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Dual-branch CNNs for vehicle detection and
tracking on LiDAR data
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Abstract—We present a novel vehicle detection and track-
ing system that works solely on 3D LiDAR information. Our
approach segments vehicles using a dual-view representation
of the 3D LiDAR point cloud on two independently trained
convolutional neural networks, one for each view. A bounding box
growing algorithm is applied to the fused output of the networks
to properly enclose the segmented vehicles. Bounding boxes are
grown using a probabilistic method that takes into account
also occluded areas. The final vehicle bounding boxes act as
observations for a multi-hypothesis tracking system which allows
to estimate the position and velocity of the observed vehicles. We
thoroughly evaluate our system on the KITTI benchmarks both
for detection and tracking separately and show that our dual-
branch classifier consistently outperforms previous single-branch
approaches, improving or directly competing to other state of the
art LiDAR-based methods.

Index Terms—Deep convolutional neural network, vehicle de-
tection and tracking, LiDAR, point cloud.

I. INTRODUCTION

AUTONOMOUS vehicles are becoming a reality. Nowa-
days, level-3 automobiles are already present on our

roads, allowed to circulate autonomously under certain cir-
cumstances but assuming that the human driver will take back
the control if required [1]. Moreover, manufacturers have made
clear their purpose of releasing fully automated level-5 agents
in the near future, which will be able to circulate without any
human supervision in all kind of scenarios.

In our opinion, the confluence of two factors has been
essential for this fast progress. On the one hand, research
advances in areas such as robotics, machine learning, and
computer vision are endowing the systems with a high level of
scene comprehension. On the other hand, new hardware and
on-vehicle sensors are providing the community with enough
data to develop new and robust algorithms as well as the ability
to process them in real time.

However, there is still a long road until level-5 vehicles
can drive freely in our cities. Real-world traffic situations
raise very challenging scenarios that contain a great variety
of elements like vehicles, cyclists, pedestrians, or even urban
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Fig. 1: Using solely LiDAR information, our dual-view deep
convolutional architecture is able to detect and track vehicles
in real driving scenarios. The presented approach uses two
different representations of the 3D input point cloud that are
fed into two independent CNN-based branches for per-point
vehicle classification. The outputs are then fused in a single
3D point cloud and recursively clustered. A novel bounding
box growing method that relies on the use of contextual
information generates trustworthy observations that are then
fed to a multi-hypothesis extended Kalman filter-based tracker.

furniture. In this way, the ability to detect and consistently
track those elements over time is of vital importance and a
core module to elaborate further systems like cruise control,
collision avoidance or vehicle platooning [2], [3], [4], [5].

With the advent of deep learning (DL), image-based scene
understanding has experienced a remarkable boost, providing
in-vehicle perception systems with strong capacities on tasks
such as object detection, classification or semantic segmenta-
tion [6], [7], [8]. Nevertheless, optical cameras may fail to
correctly capture the environment under certain conditions,
such as abrupt changes of illumination (entering a tunnel,
light flashes, etc.) or harsh weather conditions (heavy rain,
fog, snow, etc.). Additional sensors are thus required to fulfill
the need of robustness on autonomous vehicles, whether for
providing complementary scene information to the existing
algorithms or to act as a full backup system.

LiDAR sensors are especially suitable for this purpose since
their performance independent of the scene illumination and
are robust to harsh environmental conditions, while providing
accurate spatial information. Despite the remarkable results
on camera images, the adoption of DL-based methods for
LiDAR data is far from the level achieved on image processing
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tasks. Yet, recent works [9], [10], [11], [12], [13], [14], [15],
[16], [17] are pointing at DL techniques as powerful tools to
extract information from point clouds, expanding their appli-
cability beyond optical cameras. However, those approaches
commonly use additional RGB data, complex structures with
3D or sparse convolutions, or end-to-end systems yielding
directly bounding boxes without allowing the introduction of
prior knowledge.

In this paper, we present a fully working detection and
tracking system for vehicles in driving scenarios based only
on 3D LiDAR as shown in Fig. 1. In a preliminary version of
this work [11], we segmented vehicles from a front projection
of the LiDAR data with a deconvolutional neural network
and used simple Euclidean clustering to extract bounding
boxes that were later tracked trough time. We go beyond
this initial work and significantly improve the system by
introducing a dual-view deep-learning pipeline to segment
vehicles from LiDAR information, along with several other
novelties such as adaptive threshold recursive clustering, and
a bounding box growing algorithm guided by contextual
information. We perform extensive tests of our method on the
Kitti benchmark [18] for both the detection and tracking tasks,
quantitatively showing better performance in comparison to
the state of the art. More specifically, our contributions are:
1) We present a novel dual-view deep learning architecture
with specialized parallel branches to segment vehicles from
two different 3D point cloud representations.
2) We devise a new deep model with customized fire modules
that performs vehicle segmentation over a featured bird’s-eye
view representation of the 3D input LiDAR data. This rep-
resentation preserves the geometrical features of the objects,
providing invariance to its size, as they are represented on their
real on-ground position.
3) We develop a novel fusion strategy to retrieve accurate
BBs for the segmented 3D point cloud which has three main
features: a) recursive Euclidean clustering with an adaptive
threshold; b) a new confidence measure to fuse detections
given the fact that false positives are uncorrelated between
branches; and c) an algorithm to compute full-size BBs by
expanding small ones towards occluded regions, thus resolving
orientation ambiguities.
4) We introduce a novel bird’s eye view evaluation of the
tracker performance, which is more informative than the front
image domain used on the Kitti tracking benchmark, as it is
done over the X-Y ground plane; and
5) We extensively test our system both in the detection and
tracking benchmarks of the Kitti dataset. We present a through-
out ablation study for each task testing our capacities over
different distances and perform fair comparisons showing how
our dual-view deep-LiDAR method consistently outperforms
previous approaches.

