is about determining the current spatial bed/bedcloth relationship, in order to correct
misalignments in orientation and wrong positionings (e.g., not being symmetric with respect to the bed’s
main axis), and the degree of accomplishment along the bed making process. In Seita et al. (2019) the
bed-making progress is measured through the resulting coverage of the last pulling action. Again, a deep
neural network was trained to state, from the depth image, if the side of the bed where the robot stands
is sufficiently covered.

– Wrinkle detection for flattening by pulling and sweeping.
– Force measuring and control is a must in tasks of the kind of fitting the corners of the bottom sheet or

tucking sheets under the mattress.

3.6 Table setting

Like for the preceding task, very little has been done up to date for this application. Most notable is the
work presented in Saxena et al. (2017), where a collaborative human-robot setting for laying tablecloth
on a table is described. Both the human and the robot hold two corners of the tablecloth each one, and
aim at positioning the cloth on the table by lowering the grasped corners. A head-mounted Kinect camera
on the Baxter robot provides the necessary image feedback, which is submitted to the usual processes of
background segmentation and contour detection. Gabor filtering is applied for wrinkle detection and also
the corners are found by using the Shi-Tomasi detector. A structural similarity index is computed for the
depth image and compared to to the one corresponding to a successful placement of the tablecloth. Success
is attained if the final image is a smaller rectangle than the original one (when the cloth was still over the
table, not on it), there are four corners and no wrinkles. These are one-shot trials, no further correction is
attempted for misplaced or wrinkled cloths. In general, laying a cloth on the table would mean essentially
the same tasks as bed-making, of course without the tucking beneath the mattress and considering a slightly
different behaviour in wrinkle removal due to different friction coefficients between the cloth and the table
as compared to cloth-mattress. As for the latter, the fabric type of the tablecloth is surely more significant:
as pointed out in Saxena et al. (2017) heavier and stiffer cloth is less prone to wrinkle formation than cotton
or silk. Force measuring is not as critical as in bed making, unless correcting motions during laying and
positioning within a collaborative setting are addressed.

4 Robot-assisted dressing

Helping a person to dress up is a strongly dynamical task, subject to a high variability in execution.
Moreover, it is performed in close contact with a user who is frequently in a quite vulnerable situation.
This makes it advisable to resort to sensory input, not only to certify that a given final state has been
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Fig. 6: Different approaches in processing visual information for robot-assisted dressing.

reached, but also to verify that a specific dressing action is proceeding correctly. E.g., if both feet have been
introduced into the same trousers’ leg, this should be corrected asap to avoid unnecessary discomfort or
even pain. It should be noted that robotic assistance in dressing is a complex HRI subject which involves
a great variety of aspects, including user’s pose and gesture recognition Chance et al. (2017a) or resolving
ambiguity of spoken deictic commands Jevtić et al. (2018). Although they are undoubtly all relevant for the
task, here we will concentrate on the manipulative aspects of helping a person to dress. Figure 6 displays
the alternatives in visual tracking of robot-assisted dressing actions, as explained in the remainder of this
section.

The progress of dressing actions can be evaluated either implicitly or by explicitly assessing the corre-
spondence of human body parts with cloth features. Implicit approaches may in turn focus on cloth or on the
human, that is, estimate the progress of dressing on the basis of processing just the cloth images, or assume
that the robot grippers are already holding the garment in such a manner that just the correspondence
between the end-effector and the body parts has to be tracked. All these alternatives are examined next:

– Implicit cloth deformation tracking. The optical flow-based method described by Yamazaki et al.
(2013) performs a cloth-background segmentation and the analysis concentrates on the temporal evolu-
tion of cloth patches. Features such as the magnitude of flows of different cloth regions are computed,
including the distance and relative angles of motion of the flows, as well as the local motion of the
flows (i.e., wrt the center of the cloth region), and compared to the corresponding features of learned
dressing sequences. Both correct and failed sequences have been considered while learning, which allows
the system to identify the source of failure and eventually trigger the correcting action. The algorithm
has been applied to the problem of dressing pajamas bottoms, and failures similar to the one pointed
out above are implicitly identified by the resulting deformations on the pants.

