Clifford’s I dentity and Generalized
Cayley-Menger Deter minants

Federico Thomas and Josep M. Porta

Abstract Distance geometry is usually defined as the characterizatid study of
point sets ifR¥, thek-dimensional Euclidean space, based on the pairwise dissan
between their points. In this paper, we use Clifford’s idgrtb extend this kind of
characterization to sets ofhyperspheres embeddedsitr 2 or R"-3 where the role
of the Euclidean distance between two points is replacecbysb-callechower
between two hyperspheres. By properly choosing the valueafd the radii of
these hyperspheres, Clifford’s identity reduces to céowitin terms of generalized
Cayley-Menger determinants which has been previouslyimdxdeon the basis of a
case-by-case analysis.
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1 Introduction

In general, when using distance geometry to characterizg pets based on the
pairwise distances between the points, no more constragerdorced than the
mere requirement that all distances are positive [14]. &foee, this characteriza-
tion is said to be performed in a semimetric space becausgidingle inequality,
the tetrangular inequality, and any other higher-ordeqiradity, are not necessarily
considered. Nevertheless, since distance geometry pesfalt characterizations in
terms of Cayley-Menger determinants, these constraintsthse related to the ori-
entation of simplices, can be incorporated in a simple way.[Ihis generalization
permits to formulate and solve such relevant problems ireKiatics as the inverse
kinematics of serial robots and the forward kinematics oéfiel ones (see [20] and
the references therein).
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Another important generalization of distance geometrysisa in considering
other geometric elements than points. To this end, Caylepdér determinants
must be extended to involve tltistancebetween these other geometric elements.
In this paper, we will see that this generalization is pdsdily adopting the concept
of powerinstead of the standard Euclidean distance. As a resulggtheralizations
of Cayley-Menger determinants presented, for examplel %, jhaturally arise as
particular cases of Clifford’s identity, instead of relginn a case-by-case analysis.

This paper is organized as follows. Section 2 gives the digfimdf the power
of two circles, a generalization of Steiner’'s power of a paind a circle. The limit
cases (those involving at least one cicle with zero or irdingtdius) are treated in
Section 3, where the straightforward generalization toehgpheres is also given.
Some further generalizations are detailed in Section 4ti@eé gives the most
general form of Clifford’s identity and explains how gerlead Cayley-Menger
determinants — involving points, hyperplanes and hypersgd— can be deduced
from it. Finally, Section 6 identifies some points desenfimgher research efforts.

2 The power of two circles

In 1826, Steiner defined the power of a pdiwith respect to a circle of radiusr as
h=d?—r?, whered is the distance betwedhand the cente® of the circle [9, 21].
According to this definition, points inside the circle havegative power, points
outside have positive power, and points on the circle haxe pewer. For external
points, the power equals the square of the length of a tarfig@ntthe point to the
circle. Steiner proved that for any line throuBlintersectingc in pointsP’ andP”,
the power of the point with respect to the circle coincidgstaisign, to the product
of the lengths of the segments frdrto P’ andP to P”.

In 1872, Darboux extended the idea of the power of a point wapect to a
circle to the power of two circles [8]. Clifford also gave thame definition in two
papers that appeared in his collected works [3, 4].

Let ¢; denote a circle with center & and radiusrj, and letd; ; denote the
distance between the centers of the cirdesndc;. Then, the mutual power of the
circlesc; andc;j is defined as:

(cicj) = d? —rF—rf. 1)

When both circles intersect, the power thus defined redaces t
(cicj) = —2rirjcosh, j, (2)

where§ j is the angle of intersection of the two circles. As a consagagwhen
they cut at right angles, their power vanishes and vice versa
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3 Limit cases

In terms of Cartesian coordinateswith center coordinatgs, yi) can be expressed
as:

G (X=%)2+ (y—yi)2—r2=x2+y*+2fix+2gy+hi =0, (3)

wheref; = —x;, g = —yi, andh; = x*+y? —r2. Then, the power of two circles given
in (1) can be rewritten as:

(cicj):hi+hj—2fifj—Zgigj, (4)

which is sometimes also referred to as the product ahdc;j [7]. This alternative
formula is useful to analyze the limit cases in which oneleidegenerates into a
line possibly at infinity. Next, we analyze three relevardesa All others follow
directly.