II. RELATED WORK

Convolutional neural networks (CNNs) have demonstrated
an outstanding performance solving image-based problems
such as object classification [6], [19], detection [7], [20], [21],
or semantic segmentation [8]. Despite this great success, the

potential of these deep learning techniques has not yet been
extensively deployed for analyzing 3D LiDAR point clouds. In
this section we review the most relevant approaches proposed
to detect objects with CNNs in such 3D sparse domain.

Deep convolutional models have been applied over 3D
LiDAR point clouds as a way of learning useful features
substituting hand-crafted ones as for example, in Vote3D [22].
A straightforward solution is to employ 3D convolutions, as
in [23] for 3D vehicle detection. However, this implies a
high and unnecessary computational cost due to the additional
dimension and the sparse domain. To deal with the problem,
sparse convolutions can be used on point clouds. In this
way, [24] extends the work of Vote3D by replacing a support
vector machine classifier with sparse 3D convolutions that
act as voting weights for predicting the detection scores.
Other recent works directly generate a structured space by
subdividing the point cloud into voxels [13]. The group of
points within each voxel is then transformed into a unified
feature representation by a voxel feature encoding layer.

Very recently, some approaches are directly using the raw
point cloud as input to deep architectures that are trained to
directly get the desired ourputs. PointNet [25] applies a set of
transformations and multi-layer perceptrons to generate global
point cloud features which are then used for classification and
segmentation tasks. The main drawback is that the method
does not capture the local structures inherent to the points’
metric space. Aiming to solve this issue, PointNet++ [26]
proposes to recursively apply PointNet on nested areas of
the input point cloud, learning local features with increasing
contextual scales. The same ideas are shared in [12], which
explores larger areas by extracting 3D frustums lifted from
the corresponding bounding boxes predicted by a 2D CNN
detector over RGB images. All these methods are often
influenced by the point cloud density and can be considered
as black-boxes containing ad-hoc steps that can greatly affect
their performance, stability and human comprehension.

Notwithstanding, the most commonly adopted procedure is
to pre-process the 3D LiDAR point cloud to obtain equivalent
2D representations from which to apply the well-known and
optimized 2D CNN approaches. The outputs can be later
fused and processed in order to achieve the final objective.
For instance, [9] projects the point cloud to a front view
representation encoding the range distance and height of each
3D point. They train a fully convolutional network to predict
the vehicleness confidence of each point and regress the 3D
bounding box of the containing vehicle, which increases the
computational load of the method. Similarly, we have in the
past segmented vehicles from a front view projection of the
spherical LiDAR coordinates [11], [27] and then tracked them
through time. In [28], the authors also favor a front view
projection encoding normalized range distance, differentiated
range distance (range difference for neighboring data points),
and normalized height in three channels fed to a CNN for
vehicle segmentation. Differently, other approaches such as
BirdNet[29], TopNet [30] or RT3D [31], employ a bird’s eye
view projection of the point clouds, also known as zenithal
view, and encode different features on each projected cell.
Other further methods fuse different domains and combine
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Fig. 2: We project each point cloud into two different view planes to obtain useful inputs for our deep CNN detectors: a
front view with range and reflectivity channels (left), and a bird’s-eye view with six channels encoding various occupancy,
reflectivity, and height parameters (right). Ground-truth is generated projecting back the image-based Kitti tracklets over the
3D LiDAR data and selecting the points inside each bounding box. The RGB image is shown just for visualization purposes.

RGB images and LiDAR information. For example, [10] uses
the LiDAR bird’s eye view to generate 3D bounding box
proposals, which are employed later to detect vehicles over
the RGB image and the front point cloud projection using a
region-based fusion network.

Our objective is to obtain a fully working and independent
system for detecting and tracking vehicles in 3D with infor-
mation from the minimum number of sensors. We chose to
focus solely on LiDAR as these sensors are able to measure
accurately the 3D in the scene and are more robust to changes
of illumination and harsh weather conditions than cameras.
Instead of using a bird’s eye view for BB proposals as in
[10], we devise a dual-branch LiDAR detector; one branch
uses a novel featured bird’s eye view of the 3D points that
are processed through a specialized deep architecture, whereas
the other branch employs a front view projection and a
similar network to the one described in [11]. Each branch
independently predicts the probability of each of its input
points of belonging to a vehicle, after which we perform a late
fusion step merging both segmented point clouds. Remarkably,
our approach uses only LiDAR information and we do not
make any use of RGB images during training nor inference,
obtaining a full backup system suitable for safety purposes
when cameras may fail.

III. APPROACH

The input is a point cloud P = {q1, · · · , qQ}, where each
point qk ∈ R4 contains the point’s Euclidean coordinates with
respect to the sensor center of projection and a measured
reflectivity value. The system output is a list of tracked vehicle
bounding boxes defined by their pose on the ground π =
(x, y, z, θ) and their bounding box parameters d = (w, l, h).

Our solution includes three steps: vehicle detection, bound-
ing box extraction, and vehicle tracking. We formulate the
vehicle detection task as a per-point classification problem in
which we want to obtain the probability of each 3D point to
either belong or not to a vehicle: p(l|qk), where l represents
the labels {vehicle, not-vehicle}.

We define two different projections of P: a front view IFR;
and a bird’s-eye view IBE . Our learning objective is to model

the two functions FFR : (IFR,YFR) → ŶFR and FBE :
(IBE ,YBE)→ ŶBE , where YFR and YBE are the ground-
truth binary masks indicating whether or not each projected
point belongs to a vehicle and ŶFR and ŶBE contain the
estimated vehicleness probability map for the two projection
planes. We learn these functions FFR and FBE using two
independent deep convolutional neural networks.

