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Abstract— Industrial robots are evolving to work closely with
humans in shared spaces. Hence, robotic tasks are increasingly
shared between humans and robots in collaborative settings.
To enable a fluent human robot collaboration, robots need
to predict and respond in real-time to worker’s intentions.
We present a method for early decision using force infor-
mation. Forces are provided naturally by the user through
the manipulation of a shared object in a collaborative task.
The proposed algorithm uses a recurrent neural network to
recognize operator’s intentions. The algorithm is evaluated in
terms of action recognition on a force dataset. It excels at
detecting intentions when partial data is provided, enabling
early detection and facilitating a quick robot reaction.

I. INTRODUCTION

The continuous strive on improving the flexibility of
industrial tasks is propelling the use of robots in new
environments. Robots are increasingly capable of carrying
more heterogeneous tasks and to perceive the environment
around them [1]. Advances on artificial intelligence algo-
rithms, together with the availability of large quantities of
data, and the increased capacity of affordable processing
elements, have triggered a new industrial revolution: industry
4.0 [2]. In this paradigm, robots are no longer isolated in
the industry, they are in a shared workspace with humans
[3]. Collaborative robots are taking the more repetitive tasks
and revaluing the operator’s ones. Universal Robots, the
pioneer on collaborative robots, has sold more than 27000
collaborative robots around the world.

In the industry 4.0, new communication methods between
humans and robots are needed to achieve a truly collaborative
interaction. Robots need to react precisely and with minimal
delay to the intentions of the users. In this work, we explore
a collaborative scenario where a human and a robot share the
execution of a task. The operator should enjoy an effortless
experience, performing their actions naturally while the robot
reacts to their intentions in real time.

We consider the realistic scenario proposed by Olivares-
Alarcos et al. [4]. It provides an industrial collaborative task
where a robot and a human share the task of cleaning and
polishing an object. An example of the setup considered in
this work is shown in Fig. 1. User’s intentions in the dataset
are captured through a force sensor which provides a natural
interaction between the operator and the robot.

The baseline solution relies on machine learning ap-
proaches that require to observe a window, that is, need
to obtain a significant number of samples before making a
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Fig. 1: Industrial scenario considered in this task. The oper-
ator can polish, grab the object or move the robot actuating
over the shared object. Samples from the force sensor are
used to classify user intentions, which change the robot
behavior adaptively.

decision. The major drawback is that the classification of the
intention of the user takes a significant time. Consequently,
the delay of the robot’s response generates discomfort to the
operator and reduces the system’s productivity. Thus, new
early decision methods are needed to provide a quick and
natural collaboration.

In this article, we use a recurrent neural network
(RNN) [5] to classify user’s intentions. RNNs provide two
benefits compared to window-based machine learning tech-
niques. Firstly, it reduces the decision time, as RNNs do
not need a full window of measurements prior starting
the classification algorithm. Secondly, it provides a closed
loop system, as it provides a classification for each sensor
measurement. The network is more flexible to changes,
since it can react dynamically when the user changes their
intention.

The main contributions of this article are as follow:
• Improved classification’s accuracy and faster response

time than methods in the literature in the early decision
paradigm

• Continuous real time decision: Real-time intention’s
classification using a RNN, allowing a faster action
recognition and closing the loop during task execution

• The proposed method trained with limited data still
performs well, which is desirable when setting up new
collaborative human-robot solutions in the industry

II. RELATED WORK

Collaborative robots are a trend in industry, but their effec-
tive use requires a thorough study of the possible interactions.



Losey et al. [6] review collaborative aspects of Physical Hu-
man–Robot Interaction. They define three key themes: intent
detection, arbitration and feedback. Our work belongs to the
intent detection field, where the robotic system detects what
the human is trying to do from the physical human-robot
interaction. Maurice et al. [7] define ergonomic indicators
to estimate biomechanical demands occurring during manual
activities. Collaborative robotics can improve the ergonomics
of humans working with robots, in our considered use-case
we consider the operator’s ergonomics by allowing them to
move the robot.

Communication between humans and robots range from
vision, auditory, physical and other sensors or biologic sig-
nals. Among them, we are interested in physical interaction,
specifically, those works where the force exchange between
robots and humans is used to understand the human’s actions.
A good review can be found in Ajoudani et al. [8], with
particular attention to our paradigm of using force/pressure
sensors to determine the cooperation effort and to anticipate
the objective of the operator.

