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Abstract Distance geometry is usually defined as the characterization and study of
point sets inRk, thek-dimensional Euclidean space, based on the pairwise distances
between their points. In this paper, we use Clifford’s identity to extend this kind of
characterization to sets ofn hyperspheres embedded inSn−3 orRn−3 where the role
of the Euclidean distance between two points is replaced by the so-calledpower
between two hyperspheres. By properly choosing the value ofn and the radii of
these hyperspheres, Clifford’s identity reduces to conditions in terms of generalized
Cayley-Menger determinants which has been previously obtained on the basis of a
case-by-case analysis.
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1 Introduction

In general, when using distance geometry to characterize point sets based on the
pairwise distances between the points, no more constrains are enforced than the
mere requirement that all distances are positive [14]. Therefore, this characteriza-
tion is said to be performed in a semimetric space because thetriangle inequality,
the tetrangular inequality, and any other higher-order inequality, are not necessarily
considered. Nevertheless, since distance geometry performs all characterizations in
terms of Cayley-Menger determinants, these constraints, and those related to the ori-
entation of simplices, can be incorporated in a simple way [18]. This generalization
permits to formulate and solve such relevant problems in Kinematics as the inverse
kinematics of serial robots and the forward kinematics of parallel ones (see [20] and
the references therein).
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Another important generalization of distance geometry consists in considering
other geometric elements than points. To this end, Cayley-Menger determinants
must be extended to involve thedistancebetween these other geometric elements.
In this paper, we will see that this generalization is possible by adopting the concept
of powerinstead of the standard Euclidean distance. As a result, thegeneralizations
of Cayley-Menger determinants presented, for example, in [15], naturally arise as
particular cases of Clifford’s identity, instead of relying on a case-by-case analysis.

This paper is organized as follows. Section 2 gives the definition of the power
of two circles, a generalization of Steiner’s power of a point and a circle. The limit
cases (those involving at least one cicle with zero or infinite radius) are treated in
Section 3, where the straightforward generalization to hyperspheres is also given.
Some further generalizations are detailed in Section 4. Section 5 gives the most
general form of Clifford’s identity and explains how generalized Cayley-Menger
determinants — involving points, hyperplanes and hyperspheres — can be deduced
from it. Finally, Section 6 identifies some points deservingfurther research efforts.

2 The power of two circles

In 1826, Steiner defined the power of a pointP with respect to a circlecof radiusr as
h= d2− r2, whered is the distance betweenP and the centerO of the circle [9,21].
According to this definition, points inside the circle have negative power, points
outside have positive power, and points on the circle have zero power. For external
points, the power equals the square of the length of a tangentfrom the point to the
circle. Steiner proved that for any line throughP intersectingc in pointsP′ andP′′,
the power of the point with respect to the circle coincides, up to sign, to the product
of the lengths of the segments fromP to P′ andP to P′′.

In 1872, Darboux extended the idea of the power of a point withrespect to a
circle to the power of two circles [8]. Clifford also gave thesame definition in two
papers that appeared in his collected works [3,4].

Let ci denote a circle with center atOi and radiusr i , and letdi, j denote the
distance between the centers of the circlesci andc j . Then, the mutual power of the
circlesci andc j is defined as:

(cic j) = d2
i, j − r2

i − r2
j . (1)

When both circles intersect, the power thus defined reduces to

(cic j) =−2r ir j cosθi, j , (2)

whereθi, j is the angle of intersection of the two circles. As a consequence, when
they cut at right angles, their power vanishes and vice versa.
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3 Limit cases

In terms of Cartesian coordinates,ci with center coordinates(xi ,yi) can be expressed
as:

ci : (x− xi)
2+(y− yi)

2− r2
i = x2+ y2+2 fix+2giy+hi = 0, (3)

wherefi =−xi , gi =−yi , andhi = x2
i +y2

i − r2
i . Then, the power of two circles given

in (1) can be rewritten as:

(cic j) = hi +h j −2 fi f j −2gig j , (4)

which is sometimes also referred to as the product ofci andc j [7]. This alternative
formula is useful to analyze the limit cases in which one circle degenerates into a
line possibly at infinity. Next, we analyze three relevant cases. All others follow
directly.