We next reconstruct an annotated point cloud from the
estimated probability maps and generate 3D bounding boxes
for each segmented vehicle via recursive clustering. A third
probability map SBE is then created in the bird’s eye view
to encode the probability of each cell to either be occupied,
free, or occluded, which is used in turn to grow the boxes to
standard vehicle sizes giving preference to occluded regions.

Our last objective is to track these generated bounding boxes
through time using a number of multi-hypothesis extended
Kalman filters, one per tracked vehicle, as detailed in [11]. A
general sketch of our framework is shown in Fig. 1.

In the next sections, we present these three steps of our
full system. Section IV shows the Deep LiDAR-based vehicle
detection phase. Then, Section V details the bounding box
extraction procedures. Finally, Section VI describe our tracker.

IV. VEHICLE DETECTION

A. Point Cloud Pre-processing

To overcome common issues with the unordered and vari-
able number of measurements existing in LiDAR data, we first
project each point cloud into two different view planes, a front
view IFR and a bird’s-eye view IBE as shown in Fig. 2.
IFR is obtained using the same front view projection de-

scribed in [11], which models the Velodyne HDL-64 geometry
and arranges the 3D input point cloud P into a 3D array such
that IFR ∈ RH×W×C . Initially, each Cartesian point (x, y, z)
is transformed to spherical coordinates (φ, θ, ρ). The elevation
angle θ represents each of the H = 64 horizontal laser beams,
covering the LiDAR vertical resolution from −24.5 to +2.0
degrees with variable resolution ∆θ of 1/3 degrees for the
upper half of laser beams and 1/2 degrees for the lower
half. Even though the laser point cloud has a large horizontal
field of view, we are forced to filter the point cloud in the
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Fig. 3: Our front view network employs an encoder-decoder architecture with convolutional and deconvolutional blocks followed
by batch normalization and Leaky-ReLU non-linearities. The first three blocks generate rich features controlling, according to
our vehicle detection objective, the size of the receptive fields and the feature maps generated. The next three deconvolutional
blocks expand the information. Feature maps from both parts of the network are also concatenated providing more gradient
stability, which results in better learning performance. During training, three losses are computed at intermediate resolutions
yielding to low-resolution predictions that are also concatenated in order to obtain a better final solution.

range φ ∈ [−40.5, 40.5] degrees because the Kitti dataset
has only annotated ground truth for those objects inside the
camera field of view. The resulting cropped point cloud is
then discretized according to an azimuth step of ∆φ = 0.18
degrees, as specified by the sensor manufacturer, resulting in
a map of width W = 448. The third dimension in our front
view map represents the C = 2 channels, which store range
ρ and reflectivity r values. For multi-echoes, only the closer
detection is considered and missing points in the projected
area, e.g. points without collision or absorbed by dark areas,
are tagged as invalid. The left frame in Fig. 2 shows a sample
of the created front view map, and its associated ground truth.

The bird’s eye (zenithal) view IBE is obtained by cropping
the original point cloud in the volume (x ∈ [3, 63], y ∈
[−25, 25], z ∈ [−2.1, 10]), which maps an area of 60 × 50
meters in front of the LiDAR sensor. This design decision
was chosen after carefully observing that roughly 95% of the
annotated vehicles in the ground truth data are within these
margins. Inspired by [10], we next project this cropped point
cloud to the ground into a 2D cell grid with a resolution of 0.1
meters. Thus, we obtain a bird’s eye view IBE ∈ RH′×W ′×C′

,
where H ′ = 600, W ′ = 500, and C ′ = 6, accounting for six
different features: 1) a binary occupancy term with zero value
if no points are projected onto that cell and one otherwise; 2)
an absolute occupancy term, counting the number of points
that fall into that cell; 3) the mean reflectivity value of the
points on the cell; and 4, 5, and 6) the mean, minimum
and maximum height values calculated over the set of points
projected onto the cell. The right frame in Fig. 2 shows a real
sample of such six-dimensional feature map.

B. Ground Truth Generation

We obtain ground truth vehicle masks for the front view
YFR and the bird’s eye view YBE using the Kitti Tracking
tracklets, which provide real 3D-oriented bounding boxes in
the camera frame. These tracklets are transformed to the
LiDAR frame and the 3D points that lay inside each bounding

box are labeled as vehicle while the rest of the point cloud
remains with the background label.

C. Network Architecture for Classification

To learn the functions FFR and FBE we formulate the task
as a per-point classification problem, which in turn can be
considered as a binary semantic segmentation one, i.e., each
pixel in the maps IFR and IBE must be classified as either
belonging or not to the vehicle class. With that purpose in
mind, we follow our initial proposal [11] but go one step
further and setup a dual-branch scheme with two parallel
CNNs whose results are fused in a later step.

The learning problem is solved for both the front and bird’s
eye view branches in a supervised manner with end to end
back propagation guided by a class weighted cross entropy
loss function [32], defined as:

LWCE(In,Yn) = −
H,W,C∑
h,w,c

ω(Y n
h,w)Id[Y n

h,w
]log(F(In, Y n)h,w,c),

(1)
where In,Yn are respectively the n-th training and ground
truth maps, ω is a class imbalance weighting function com-
puted from the training set statistics as the inverse ratio
between the vehicle and background classes, and Id is an index
function that selects the predicted probability associated to the
expected ground truth class.