Huentemann et al. [9] worked in a similar user intention
recognition paradigm than ours. They used a force sensor to
estimate the navigation intentions of users in a wheelchair
from haptic joysticks. Gaz et al. [10] presented a robot
control algorithm for an industrial task. They considered
manual polishing tasks in human-robot collaboration, where
the robot held an object and the human polished it with a
tool. The operator communicated their intention by applying
force on different parts of the robot. Thus, unlike in our
work, there is no need to classify the user’s intentions since
each action is detected by different sensors.

Neural networks have been used also for inferring human
intentions. Liu et al. [11] used haptic forces to identify
desired robot’s velocity based on the force applied by the
human. Sharkawy et al. [12] used the velocity of the robot
and the applied force to feed a multilayer neural network
to modify online the virtual damping of the admittance
controller. Heo et al. [13] used a Convolutional Neural
Network to train a collision model for a robot using joint
signals such as positions, velocities and estimated torques. In
their case, they use the force sensor to label the time periods
where a collision has occurred. More similar to our proposed
task, Zhou et al. [14] used an RNN to predict human’s
actions. They worked on a surgical scenario and implemented
a turn-taking prediction algorithm from multimodal data.
Their objective, like ours, is to obtain an early decision
method to provide faster interactions with the human.

Olivares-Alarcos et al. [4], proposed to infer the operator’s
intentions in order to adapt the robot’s behavior while a
robot and a human shared the execution of a task. Authors
used a dataset containing force signals and a window-based
approach to classify the operator’s intention. Our work shares
their objective and we will use their dataset to evaluate our
method and thus be able to compare our method to theirs.
Our aim is to improve the response time of the robot and
the intention’s inference in an early decision paradigm.

Fig. 2: Network’s architecture. The network is displayed for
multiple sensor measurements Fi. At each time instant the
force sensor signals Fi are fed to the RNN, which updates
the hidden states Hi. The fully connected layer (FC) uses
Hi to obtain the user’s intentions Yi. User’s intentions are
converted to likelihoods Lti with a softmax layer.

III. RNN FOR EARLY INFERENCE OF OPERATORS’
INTENTIONS IN COLLABORATIVE ROBOTIC TASKS

This section describes the algorithm proposed to infer
humans’ intentions in an industrial collaborative robotic task.
The design of the network configuration and their charac-
teristics is discussed in Section III-A. Once our network’s
architecture is defined, we explain in Section III-B the
characteristics of two different decision methods that we used
to infer the human’s actions.

A. Selection of network’s architecture

The network proposed for this task is depicted in Fig. 2. It
consists of an RNN network followed with a fully connected
layer. Each input sample from the sensor is passed through
the network which updates the hidden states Hi. The decision
of which intention is being performed by the user is done
with the fully connected layer from the Hi. The fully
connected layer classifies among the k possible intentions
defined in the dataset, in our case, k = 3. Finally, the softmax
layer obtains the likelihood L(t, k) for each of the classes.
The size of the network determines the capacity to learn
among the variability of the input samples. The hidden units
Hi are used in the fully connected layer to detect which of
the k actions is being performed at the moment. The number
of hidden units delimits the complexity of the task to solve.

The use of a recurrent network architecture to infer the
human’s intention presents several benefits. First, it allows
to naturally handle time series sequences as the recurrent
architecture captures both, the instantaneous and the previous
information. Hence, each sensor’s measurement is feed to
the network so that we get an inferred label for it. This
continuous real-time decision generated by the network is
able to dynamically detect a change in the intention of the
user. Secondly, the neural net provides a confidence score for
each measurement. This score is used latter to determine the
degree of certainty of the net regarding the current action, and
can be used to determines when the robot will start reacting
to it. Thirdly, the RNN based approach reduces the latency



of the system. As each input measurement is processed when
it is available, the latency is reduced to the inferring time.

We used two types of RNN: Long Short Term Memory
(LSTM) [15] and Gated Recurrent Unit (GRU) [16]. Both
allow the network to learn long term dependencies, some-
thing that regular RNN can not due to vanishing/exploding
gradients.

B. Decision criteria for the human’s intention inference

Since the network’s architecture provides a confidence
measure for each sensor measurement, we need to define
a stopping criterion for the intention’s classification. We
propose two criteria for the decision making process to infer
the human’s intention k, one based on time (Ow) and the
other one on confidence (Oc).