1. One circle degenerates into a lin€onsidering a line as a circle of infinite
radius, let us sat = d — . Then, using (1), we have that
lim (cicj) = lim [(pij +8)*— &% —rf] = 2pi;9, ()
O—00 O—00 ' '
wherep; j is the perpendicular distance from the centecjofo the line. The
side of the line on whiclp; j is positive is regarded as the outside of the infinite
circle.
2. One circle degenerates into a line at infinifyhe equation of the line at infinity
can be written as

X2+ y? + 2fix+ 2giy — 62 =0, (6)

whered — . Identifying (6) and (3), we have that = —32. Then, the power
of ¢ andc;j, ¢ being the line at infinity, can be expressed as:

(ci¢j) = lim (—8%+hj — 2fi f; — 2gigj) = —&°. 7)
—»00
Observe that the negative sign is consistent with the poeviase because the
line at infinitewrapsall finite points.
3. Both circles degenerate into lingl$ we setrj =rj = & — »in (2), then

lim (cicj) = —26°cosh j. (8)
0—00

whereg, j is the angle between both lines. Observe that the power ottie
cident lines is—252.

The cases in which at least one of the radii is zero followdliye Moreover,
observe that the definition of power of two circles can bedliyeextended to the
power of two hyperspheres, and that its value for the limgesaobtained above
also apply to this generalization. The resulting powersfbpossible combinations
are summarized in Table 1. To deal with powers involving pihyperplanes and
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Table 1 The powers between points, hyperspheres, and hyperplanesx).

G \Cj point hypersphere hyperplane | hyperplane at
point & d?—rf 20pj — 52
hypersphere d?—r? d?j—ré—r? 25p;;i —5°
hyperplane 20 j 20p; j —25° Cos6; j 0
hyperplane at —5?2 —5?2 0 NA

hyperspheres at the same time, it is important, for dimewsiconsistency, to keep
the factorsd andd?, contrarily to what is done, for example, in [11]. As a resalt
powers have the dimension of length squared &sas length dimension.

4 Further generalizations

Let us suppose that andc; are two circles, on a sphere of radRswith spherical
radiirj andrj, respectively. Lety j denote the length of the arc joining their centers.
Then, the power of; andc; is defined as [2;105]

(cicj) = cogKw, j) — COSKTIi) COKTj), 9)

wherek = 1/R denotes the curvature of the sphere.
If ¢i andc; intersect and the angle of intersection between both siisldenoted
by 6 j, then we have that

(cicj) = sin(kri) sin(krj)cosd j, (10)

which is zero when the circles cut orthogonally.
If Kk — 0 (i.e., the sphere becomes a plane),(@as) — 1— k?a?. Then, itis easy
to verify that
lim (cicj) = —k*(afj —rf—r§), (11)
Kk—0 ’
which is consistent with the definition of power of two cirglen a plane given by
(1) up to the factork?.

Other generalization of the concept of power, that haveiveddittle attention,
can be found in the literature. For example, in [12], Lactgatended the concept
of power to certain pairs of conics following the work of Cage [1]. Laguerre
also defined the power of a point with respect to any algehmaice of degree
to be the product of the distances from the point to the ietgigns of a circle

through the point with the curve, divided by thtéh power of the diametet [13].
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Laguerre showed that this number is independent of the deame the case when
the algebraic curve is a circle the result does not coinciitle tlive power of a point
with respect to a circle defined by Steiner, but differs frarby a factor ofd?.
The topic of the power of a point with respect to an algebraive has recently be
revisited in [22] following the work of Neville [16, 17], whh was influenced by
that of Laguerre.

5 Clifford’sidentity

Clifford’s identity states that, given two sets of five ceslon the unit spher&?,
their mutual powers are related through the following ietathip [3]:

(C1Cs) (C1C7) (C1C8) (C1C9) (C1C10)
(C2Cs) (C2C7) (CaCs) (C2C9) (C2C10)
(c3Cs) (c3c7) (caCs) (CaCo) (CaC10)| =0, (12)
(CaCs) (CaC7) (CaCg) (CaCq) (CaC10)
(CsCs) (CsC7) (CsCs) (CsCo) (CsC10)

where powers have to be computed according to equation (9).

The great mathematics historian Julian Coolidge pointedro[b, p. 135] that
this identity was first presented by Darboux in [8] and thaidénius announced
that he had long been familiar with it and proceeded to plliis results in [10].
Nevertheless, Coolidge himself later realized [6, p. 168} Clifford presented this
result for the first time in [3]. In this later reference, @ifd’s identity is presented
in an alternative form: that involving two sets of six sptei@R3, in which case
powers have to be computed according to equation (1).