We further solve the proposed classification problem in a
multi-scale manner by introducing intermediate loss functions
at different resolutions. This approach inserts valuable gradi-
ents at middle levels, guiding the network to a correct solution
faster. Hence, for each branch we compute the final loss L as

L(In,Yn) =
M∑
m=1

λmLWCE(Inm,Y
n
m) (2)

where m represents the multi-scale step in which the loss
functions are computed and λm are regularization weights for
such loss at each resolution.
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Fig. 4: Our bird’s eye view network is a refined encoder-decoder architecture. As in this case the inputs are larger than in
the front view case, we go further with reducing the feature maps and apply five contractive and five expansive levels. To get
richer features at each level, we insert customized fire modules. These modules first reduce the number of feature channels,
then apply two different sets of convolutional filters on them, and finally concatenate the results obtaining richer high and
low-frequency features. Intermediate losses are also computed in this network, merging predictions at different resolutions.

We propose a contractive-expansive architecture which al-
lows for a good embedding of the vehicle classification fea-
tures. As this design could suppose a bottleneck in the flow of
information, we additionally introduce skip connections con-
catenating equivalent feature maps between both contractive
and expansive parts. These shortcuts help the learning process
by building stronger features and by back-propagating purer
gradients from the upper parts to the lower layers.
Front view network. The front view representation can
introduce geometry distortions representing objects differently
according to their position in the scene (for example, far
objects are represented smaller), so we need to pay special
attention to some key network designs. Initially, for this front
view per-pixel classification task we employ the deconvolu-
tional architecture shown in Fig. 3, which is similar to the
one proposed in [11]. As key design decision, we observed
that, independently of the area occupied on the view, vehicles
in this view are usually represented twice wider than higher,
and therefore we chose to design the initial convolutional filter
sizes following this relation to be 7 × 15. Furthermore, we
impose in the first convolutional layer a vertical vs horizontal
stride ratio of 1:2, in order to obtain more tractable interme-
diate feature maps by reducing the size imbalance of IFR (64
vs 448).
Bird’s eye view network. Having a cell resolution of 0.1
meters, vehicle bounding boxes in IBE occupy an average of
800 cells. This implies that, over the full training set, only a
little more than the 10% of the cells per frame are occupied
by a vehicle. Detecting such small areas is still a challenging
problem for deep neural networks, which made us to design
the novel architecture shown in Fig. 4 for this domain.

Ideally we would like our network to be small enough to
process frames fast but at the same time accurate on details.
To keep the number of network parameters small while still
providing high accuracy, we employ a customized version of
the established deep convolutional ‘fire modules’ [33], [34],

[35] in our architecture. As shown in the bottom-right area
of Fig. 4, our modified fire modules first apply a convolution
to reduce the number of feature maps (channels of the input
tensor). Then two parallel branches apply convolutions with
two different filter sizes. The results are then fused obtaining
robust features with local and context-aware information by
using less parameters. We insert fire modules after each reso-
lution variation of the feature maps, which accomplishes the
strategy presented in [33] of downsampling late in the network,
so that the convolution layers can retain large activation maps
using fewer computations to process such broad areas.

V. BOUNDING BOX EXTRACTION

The above-mentioned architecture provides a powerful per-
point vehicle class identification. However, we need to cluster
these identified points into vehicle hypotheses in order track
them. In this section we describe a mechanism to obtain
bounding boxes from these vehicle hypotheses. The method
is summarized in four steps: a) the fusion of the two vehicle
identification results coming from the two deep neural network
classifiers into a single annotated point cloud, b) the use of a
recursive clustering algorithm that uses an adaptive threshold
to group points into individual vehicle hypotheses, c) the
extraction of bounding boxes, and d) the growth of individ-
ual bounding boxes using contextual information around the
cluster to assign growing preference to occluded areas.

A. Fusion of Results from the Two Classifier Branches

In the case of the front view predictions ŶFR, we recover
the 3D location (x, y, and z) of each classified vehicle point,
from the azimuth and elevation angles φ and θ (encoded by the
row and column indexes), and the range value ρ. The original
3D point cloud can be recovered from this representation by
just inverting the initial projection (φ, θ, ρ → x, y, z). To
minimize the possible distortion introduced, we use a k-d tree
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(a) Standard clustering (b) Recursive clustering

Fig. 5: Bounding Box extraction. (a) Euclidean clustering used
on [11]. (b) Improved results of this paper using recursive clus-
tering with dynamic threshold applied on over-sized elements.

to efficiently find the closest neighbor in the original point
cloud so that recovering the real points sensed by the LiDAR.

In the case of the bird’s eye view, we recover the lower,
middle and higher 3D points of each vehicle-annotated cell in
the map ŶBE . These three 3D points are joined to the above-
listed set of points from the front view into a fused point cloud,
preserving the originating view id on each point. Given the
use of a Softmax function in the final layer of the classifier,
it is safe to use a vehicleness probability threshold of 0.5, for
selecting the cells to be considered as positively classified in
the above-mentioned cases.

B. Recursive Euclidean Clustering

In [11], we clustered the results of our front view detector
using standard Euclidean clustering. Since vehicle context
information was not considered in that case, the solution had
the drawback that depending on the distance threshold used,
one might end up joining together two or more vehicles or,
on the contrary, over-clustering a single vehicle due to the
inherent sparsity of the LiDAR measurements.

In contrast, we now propose a recursive clustering algorithm
that gradually reduces the distance threshold for the clusters
that exceed the maximum dimensions of a standard vehicle.
The clustering step ends when all the extracted clusters have
standard vehicle sizes or when the distance threshold reaches
a minimum value, in which case, the cluster is discarded.
Figs. 5a and 5b exemplify the importance of this step. We
apply an statistical outlier removal algorithm over the obtained
clusters to assure that no outlier points would distort the shape
of the object when fitting the final bounding box.
Cluster Confidence. By definition, both neural network clas-
sifiers produce uncorrelated results. We can therefore obtain a
confidence value for each detection by analyzing the ratio of
contribution from each classifier on the fused point cloud:

η =
min{QBE , QFR}
max{QBE , QFR}

, η ∈ [0, 1] (3)

where QBE and QFR indicate the number of points that each
classifier identifies as vehicle point in a particular cluster in
the fused point cloud. For a fair comparison, QFR is obtained
after reprojecting the point cloud to the bird’s eye view. This
η confidence measurement is high when a representative pro-
portion of predictions from both classifiers exists in the same

(a) Bounding box growing (b) Free space on probability map

Fig. 6: Bounding Box growing. (a) Bounding boxes grown on
small elements up to standard vehicle sizes (see the same top-
right three boxes of Fig. 5), and (b) obtained probability map
for each cell being free, occluded or occupied.

cluster. We will also use this η later to initialize vehicle tracks
and to compute the detection score needed when comparing
our system with other methods in the state of the art.