The output of the net Yt,k after the softmax layer provides
the class’ likelihood L:

L(t, k) = softmaxY (t, k) (1)

where k indicates the class intention and t the time instant.
We define the time based criterion Ow as:

Ow(ti) = argmax
ti

L(ti, k) (2)

where ti is the fixed decision time. The Ow criterion mimics
the window-based approaches. In this case, the decision of
the most probable action is done after a fixed number of
sensor measurements. Ow checks the output of the net after
ti samples and takes the most probable class as the intention
of the user. This decision criterion is a fair comparison with
window-based methods from the literature since the same
number of sensor measurements are used for each user’s
interaction. The first column of Fig. 3 show examples of
the Ow criteria with the intention decision at a fixed ti.

The Ow criterion does not exploit the continuous real time
decision generated by the recurrent network. Therefore, we
propose a confidence-based decision criterion. It consists in
monitoring the output of the net for each sensor measurement
and returning an inferred label when the likelihood of one
actions surpasses the threshold of confidence thc. We define
the confidence-based criterion as:

Oc(thc) = argmax
ti=tc0→t

L(ti, k) | L(ti, k) > thc (3)

where tc0 indicates the first time instant where the network
starts monitoring the likelihood L to do a decision.

The Oc criterion makes the decision of which is the
user’s intention when the network estimates that the action
likelihood is above the threshold thc. This approach adapts
the time needed for the decision depending on the complexity
of the received samples. If the intention of the user is clear,
just a few samples will be needed to make a decision.
The setting of the threshold in the Oc criterion is a trade-
off between response time and accuracy. Setting a lower
threshold provides shorter latency at a cost of reducing the
classification accuracy. During the evaluation we will fix
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Fig. 3: Identifying user intentions. Network output: likeli-
hood of the three possible intentions across time. In the
window-based approach (Ow) the action is decided at fixed
positions ti depicted in the x-axis with discontinuous lines.
In the confidence based approach (Oc), the intention is
decided when the likelihood of one action surpasses a certain
threshold. In this example the threshold thc has been set to
0.9.

different threshold values to explore the time and accuracy
trade-off. The tc0 parameter ensures that the network ob-
serves a minimum of sensor measurements before having
the hidden states updated and start doing informed decisions.
Examples of the Oc criteria are shown in the second column
of Fig. 3. On the topmost example, after few samples the
network is highly confident about which action is being
performed by the user. Below we see an example of the
need of setting the tc0 parameter before the hidden states
are updated. Notice that with a lower confidence threshold
than the one we used (0.9), the second sequence would have
been detected as class 1 instead of class 2.

IV. EVALUATION RESULTS: INFERRING THE OPERATOR’S
INTENTION FOR INDUSTRIAL COLLABORATIVE ROBOTIC

TASKS

In this Section, we provide a thorough evaluation of the
proposed architecture. First, we present the evaluation setup
used in the experiments in Section IV-A. Second, we evaluate
the network’s architecture with the Ow criterion using LSTM
and GRU units to analyze the performance of the net under
different configurations (see Section IV-B). Third, from
the configurations evaluated before, those with the best
performance are compared with previous methods in the
literature in Section IV-C. Fourth, the use of the confidence-
based Oc decision method is discussed in Section IV-D.
Finally, we analyze the degradation of the method when
fewer data is used to train it in Section IV-E.

A. Evaluation Setup

The dataset used in this work [4] consists of the
force/torque signals recorded from the physical human-robot
interaction during the execution of a collaborative task,
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Fig. 4: Force/torque sensor data. The used dataset provides
6 signals: 3 forces and 3 torques axes. Each sequence is
annotated with one of the three possible intentions of the
user: grab, move or polish the object.

polishing an object. The dataset was generated with an ATI
Multi-Axis Force / Torque Sensor fastened to the wrist of the
robot. The human-robot interaction setup is shown in Fig. 1.
In the industrial cooperative task the robot is in charge of
the picking and placing tasks, while the operator can inspect
and polish the object. While the robot offers the object to the
operator, three possible intentions are considered: polish the
object, grab the object for a further inspection and move
the robot to a different pose. Sensor measurements were
taken at a frequency of 500 Hz. Each sample consists in a 6
dimensional input: one for each force/torque axis. Samples
range from half a second to three seconds. Fig. 4 shows a
sample sequence for each of the 3 actions.

The original dataset contains two subsets, one conformed
with samples recorded with standardized actions and another
one with natural actions. The natural dataset is the one used
in this work since it contains more ambiguity among samples
of different classes.