1. One circle degenerates into a line. Considering a line as a circle of infinite
radius, let us setr i = δ → ∞. Then, using (1), we have that

lim
δ→∞

(cic j) = lim
δ→∞

[

(pi, j + δ )2− δ 2− r2
j

]

= 2pi, jδ , (5)

wherepi, j is the perpendicular distance from the center ofc j to the line. The
side of the line on whichpi, j is positive is regarded as the outside of the infinite
circle.

2. One circle degenerates into a line at infinity. The equation of the line at infinity
can be written as

x2+ y2+2 fix+2giy− δ 2 = 0, (6)

whereδ → ∞. Identifying (6) and (3), we have thathi =−δ 2. Then, the power
of ci andc j , ci being the line at infinity, can be expressed as:

(cic j) = lim
δ→∞

(−δ 2+h j −2 fi f j −2gig j) =−δ 2. (7)

Observe that the negative sign is consistent with the previous case because the
line at infinitewrapsall finite points.

3. Both circles degenerate into lines. If we setr i = r j = δ → ∞ in (2), then

lim
δ→∞

(cic j) =−2δ 2cosθi, j . (8)

whereθi, j is the angle between both lines. Observe that the power of twocoin-
cident lines is−2δ 2.

The cases in which at least one of the radii is zero follow directly. Moreover,
observe that the definition of power of two circles can be directly extended to the
power of two hyperspheres, and that its value for the limit cases obtained above
also apply to this generalization. The resulting powers forall possible combinations
are summarized in Table 1. To deal with powers involving points, hyperplanes and
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Table 1 The powers between points, hyperspheres, and hyperplanes (δ → ∞).

ci \c j point hypersphere hyperplane hyperplane at∞

point d2
i, j d2

i, j−r2
j 2δ p j ,i −δ 2

hypersphere d2
i, j−r2

i d2
i, j−r2

i −r2
j 2δ p j ,i −δ 2

hyperplane 2δ pi, j 2δ pi, j −2δ 2 cosθi, j 0

hyperplane at∞ −δ 2 −δ 2 0 NA

hyperspheres at the same time, it is important, for dimensional consistency, to keep
the factorsδ andδ 2, contrarily to what is done, for example, in [11]. As a result, all
powers have the dimension of length squared asδ has length dimension.

4 Further generalizations

Let us suppose thatci andc j are two circles, on a sphere of radiusR, with spherical
radii r i andr j , respectively. Letωi, j denote the length of the arc joining their centers.
Then, the power ofci andc j is defined as [2,§105]

(cic j) = cos(κωi, j)− cos(κr i)cos(κr j), (9)

whereκ = 1/Rdenotes the curvature of the sphere.
If ci andc j intersect and the angle of intersection between both circles is denoted

by θi, j , then we have that

(cic j) = sin(κr i)sin(κr j)cosθi, j , (10)

which is zero when the circles cut orthogonally.
If κ → 0 (i.e., the sphere becomes a plane), cos(κα)→ 1−κ2α2. Then, it is easy

to verify that
lim
κ→0

(cic j) =−κ2(ω2
i, j − r2

i − r2
j ), (11)

which is consistent with the definition of power of two circles on a plane given by
(1) up to the factor−κ2.

Other generalization of the concept of power, that have received little attention,
can be found in the literature. For example, in [12], Lachlanextended the concept
of power to certain pairs of conics following the work of Casey in [1]. Laguerre
also defined the power of a point with respect to any algebraiccurve of degreen
to be the product of the distances from the point to the intersections of a circle
through the point with the curve, divided by thenth power of the diameterd [13].
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Laguerre showed that this number is independent of the diameter. In the case when
the algebraic curve is a circle the result does not coincide with the power of a point
with respect to a circle defined by Steiner, but differs from it by a factor ofd2.
The topic of the power of a point with respect to an algebraic curve has recently be
revisited in [22] following the work of Neville [16, 17], which was influenced by
that of Laguerre.