C. Bounding Box Extraction

Our tracking module uses a 2D-ground representation of the
world, which is convenient when dealing with road vehicles
since it reduces the degrees of freedom to just three. Instead of
using the not directly observable cluster centroid to perform
the tracking, we use a rectangular model that allows us to
apply car-like kinematic constraints and to avoid false motions
produced by changes in the point of view. Initially, we project
the clustered points into the ground plane, keeping for each
azimuth angle the points with shorter range values to establish
the object perimeter. Since the Kitti Tracking benchmark
considers only 2D bounding boxes in the RGB image plane,
we also save the cluster height h and z coordinate to further
compare our method against others.

Along with z-axis related variables (h and z), we need
to estimate the bounding box 2D pose π = (x, y, θ) and
dimensions d = (w, l). Instead of searching in a five-
dimensional space, we assume that the outlier rejection process
has been successful, so we can reduce the problem to just one
variable, searching for the orientation θ∗ that produces the
best (in Maximum Likelihood terms) minimum-sized oriented
box containing the whole cluster. As the search space is small
because the same rectangular fitting is obtained when adding
multiples of π

2 , we use a uniform sampling process to find
the value that minimizes the mean quadratic error between
predicted points (generated using the rectangular model and
the parameter under evaluation) and observed ones, given by
the real LiDAR sensor.
Occupancy Map. In contrast to [11], in which vehicle clusters
would only grow in the tracking step by using information
about the viewpoint change, we here introduce a more efficient
manner to grow vehicle bounding boxes in the detection step
by taking into account occlusion information.

We generate an extended occupancy map SBE ∈ RH′×W ′

that has the same size as the bird’s eye view map and registers
the probability of a cell of being either occupied, free, or
occluded in the following way. As each point from the original
point cloud is an evidence of occupancy, we extract a value
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Qh by counting the points that hit each cell. Furthermore,
each processed point is backprojected to the sensor center,
contributing this ray for counters Qf on the cells along this
line. We also store for each cell the lowest height value of
either a point hit or any ray passing through that cell (zm).

The probability of a cell for being occluded can therefore
be computed as the ratio between the lowest observed point
on that cell to the ground and the expected vehicle height h

po = (zm − zg)/h (4)

We use zg as the ground value computed from the LiDAR
mounting point –known by calibration– or alternatively, the
minimum point registered in a cell zm, if it is lower. Finally,
the probabilities of a cell to be either occupied (ph) or free
(pf ) are computed from the extracted point statistics as

ph = (1− po) · (Qh/(Qh +Qf )) (5)
pf = (1− po) · (Qf/(Qh +Qf )) (6)

D. Bounding Box Growing and Orientation Inference

We want to grow the vehicle bounding boxes (π,d)
preferably along either occupied or occluded regions, and to
guarantee that they do not grow along free areas. To this
end we compute a bounding box cost C as the average
pf of all cells within the box. To grow the box we start
from the box corner closest to the sensor and a minimum
vehicle size and iterate along the two opposing sides of it.
When the vehicle orientation is not well defined by the box
dimensions d we maintain two perpendicular hypotheses, grow
them accordingly and compute their normalized relative costs
Ca ∈ [0, 1] and Cb = 1 − Ca. The bounding box growing
process consists on expanding the box dimensions in small
increments until its mean cost stops decreasing, until the
maximum box dimensions are reached or until a collision with
another box is detected. We evaluate our confidence on each
bounding box in terms of the relation between the costs of the
individual hypotheses as follows

νa =
1

2
(1− Ca + Cb) ; νb =

1

2
(1− Cb + Ca) . (7)

Once the growing process ends, we keep the box with
largest confidence value ν. Finally the detection score S
required to compute the average precision is computed as:

S = ν · η · (1− ε) , (8)

where the fitting error ε (defined in Section V-C) is saturated to
one meter to avoid negative scores. However, this situation is
very unlikely because ε is usually in the order of centimeters,
or few decimeters in the more adverse cases.

VI. VEHICLE TRACKING

For the tracking task, we start from the 2D multi-hypothesis
extended Kalman filter approach presented in [11], and in-
clude two new improvements: 1) we make use of the cluster
confidence term η to decide whether new tracks should be
initiated, 2) instead of considering equal probabilities for each
alternative hypothesis, we use the bounding box confidence
measure term ν to establish the prior probabilities.

We follow standard statistical tests (Mahalanobis distance)
for performing cluster-to-vehicle track data association. When
a cluster is not associated to an existing track, a large cluster
confidence value η would indicate that a new track hypothesis
can be initiated. On the contrary, track observations with
low cluster confidence values are only used to track existing
hypotheses. When a vehicle track is initiated, we maintain two
hypotheses in the filter, one for each possible perpendicular
orientation θ and θ⊥. While [11] uses equal weights (i.e.
ωθ = ωθ⊥ = 1/2) for both hypothesis, here we use the
bounding box confidence term ν to differently weight their
contributions: ωθ = ν, and ωθ⊥ = 1− ν, where ωθ > ωθ⊥ be-
cause ν is the confidence value associated with the hypothesis
with lower cost (as shown in equation 7).