Experiments consists in a cross-validation without re-
placement applied 10 times, data is randomly split between
training (75 %) and test (25 %) sets. The performance is
evaluated in terms of F1-score. Results are evaluated at
different window’s sizes (ti): 0.1, 0.2, 0.5, 0.7 and 1s. As
we strive for an early detection of the intentions, inference
time for each of the methods is also considered.

B. Network’s architecture evaluation

The proposed network first is evaluated with the Ow crite-
rion in order to have an evaluation at the same time instants
as [4]. Fig. 5 shows F1-measure results of RNN with this
approach. Results of the proposed architectures are over 0.85
even when a small number of hidden states is used. Notice
that GRU based methods achieve better results than their
LSTM counterparts. As expected, the performance increases
when using more hidden units. In the results, it stands out

Fig. 5: RNN results: network’s architecture evaluation.
LSTM and GRU configurations are tested with the Ow:
after a fixed number of sensor measurements. GRU based
architectures outperform LSTM ones.

the performance achieved with few sensor measurements (0.1
and 0.2 seconds windows). The best performing method,
GRU 200 window, obtains 0.937 in F1-measure at the 0.1
seconds window.

More complex configurations with higher number of hid-
den states and extra layers were tested without yielding better
results than the ones presented in this section. The results
of this phase indicate that 200 hidden units is the amount
of complexity needed to represent the complexity of the
dataset. During the following evaluations, only results with
200 hidden units are shown.

C. Window-Based Evaluation

In this section we compare the the best configuration
for our method under the Ow criterion (see Section IV-B)
using configurations with 200 hidden units against the best
performing methods GPLVM and DTWi in [4]. The results
are displayed in Fig. 6 where we can observe that Ow based
methods obtain higher F1-scores than GPLVM and DTWi
when shorter windows are analyzed. Those situations are
the ones targeted in this work, since our aim is to infer
the actions performed by the user in the shortest possible
time. GPLVM and DTWi methods keep improving their
performance when considering longer windows, while the
performance of RNN methods saturates. This maximum
performance obtained is not a huge limitation of our method,
since it occurs at 0.972 F1-score for the GRU 200 configu-
ration.

Another factor to consider when comparing the different
methods is the processing time needed to classify the action.
For RNN results, CPU and GPU executions are compared.
The CPU used is a i7-7800X CPU at 3,5 GHz and the GPU
a GeForce GTX 1080 Ti. For both configurations, only one
measurement is processed at the time (batch size equal to 1).
Times for RNN are provided as the mean time of processing
an entire window. GPLVM and DTWi processing times are
taken from their original article. Table I shows a comparison
of the processing times of the proposed methods compared
to GPLVM and DTWi. Notice that for the proposed method,
the network processes the sensor measurement while they



Fig. 6: RNN results compared with window-based tech-
niques. GRU based method outperforms the window-based
techniques when using windows smaller than 0.5 seconds.

0.1 s 0.2 s 0.5 s 0.7 s 1.0 s
GPLVM 10 117 130 116 120 135

DTWi 2 8 13 57 108 178
GRU 200 Ow gpu 3 3 5 5 7
GRU 200 Ow cpu 8 7 12 12 17

LSTM 200 Ow gpu 3 3 5 5 7
LSTM 200 Ow cpu 9 7 13 13 18

TABLE I: Time Evaluation. Processing time in milliseconds
for Ow criterion compared with window-based techniques.
The network proposed for the task processes each sensor
measurement, the processing time grows linearly to the
number of used sensor measurements. GPU executions are
2.5 times faster than the CPU ones.

are generated. This implies that the time measure provided
in Table I for the RNN implementation is higher than the
actual introduced latency, which is the time to process the
last sample. Nevertheless, results are provided for the full
sequence for a fair comparison with the other methods.
GPU execution is about 2.5 times faster than the CPU for
the LSTM/GRU 200 hidden units. In both cases, times are
below 0.02 seconds obtaining much faster response times
than GPLVM and DTWi algorithms.

Summarizing, we can conclude that GRU based RNN
obtains higher F1-measure and a similar processing time
than LSTM. We will use GRU with 200 hidden units for
the remainder of the article. In [4], the proposed method is
GPLVM 10, which leads to a 0.981 and an inference time of
0.85s (0.7 window + 0.15 processing time). The Ow criterion
proposed using a GRU 200 method achieves 0.937 with
a processing time of 0.103 seconds. The proposed method
provides 8.5x faster decision time at the cost of 4.4 points in
F1 measure. Furthermore, the Ow provides a classification
for each sensor measurement, while DTW and GPLVM work
with windows of the sensor measurements. Our approach
greatly reduces the robot’s response time while maintaining
a F1-measure over 0.90.