5 Clifford’s identity

Clifford’s identity states that, given two sets of five circles on the unit sphereS2,
their mutual powers are related through the following relationship [3]:
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= 0, (12)

where powers have to be computed according to equation (9).
The great mathematics historian Julian Coolidge pointed out in [5, p. 135] that

this identity was first presented by Darboux in [8] and that Frobenius announced
that he had long been familiar with it and proceeded to publish his results in [10].
Nevertheless, Coolidge himself later realized [6, p. 168] that Clifford presented this
result for the first time in [3]. In this later reference, Clifford’s identity is presented
in an alternative form: that involving two sets of six spheres in R

3, in which case
powers have to be computed according to equation (1).

Although Clifford’s identity has been presented forS
2 or R3, thus involving five

or six hyperspheres, respectively, both versions are easily stepped up or down to as
many dimensions as required. Indeed, we can present Clifford’s identity in all its
generality as

∣
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...
...

. . .
...

(cnc2n) (cncn+2) · · · (cnc2n)
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= 0, (13)

where{c1, . . . ,cn} and{cn+1, . . . ,c2n} are two sets ofn > 4 hyperspheres (which
includes points and hyperplanes as degenerate cases) embedded inSn−3 orRn−3.

Many interesting relationships can be obtained as particular cases of (13). Due to
space limitations, next we only analyze different cases inR

2 and, to better appreciate
the advantages of the presented approach, this analysis follows the same sequence
of cases presented in [15].

In R
2, Clifford’s identity involves two sets of five circles. If both sets are equal,

and their radii are zero, Clifford’s identity reduces to
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= 0. (14)

Let us remind thatdi, j = d j ,i is the distance between pointsci andc j . If c1 = c6 is a
line instead of a point, after taking the common factorδ of the first row and column
out of the resulting determinant, we have that
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= 0. (15)

In this casep1, j is the oriented distance between the linec1 and the pointc j . If c1

is a line at infinity, after taking the common factor−δ 2 of the first row and column
out of the resulting determinant, the identity (15) becomes
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23 d2
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= 0, (16)

that is, the standard Cayley-Menger determinant for four points on a plane. Now,
let us assume thatc5 = c10 is also a line instead of a point. Then, after taking the
common factorδ of the last row and column out of the resulting determinant, we
have that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 0
1 0 d2
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= 0, (17)

which concurs with the result presented in [15]. Ifc4 = c9 is also a line instead of
a point, after taking the common factorδ of the third row and column out of the
determinant, we have that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 0 0
1 0 d2
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= 0, (18)
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which coincides with the one derived in [15] up to a factor of−2 in the last two rows,
which does not alter the result. Finally, ifc3 = c8 is also a line, it is straightforward
to show that
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= 0, (19)

from which we can conclude that
∣

∣
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∣

∣

∣

1 cosθ34 cosθ35

cosθ43 1 cosθ45

cosθ53 cosθ54 1

∣
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∣

∣

∣

∣

= 0. (20)

In other words, the location of pointc2 = c7 is irrelevant and only the angles between
the three finite lines,c3 = c8, c4 = c9, andc5 = c10, are mutually constrained. This
concurs with the result presented in [15] without having to analyze separately this
particular case.

Finally, it is interesting to observe that the determinant in (20) can be interpreted
as the Gramian of three points on the unit circle. Gramians can actually be seen as
the counterpart inSn of Cayley-Menger determinants inRn [19,23].

6 Conclusion

In the past, the identities in Section 5 involving generalized Cayley-Menger determi-
nants have been individually proved. Nevertheless, we haveshown how Clifford’s
identity, together with Table 1, is enough to derive them in asimple and unified
way. The analysis presented, as an example, is valid forR

2, but its generalization
to higher dimensions does not offer any extra complexity than that derived from the
increment in the number of cases.

The analysis of Clifford’s identity inSn deserves further attention because it
should be possibly to obtain the results forR

n from equivalent expressions inSn

as a limit in which the curvature of the embedding sphere tends to zero.
Another venue for further investigation concerns the generalization of Clifford’s

identity to conics and, in general, to arbitrary algebraic curves following Laguerre’s
ideas.
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