Once the tracker disambiguates the track to follow thanks to
the vehicle motion updates, it will settle with the one having
strongest likelihood of correct orientation. This keeps the valid
hypothesis alive even at stops or in poor detection scenarios
(occlusions, etc). In the end, the bounding box confidence ν
is only pertinent at the beginning of each track, when we have
absolutely no evidence of present or past velocity.

VII. EXPERIMENTS

The proposed system has been evaluated in both the Kitti
vehicle detection and Kitti tracking benchmarks. For each
of these tasks separately, we show results evaluated with
three configurations of our dual-branch deep learning-based
classifier: front view only, bird’s eye view only, and using
both classifiers as described in the paper. Additionally, for each
system configuration, we provide an ablation study and show
the performance with and without our bounding box growing
algorithm. Moreover, we also include results comparing our
deep-models with an oracle on the per-point classification task
and their impact on the vehicle detection and tracking steps.

Compared to our previous work [11] we significantly im-
prove the overall system performance, which we attribute to
the confluence of two factors: a) the inclusion of the bird’s eye
view classifier and fusion approach with the cluster confidence
term that allows us to remarkably reduce the number of false
positives, boosting system performance to a level comparable
to the results obtained when using the oracle detector with
perfect per-point classification; b) the pipeline including recur-
sive clustering and bounding box growing, which significantly
decrease the number of sub-and over-clustering situations,
producing better and more accurate bounding boxes.
Dataset. For learning purposes we use the training subset of
the Kitti tracking dataset, which contains 21 driving sequences
and a total of 8000 Velodyne HDL-64 annotated scans. To
validate our approach separately for both the detection and
tracking tasks we use the first three sequences in this dataset,
that account for about 15% of the total vehicle-class points.
Network training. Both the front view and the bird’s eye
view classifiers are initialized with He’s method [36] and we
use Adam optimization with the standard parameters β1 = 0.9
and β2 = 0.999 for training. In order to preserve the geometry
properties of the driving scene we only augment the dataset
performing horizontal and vertical flips respectively in the
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TABLE I: Ablation Study for the Vehicle Detection Task - Validation Set (IoU 0.7) (%).

Grow.BB Method 2D Front (mAP 2D) 2D BE-V (mAP BEV) 3D detection (mAP 3D)

Easy Med. Hard Easy Med. Hard Easy Med. Hard

7
FR-V 20.13 18.69 17.63 42.31 29.67 30.35 02.32 02.37 01.67
BE-V 26.26 24.53 23.08 64.86 49.02 41.48 07.68 08.51 07.68
Fusion 51.28 42.99 39.07 65.15 50.80 42.52 12.22 13.19 11.45

3
FR-V 47.41 40.67 40.44 69.37 60.41 52.24 13.44 13.38 12.87
BE-V 52.35 49.22 45.00 77.75 60.97 61.33 15.84 18.61 19.67
Fusion 72.11 61.41 54.59 79.73 62.29 62.37 22.45 25.36 24.74

3
‘Oracle’ FR-V 54.08 44.54 45.09 79.96 71.26 62.61 28.52 27.97 28.33
‘Oracle’ BE-V 51.26 42.47 43.14 89.33 70.98 71.16 27.39 26.97 24.24
‘Oracle’ Fusion 70.85 58.37 52.06 89.10 71.48 71.51 42.11 40.40 35.57

front view and bird’s eye view inputs with a 50% chance.
No further augmentation is done, We train each network
independently on a single Nvidia 1080Ti GPU for 400, 000
iterations with a batch size of 10. The learning rate is fixed
to 10−3 during the first 150, 000 iterations after which, it is
halved every 50, 000. We set the regularizator ω to 25 in
the front view and to 1000 in the bird’s eye view classifier,
attending to the ratio between classes on each domain. In both
detector schemes, the multi-resolution loss regularizers λr are
set to 1, assigning equal importance to each resolution.

Bounding Box Configuration. For the recursive clustering
algorithm we start with an initial Euclidean threshold of 1.0 m
that is gradually decreased in steps of 0.1 m for over-sized
clusters (more than 2.2 meters width or 5.0 meters length) up
to a minimum value of 0.1 m. If the minimum threshold is
reached and the cluster is still over-sized, the observation is
discarded. In the same way, clusters with less than 10 points
or radius smaller than half a meter are also discarded. Prior to
computing the bounding box fit, a statistical outlier rejection
algorithm available in the Point Cloud Library [37] is used
with a 1% of cluster points as neighbours and a standard
deviation multiplier threshold of 0.5.

Growing Bounding Box Parameters. The minimum width
and length value for a grown bounding box is set to 1.6 m
and 3.4 m respectively, and the maximum length after the
expansion (in increments of 0.1 m) is set to 3.8 m.

A. Vehicle Detection Results

Table I presents a thorough evaluation of our vehicle de-
tector over the proposed validation set. Three variants of the
classifier architecture are studied, a front view only (FR-V),
a bird’s eye view only (BE-V), and the fused architecture
presented in this paper (Fusion). For each variant, we also
evaluate the system with and without the growing bounding
box module (Grow.BB). Additionally, we include results of the
vehicle detection task over bounding boxes with perfect per-
point classification (Oracle). At the light of the results, we can
observe how BE-V alone produces better results in comparison
to FR-V. This is mainly because pixel classification errors
in the FR-V obtain a larger number of false positives than
in the BE-V, which has a more uniform distribution of the
points in the scene. Furthermore, we see how our approach
for combining both projections boosts the results, producing

Fig. 7: Recall obtained by varying the IoU threshold on steps
of 0.1. With an IoU of 0.5, we get approximately 80% of
vehicle recall for moderate difficulty in the bird’s eye view.

consistent gains in all the three Kitti difficulty levels. It is
also evident how the growing bounding box module consis-
tently helps on improving the results, which can be clearly
appreciated in the 3D detections. Finally, observing the little
difference of our full system against the oracle, we can state
that our approach successfully solve the per-point classification
problem. It can also be appreciated that on the FR-V projection
of the point cloud some distortions are introduced that affect
the oracle prediction, which is why the introduction of the
BE-V projection is of great help.