– Implicit body motion tracking. It is assumed that the manipulator(s) is (are) holding the garment
part at the convenient points (e.g. at the shoulders, two spaced points at the waistline, or the like) and
by reaching a programmed sequence of poses, instantiated by the vision module, the dressing goal is
achieved. In Klee et al. (2015) the emphasis is put on learning the user’s mobility constraints, which
(together with the sizes of the body parts of the particular user) instantiate the templates (sequences of
desired poses of the robot) implementing the different dressing tasks. Robot motions are alternated with
repositioning requests to the user, which, if not completely executed, allow to infer restrictions on the
user’s mobility. Here, the vision module has the mission of dimensioning the user and quantifying their
degree of mobility, which is accomplished via depth image based skeleton tracking (OpenNI-tracker, on
the depth images provided by a Kinect camera). In this way, the spatial coordinates of the user’s joints
(including the head position) can be tracked all the time. Experiments were conducted on putting a hat
on users simulating to be constrained to sit on wheelchair and having limitations in repositioning their
head. In a quite similar fashion, also the main emphasis is set on determining the actual range of human
motions in Gao et al. (2015) and to adjust the robot motions accordingly. The top-view camera of the
robotic system obtains zenithal images of the body and upper limbs of the user. In this work, the system
is trained with RGB and depth images of a user that wears clothing with different colouring, facilitating
the segmentation process into eight regions (L/R shoulders, upper arms, forearms and hands), in which
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random decision forests intervene for robust classification of the pixels. The midpoint of each resulting
region is computed and represents the position of the joints of the different body parts. The distribution
of the positions of these joints is learned along a number of trials, as well as a classification of regions
according to their accessibility by a user with specific mobility constraints. Such positions constitute
the successive goals for a motion planner for each of the two arms of a Baxter robot, whose grippers
hold the shoulders of the garment, a sleeveless jacket in this case. It should be stressed that for this
kind of approaches, where the vision system focuses exclusively on the human pose, a large number of
algorithms and even commercial software -as we have just seen- can be adapted, as the subject of human
pose estimation is quite popular in a huge variety of applications.

– Explicit cloth-body correspondence. Vision now does not only concentrate on the user, but follows
also the displacements and deformations of cloth features, and they are put in correspondence. For
example, the collar of a T-shirt has to be aligned first with the top of the head and afterwards with
the base of the neck. This is what Tamei et al. (2011); Koganti et al. (2013, 2014, 2015); Koganti et al.
(2017); Koganti et al. (2019) aim at by using topological coordinates matching. The neckline (or the
sleeve contour) is approximated by a polyline, and also the head-neck-body (or the arm) is represented
as a sequence of segments (see Figure 7). The topological coordinates used by these researchers include
the writhe (for the collar-body relationship), which quantifies the relative twisting of the curves around
each other, and the center of location of these curves (for the collar-head and the sleeve-arm curve pairs).
Tamei et al. (2011) employ markers and a motion capturing system to locate the body and the cloth
features, whereas in Koganti et al. (2013) a commercial color and depth sensor captures the 3D shape
of distinctively coloured collar and sleeves, and both motion capture plus depth sensor are combined
in Koganti et al. (2014). The use of markers is restricted in Koganti et al. (2015) to a previous offline
training phase, which allows later to rely exclusively on depth by resorting to the information stored in
a shared latent space, using a dimensionality reduction technique called shared Gaussian Process Latent
Variable Model (GP-LVM). This idea is extended further in Koganti et al. (2017) via a Bayesian Gaussian
Process Latent Variable Model (BGPLVM), where approximate Bayesian inference together with the
Automatic Relevance Detection (ARD) kernel avoids overfitting and enables automatic dimensionality
reduction (the technique is known as Manifold Relevance Determination (MRD)). Finally, the authors
demonstrate in Koganti et al. (2019) that policy search reinforcement learning in this task-specific latent
space is much more efficient than learning in the high-dimensional joint configuration space of the robot.
The GPLVM formalism is used by the same resarchers in a more complete dressing assistance learning
from demonstration setting that includes a cloth reaching phase (via point-to-point motion planning),
an arm dressing phase (with Dynamic Movement Primitives, DMPs) and the body clothing phase (with
GPLVM), as described in Joshi et al. (2019). Imitation learning from human demonstration is viewed
as a form of prior knowledge that makes the learning process much more efficient.