Although Clifford’s identity has been presented 8ror R3, thus involving five
or six hyperspheres, respectively, both versions areyestsipped up or down to as
many dimensions as required. Indeed, we can present @idfatentity in all its
generality as

(C1€n+1) (C1Cni2) -+ (C1Can)

(CZC.nJrz) (CZC'n+2) (CZ(':Zn) o, (13)

(CnéZn) (CnC'n+2) (Cn('32n)

where{cy,...,cn} and{cy 1,...,Con} are two sets oh > 4 hyperspheres (which
includes points and hyperplanes as degenerate cases) @aada8" 3 or R"—3.

Many interesting relationships can be obtained as pasai@ases of (13). Due to
space limitations, next we only analyze different casé@iand, to better appreciate
the advantages of the presented approach, this analysiwi$ahe same sequence
of cases presented in [15].

In R?, Clifford’s identity involves two sets of five circles. If Biosets are equal,
and their radii are zero, Clifford’s identity reduces to
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0 df, df, df, di
d5; 0 di;dj, d5s
d3; d3, 0 d3, d5s|=0. (14)
df; dj, dzz 0 ds
dé, dg, 5 dz, O

Let us remind thatl ; = d;; is the distance between poirgsandc;. If c; =cgis a
line instead of a point, after taking the common fad@f the first row and column
out of the resulting determinant, we have that

0 2p12 2p13 2p14 2p15
2p1z 0 di; di, dis
2p13 d32;2 0 d32,4 d%s =0. (15)
2pa4 df, df; O dj
2p15 di, di; di, O

In this casepy j is the oriented distance between the l;eand the point;. If ¢,
is a line at infinity, after taking the common facte? of the first row and column
out of the resulting determinant, the identity (15) becomes

01 1 1 1
1 0 d5;dj, d3g
1d3, 0 di,d%| =0, (16)
Ly, oz 0
1dg, dg5 d3, O

that is, the standard Cayley-Menger determinant for fountsmn a plane. Now,
let us assume that = ¢y is also a line instead of a point. Then, after taking the
common facto®d of the last row and column out of the resulting determinarm, w
have that

01 1 1 0
10 d%S d%4 2p25
1d2, 0 d% 2pss|=0, 17)

1di, dfs 0 2pss
0 2ps2 2ps3 2pss —2
which concurs with the result presented in [15]cif= cg is also a line instead of

a point, after taking the common factérof the third row and column out of the
determinant, we have that

0 1 1 0 0
1 0 d2; 2pza 2p2s
1d3, O 2p34 2pss | =0, (18)

02ps22p4z -2  —2c0sbys
0 2psp 2ps3 —2C0Sbsq4  —2
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which coincides with the one derived in [15] up to a factor-@in the last two rows,
which does not alter the result. Finallydf = cg is also a line, it is straightforward
to show that

0 1 0 0 0
10 2p23 2p24 2p2s
02p3, —2 —2c0sP34 —2c0sH35| =0, (19)

0 2pg2 —2C0S0,3 -2 —2C0%ys5
0 2p52 —2Cc0053 —2C0SH54 -2

from which we can conclude that

1 cos934 coSOss
cosfsz 1 cosfss| =0. (20)
cosbs3 cosbs, 1

In other words, the location of poing = ¢y is irrelevant and only the angles between
the three finite lines;z = cg, ¢4 = Cg, andcs = ¢y, are mutually constrained. This
concurs with the result presented in [15] without havingrialgze separately this
particular case.

Finally, it is interesting to observe that the determinan(®0) can be interpreted
as the Gramian of three points on the unit circle. Gramiansactéually be seen as
the counterpart i§" of Cayley-Menger determinants & [19, 23].

6 Conclusion

In the past, the identities in Section 5 involving geneedizayley-Menger determi-
nants have been individually proved. Nevertheless, we Bage/n how Clifford’s
identity, together with Table 1, is enough to derive them isiraple and unified
way. The analysis presented, as an example, is valifobut its generalization
to higher dimensions does not offer any extra complexity that derived from the
increment in the number of cases.

The analysis of Clifford’s identity irS" deserves further attention because it
should be possibly to obtain the results #®? from equivalent expressions &f
as a limit in which the curvature of the embedding sphered¢odero.

Another venue for further investigation concerns the galieation of Clifford’s
identity to conics and, in general, to arbitrary algebraioses following Laguerre’s
ideas.
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