We additionally analyze the Average Precision (AP) using
different IoU thresholds in order to obtain better detection re-
call, which we consider is of most importance for autonomous
driving. As shown in Fig. 7, our detector is able to locate more
than 80% of moderate difficulty vehicles setting an IoU of 0.5.

We present in Table II results comparing our method with
others in the state of the art for over the bird’s eye view and 3D
metrics both with an IoU value of 0.5. We can observe that our
method outperforms MV, VeloFCN and BirdNet in almost all
the difficulties for the bird’s eye view detection, and performs
favorably with respect to VeloFCN for 3D detection at this
IoU value. We want to remark that the 3D detection mAP
metric is an evolution of the standar 2D mAP, and may not be
representative as a good 3D metric. IoU calculated over 3D
volumes behaves more aggressively than over 2D planes, and
a little height deviation over 2 bounding boxes could result on
a wrong measurement. This is clearly appreciated in when
comparing Table II and Table III and explaining the large
difference obtained along this metric in both tables.

We tested our system on the online Kitti Detection bench-
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TABLE II: Car Detection Results on Val. Set (IoU 0.5) (%).

Method BEV detection (AP BEV) 3D detection (AP 3D)

Easy Moder. Hard Easy Moder. Hard

Ours (FR-V) 81.29 80.62 71.85 46.17 47.38 43.01
Ours (BE-V) 90.61 81.25 72.30 55.92 52.92 52.90

Ours (FUSION) 90.31 81.42 72.40 71.73 62.19 54.97

MV(BV+FV) [10] 86.18 77.32 76.33 95.74 88.57 88.13
VeloFCN [9] 79.68 63.82 62.80 67.92 57.57 52.56
BirdNet [29] 90.43 71.45 71.34 88.92 67.56 68.59

mark, after carefully checking that there exists no corre-
spondences between the Tracking training dataset (used for
our training) and Detection testing set. Results from the
Kitti website are presented in Table III. We can observe
that although our approach is not focused on the detection
task, it directly competes with other established works using
only LiDAR information. For the 2D front detection, we
outperform [31] and with [30]. We observe that there is room
for improvement on the 2D bird’s eye view case, which
may be a matter of increasing our cell resolution as [29]
and [30] do, so that our detected bounding boxes would
overlap better. Notwithstanding, on the 3D detection task it
can be seen that our method is well balanced due to our dual-
branch architecture. In this hard problem, we obtain much
better results than [29] and [30] on the three difficulty levels.
Comparing in this domain with [31], we can conclude that
although we performed better than this method in the 2D front
case, we are penalized by the performance in the bird’s eye
view case, which indicates a future avenue for improvement.

B. Vehicle Tracking Results

We further analyze the performance of our system for
bounding box extraction and tracking with a new ablation
study with and without the deep detectors. Table IV shows
the tracking results obtained over the validation dataset using
either our deep-classifier or an oracle to compute the point
classification step. We present success rates (as percentages)
for the mostly tracked (MT), partially tracked (PT), and mostly
lost (ML) tracking performance metrics. In addition, we show
the precision and recall values, and the commonly used multi-
object tracking accuracy (MOTA) metric [38].

As in the previous experiments, three detection modalities
are compared in Table IV, front view (FR-V), bird’s eye view
(BE-V) and fusion. The oracle simulates perfect vehicle per-
point classification, and thus establishes an upper bound for the
learning task which helps us analyze the effect of the classifier
performance in that of the tracker. Obtaining results close to
those obtained when using the oracle, is an indicator of the
resilience of our tracking module to the errors of the classifier.

The Kitti Tracking benchmark evaluates only on the front
image plane (FR in the table). We consider this as a drawback,
since this projection does measure 3D accuracy as well as
does not represent the real geometry of the scene, introducing
distortions. Therefore, as a novel contribution in this article,
we include a new evaluation of the Tracking task in the bird’s
eye domain (BE in table) using the IoU of the ground-truth
and tracked boxes directly on the X−Y plane. This is clearly
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Fig. 8: Total number of true positives (TP) evaluated using
different maximum distances. We observe that: 1) Our system
obtains almost human performance level in near field. 2)
Comparing to [11], our new method boosts the performance to
almost reach the oracle level. 3) The bigger differences with
the human annotators are produced by far vehicles, where the
LiDAR information is much more scarce.

a better way of evaluating real world vehicle trackers, as it
does not lose any 3D context of the scene.

Analyzing the results, we can observe how our dual-branch
deep-classifier produces similar results in all tracking metrics
than an oracle classifier. The improved performance of the
presented detection approach is of great importance for the
tracker, as it reduces the number of false positives that are fed
to the tracker. Furthermore, this allows us to reduce the cluster
size thresholds obtaining also less false negative detections.

Final results are shown in Table V over the online Kitti
Testing benchmark using 2D bounding boxes in the RGB
image plane. As far as we know, we are the first entry in
this benchmark that performs the task using only LiDAR data
which makes it harder to fairly compare our results with other
approaches. Therefore, we compare the obtained metrics with
our previous work [11] that also uses only LiDAR.