head

sleeve

centers

centers
body

writhe

collar

arm

Fig. 7: The human body and the significant features of the clothing part (neckline or collar, and sleeve) represented as
connected segment sets. The topological coordinates are exploited as for their expressive power regarding the relationships
between human and garment features.

An issue arising in the context of vision-based user-centered tracking approaches is related to occlusions
of the user’s body parts, including their limbs. Three types of occlusions may appear, namely garment-
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occlusions (i.e., the very same garment hides a body part while dressing, as for example the hand that
disappears inside the sleeve), robot-occlusions (due to the robot arm(s) interrupting the line of sight),
or self-occlusions (the user’s own body interferes with the visibility of other parts of their body). While
the two last types of occlusions may appear in different contexts, the first one is quite specific to the
dressing assistance scenario. A possible way out is to infer the location of occluded body parts from the
pose of other parts, as done in Chance et al. (2018). More specifically, the position of the elbow which
has disappeared within the jacket is predicted from regression trees for different body features, which
point at the shoulder and the hips as the most significant predictors (together with the same arm’s
hand, but the latter is also occluded by the sleeve during the process of dressing). To this end, recurrent
neural networks were trained on unoccluded motion tracking data, collected from a set of human-human
assisted dressing interactions, and applied to the Kinect data obtained from a robot-assisted dressing
task. An obvious but still quite unexplored alternative (or rather complementary procedure), would be
to resort to cloth deformations, similarly as in the research cited above Yamazaki et al. (2013), but
establishing an explicit correspondence between them and the location of body parts.

5 Conclusions

Cloth handling is tricky and involved, a challenge for robotic settings. In the case of rigid bodies, manipula-
tion means generally just repositioning the object, but handling clothes goes far beyond simple translation or
reorientation. Furthermore, it differs also from the manipulation of other types of deformable material such
as paper or metal sheets, in that its deformations cannot be considered elastic (no original shape is recovered
under cease of applied forces) nor plastic in a strict sense Jiménez (2012) (see also Nadon et al. (2018);
Sanchez et al. (2018) for other recent surveys on robot manipulation of general deformable objects). In other
words, cloth is very easy to deform, and these deformations are quite unstable under further manipulation.
The mechanical behavior of textiles is hard to predict, and thus accurate and purposeful cloth manipulation
is highly dependent on sensory feedback. This is even more marked in unstructured environments including
assistive settings, with a tight and versatile interaction with humans.

In this survey, we have approached the topic of perception in robotic manipulation of cloth in assistive
environments both from the side of describing the tools, i.e., the basic required perceptual skills, and the side
of their use, that is, how such skills are applied in the execution of assistive tasks. The set of such basic skills
include cloth isolation and wrinkle detection, grasping point(s) selection (both generic and specific ones),
classification and state estimation. The solutions developed so far by research concerning these skills have
been briefly and systematically described (some more detail can be found in Jiménez Schlegl (2017), although
this survey does obviously not include the most recent contributions listed here). As for the applications, we
have reviewed the most common domestic chores involving cloth manipulation and described the necessary
role played by the different skills in the execution of these tasks. These are the tasks that do not imply
physical contact with the human. But assistive tasks include also personal care in the case of disabled
people, which regarding cloth manipulation means basically dressing assistance. In this application we have
obviated the common perceptual skills (we have assumed the garments are already correctly identified
and grasped at the most convenient locations) and have focused on the specific skills that are required in
this context, namely tracking the development of the dressing task. We have seen that this can be done
either implicitly by tracking cloth deformations or body motions, or explicitly by monitoring the cloth-body
correspondence. This can be seen as a kind of state estimation, but in a continuous fashion. The methods
and algorithms that have been presented along this survey are hard to compare with each other. Different
environments and experimental settings, including non-identical garments and other cloth items, diverse
simplifications and assumptions, among others, make it really difficult to establish a fair comparison as
for performances. Establishing accurate benchmarks is a pending issue, and should include the very same
experimental garments, if the physical aspects of manipulation are to be taken into account, for example in
active sensing procedures.