Fig. 7: RNN results with OC confidence based decision. Oc

confidence based criterion (GRU 200 confidence) reduce the
mean inference time of getting a decision while increasing
the F1-measure compared to Ow (GRU 200 window).

Predicted label
0.4 0.6 0.8 0.95

G M P G M P G M P G M P

True
label

G 95 4 1 96 4 0 97 3 0 97 3 0
M 7 87 6 6 88 6 6 89 5 4 92 4
P 1 4 95 1 3 96 1 2 97 1 1 98

TABLE II: Confusion Matrices for Oc criterion with Grab,
Move and Polish intentions. Multiple values for the confi-
dence threshold thc (0.4, 0.6, 0.8 and 0.95) are used, leading
to higher F1-measure results.

D. Confidence-Based Evaluation

In this section we compare the Ow criterion results from
Section IV-C with the Oc criterion, both with the GRU
200 configuration. For this experiment, we explore different
confidence thresholds thc : 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
0.95. We expect the less restrictive threshold will promote
quicker decisions while the most restrictive will obtain higher
F1-measure after analyzing more sensor measurements.

In Section IV-C we concluded that a window of 0.1
seconds is enough for Ow criterion to achieve a satisfactory
accuracy for the studied industrial application. For the Oc

criterion, we fixed the tc0 parameter (number of samples to
update the hidden states) empirically to half this value: 0.05
seconds.

Results in this section are provided comparing the decision
time taken for each method. The decision time is obtained
summing up the window time and the time needed for the
algorithm to make the decision. Thus, we compute the time
elapsed between the first sample is generated and when the
decision is taken.

Fig. 7 shows results for the GRU 200 method with the Ow

and the Oc criteria. As Oc does not have a fixed window
to do the decision, time results are provided as the mean
time needed to do the decision. With the GRU 200 Oc and
a decision threshold of 0.95, a 0.962 F1-score is achieved
with an average window size of 0.112 seconds. Comparing
with the window-based (see Section IV-C), the Oc criterion
obtains a slightly higher decision time but it increases 2.5



Fig. 8: F1-measures comparison with a reduced training size.
Results of GRU 200 and GPVLM with 25% training size are
analogous than training with a larger number of samples.

points the F1-measure. Comparing with the GPVLM 10, the
Oc criterion provides 7.6x faster decision at the cost of 1.9
points in F1 measure.

A deeper understanding of the net is provided thought
the analysis of the confusion matrices for the Oc criterion
in Table II. Move is the hardest of the three actions since
it’s erroneously classified as grab or polish. Setting a more
restrictive thc increases the percentage of correctly detected
move samples from 87% to 92%. There is almost no confu-
sion between polish and grab intentions. Examining carefully
the dataset we found that the move action is the one that
has higher variation. Since the operator can move the robot
towards any direction and with different forces, this action
is the hardest to classify.

E. Limited training data

Finally, we want to analyze one of the limitations of
deep learning techniques which is the need of extensive
training data. We compare the Ow criterion, the GPVLM
and the DTWi using a reduced training set’s size of 25%.
Results are shown in Fig. 8. We can observe that for shorter
window sizes GRU still outperforms the other two methods.
Comparing the F1 score obtained using a training set of 75%
(see Fig. 6) we can observe that, as expected, the use of a
reduced training set affects all the 3 methods. Notably, the
F1-score of the GRU method is of almost 90% for the shorter
windows whereas for longer windows DTWi and GPLVM
take advantage of having more information.

V. CONCLUSIONS

We proposed and validated a method to detect user inten-
tions in a human robot collaborative application. Our method
takes advantage of the sequential nature of the force sensor
data analyzed by using a recurrent neural network that detects
the interaction with a confidence value for each sensor
measurement. We first defined a time-based criterion (Ow) to
demonstrate that the network obtains higher F1-measure than
other methods in the literature that use a window approach.
We additionally presented a confidence-base criterion (Oc)
in order to generate a continuous real-time decision. The
continuous nature of the Oc classification closes the loop
in real time, introducing a trade-off between speed and

accuracy. The method did not suffer when trained with
limited data, enabling a quick deploy in new applications
without many setup involved. As a future work, RNN can
be extended to work with multiple sensors data, whether it
is more force sensors, 3D localization sensors, information
coming from cameras or from voice commands.
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