From Table V, we can extract several conclusions. Firstly,
comparing both FR-V methods we see how the additional
improvements introduced in this paper boost the final track-
ing performance in all the metrics. Furthermore, our fusion
approach drastically beats the previous method [11] in all the
metrics. We can also note that the number of false positives has
been reduced, which is reflected in the precision improvement
that evolves from 63.8% to 83.0%. Moreover, we remarkably
increase the recall without producing undesired effects in the
precision metric, which is directly translated into a more than
double MOTA improvement.

We perform a final experiment to gain insights about the
limits on detection performance that our system can handle,
which is shown in Fig. 8. Here we identify the number of
ground truth vehicles in the validation dataset that are within
any given distance to the sensor, and also the number of true
positives identified by our system as a function of the distance
to the sensor (continuous lines in the plot). With this, we can
define two metrics for performance in terms of the distance
from the sensor: a) the ‘effective detection distance’ (EDD),
defined as the maximum distance at which the system recall
(TP/(TP +FN)) is above 90%; b) the ‘maximum detection
distance’, a less restrictive metric to obtain the distance at
which at least a third of the new appearing vehicles are
correctly tracked. To calculate this second measurement, we
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TABLE III: Vehicle Detection Task - Testing Set Comparison (IoU 0.7) (%).

Method 2D Front (AP 2D) 2D BE-V (AP BEV) 3D detection (AP 3D)

Easy Med. Hard Easy Med. Hard Easy Med. Hard

RT3D [31] 50.33 39.69 40.04 56.44 44.00 42.34 23.74 19.14 18.86
BirdNet [29] 78.91 57.02 55.08 76.88 51.51 50.27 13.53 09.47 08.49

TopNet-HighRes [30] 58.04 45.85 41.11 67.84 53.05 46.99 12.67 09.28 07.95
Ours Fusion 60.92 46.50 41.59 45.90 34.53 31.83 15.26 12.50 11.14

TABLE IV: Vehicle Tracking Task - Validation Results over
standard Front and our novel Bird’s Eye view Domain (%).

Evaluation Ours Oracle

FR-V BE-V Fusion FR-V BE-V Fusion

FR

MOTA 15.4 33.6 36.7 38.5 38.2 43.3
Recall 66.6 65.7 66.7 68.6 67.2 69.0
Prec. 65.9 76.7 78.7 80.1 79.9 82.5
MT 47.3 52.7 49.0 50.0 46.3 52.7
PT 37.3 30.0 34.5 37.2 40.0 33.6
ML 15.5 17.3 16.3 12.7 13.6 13.6

BE

MOTA -14.5 12.0 13.8 29.2 28.3 29.5
Recall 56.4 57.7 58.3 64.3 62.8 62.8
Prec. 50.2 62.5 63.7 73.4 72.3 73.2
MT 36.4 35.4 37.3 45.4 41.8 45.5
PT 40.9 40.9 40.9 37.3 40.0 37.3
ML 22.7 23.6 21.8 17.2 18.1 17.2

TABLE V: Vehicle Tracking Task - Testing Set Evaluated over
the 2D front Image Plane (%).

Testing Prev. [11] Ours

FR-V FR-V BE-V Fusion

MOTA 15.5 21.9 36.3 39.7
Recall 55.4 62.3 62.7 63.6
Prec. 63.8 69.0 78.9 83.0
MT 18.5 26.3 32.3 29.5
PT 52.2 59.3 52.0 54.6
ML 29.4 14.3 15.7 15.8

set an incremental recall metric (∆TP/(∆TP + ∆FN)) that
computes the recall variation produced by the increase on the
distance threshold. The plot also shows the distance point at
which 95% of the ground truth labels are visible.

Fig. 8 shows that system performance depends heavily on
the distance from the vehicle to the sensor. We find our ‘ef-
fective detection distance’ (EDD) at approximately 32 meters.
Up to here our system performs close to the human level
(represented as the ground truth of annotated objects). Going
further, at approximately 45 meters we find our ‘maximum
detection distance’ (MDD). Although at this point the number
of false negatives (FN) is increased, our system is still able
to detect a significant part of the distant vehicles. We can
clearly see here the benefits of our multi-branch approach in
comparison to [11], as we almost match the results obtained
with the oracle detector. Going beyond the system maximum
distance we find at around 65 meters the point at which
the 95% of the manual annotations have already appeared.
However, it can be appreciated how the capabilities of our
LiDAR only system are limited at these distances, in which
laser observations become more sparse as the distance grows.

VIII. CONCLUSIONS

In this work we presented a system to detect and track
vehicles using only 3D LiDAR data. The detection is per-
formed separately in two CNN per-point classifiers that use
a frontal and a bird’s eye projection of the same input point
cloud. These point-wise classifications are fused into a point
cloud onto which a recursive clustering algorithm is applied.
Bounding boxes are then grown using contextual information
and other geometric features in addition to vehicle level
information are then extracted to serve as observations to a
multi-hypothesis extended Kalman filter tracking module.

The system is thoroughly evaluated separately in the chal-
lenging Kitti Detection and Tracking benchmarks, and is
compared against previous approaches that only use front
LiDAR information. The results show that the inclusion of our
deep-classifiers drastically increases the system performance.
On detection, we outperform or match other LiDAR-based
approaches. Moreover, we get similar tracking scores than
the ones obtained when using an ideal detector based on the
point-level ground truth used to train the networks. This results
confirm the hypothesis that the point-level false positives are
–to some extent– uncorrelated between networks, and that the
coincidence of different networks pointing the same cluster
as vehicle, constitutes a strong evidence of vehicle existence.
In addition, the presented approach shows an outstanding
performance in the near field (≈ 32 m) on pair to the human
based annotation, where tracking results of the fusion detector
are comparable to the ones obtained with the ideal predictor.

We leave for future research to explore the multi-class
problem, detecting also pedestrians and cyclists, as well as
to tackle the use of deep learning techniques for the bounding
box extraction attending explicitly to context information.
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