Regarding future scientific research and technological development on the manipulation side, there is
still a lot of work to do to come up with robotic hands that can equal human dexterity in grasping and
manipulating textiles, not to say in fine manipulation tasks such as buttoning. As for perception, which is the
topic of this survey, the achievements are already striking, but the to-do list is also still far from completed.
Most experiments have been executed in controlled laboratory conditions and focus on one or two specific
skills. This is far from the human ability to approach a bunch of clothes and rapidly decide the type and state
of each individual item, to grasp them where needed, reverse an inside-out sleeve, match the pair of socks,
fold what needs not to be ironed, or decide that that shirt needs to be washed again. High-resolution depth
cameras may pave the way towards more accurate wrinkle measuring and state estimation, but processing
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times are still too long for real-time applications. Perceptual skills have to gain in speed and accuracy, and
have to be tightly coupled with manipulation in order to allow active vision strategies to resolve uncertainties
in an agile way. Integration with other perception sources, mainly force and touch, is quite promising and
should be further explored. In this sense, recent surveys such as Park et al. (2018) for tactile sensing may
be really helpful. The crucial tasks of state estimation and tracking require further advances in versatility
and uncertainty handling to come closer to effectively mimicking human comprehension of cloth states and
our intuitive discretization of what is actually a continuum of deformed states. Some initiatives including
the EU-project CLOTHILDE (ERC-2016-ADG-741930)2 point in this direction.

References

Balaguer B, Carpin S (2011) Combining imitation and reinforcement learning to fold deformable planar
objects. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp
1405–1412, DOI 10.1109/IROS.2011.6094992

Berg JVD, Miller S, Goldberg K, Abbeel P (2011) Gravity-based robotic cloth folding. In: Hsu D, Isler V,
Latombe JC, Lin M (eds) Algorithmic Foundations of Robotics IX, Springer Tracts in Advanced Robotics,
vol 68, Springer Berlin Heidelberg, pp 409–424, DOI 10.1007/978-3-642-17452-0 24

Bersch C, Pitzer B, Kammel S (2011) Bimanual robotic cloth manipulation for laundry folding. In: Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp 1413–1419, DOI 10.1109/
IROS.2011.6095109

Chance G, Caleb-Solly P, Jevti A, Dogramadzi S (2017a) What’s up? resolving interaction ambiguity
through non-visual cues for a robotic dressing assistant. In: 2017 26th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), pp 284–291, DOI 10.1109/ROMAN.2017.
8172315

Chance G, Jevti A, Caleb-Solly P, Dogramadzi S (2017b) A quantitative analysis of dressing dynamics
for robotic dressing assistance. Frontiers in Robotics and AI 4:13, DOI 10.3389/frobt.2017.00013, URL
https://www.frontiersin.org/article/10.3389/frobt.2017.00013

Chance G, Jevti A, Caleb-Solly P, Aleny G, Torras C, Dogramadzi S (2018) elbows outpredictive tracking
of partially occluded pose for robot-assisted dressing. IEEE Robotics and Automation Letters 3(4):3598–
3605, DOI 10.1109/LRA.2018.2854926
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Ramisa A, Alenyà G, Moreno-Noguer F, Torras C (2011) Determining where to grasp cloth using depth
information. In: Artificial Intelligence Research and Development - Proceedings of the 14th International
Conference of the Catalan Association for Artificial Intelligence, Lleida, Catalonia, Spain, October 26-28,
2011, pp 199–207, DOI 10.3233/978-1-60750-842-7-199
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