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Abstract

Event cameras are bioinspired sensors with reaction times in the order of microsec-
onds. This property makes them appealing for use in highly-dynamic computer vision
applications. In this work, we explore the limits of this sensing technology and present an
ultra-fast tracking algorithm able to estimate six-degree-of-freedom motion with dynam-
ics over 25.8 g, at a throughput of 10 kHz, processing over a million events per second.
Our method is capable of tracking either camera motion or the motion of an object in
front of it, using an error-state Kalman filter formulated in a Lie-theoretic sense. The
method includes a robust mechanism for the matching of events with projected line seg-
ments with very fast outlier rejection. Meticulous treatment of sparse matrices is applied
to achieve real-time performance. Different motion models of varying complexity are
considered for the sake of comparison and performance analysis.

1 Introduction
Event cameras send independent pixel information as soon as their intensity change exceeds
an upper or lower threshold, generating “ON" or “OFF" events respectively (see Fig.1). In
contrast to conventional cameras –in which full images are given at a fixed frame rate–, in
event cameras, intensity-change messages come asynchronously per pixel, this happening at
the microsecond resolution. Moreover, event cameras exhibit high dynamic range in lumi-
nosity (e.g. 120dB for the Davis 240C model [1] used in this work). These two assets make
them suitable for applications at high-speed and/or with challenging illumination conditions
(low illumination levels or overexposure). Emerging examples of the use of these cam-
eras in mobile robotics are: event-based optical flow for micro-aerial robotics [18], obstacle
avoidance [3, 15], simultaneous localization and mapping (SLAM) [24] [12], and object
recognition [17], among others.

We are interested in accurately tracking high-speed 6DoF motion with an event camera.
This type of sensors has been used in the past for the tracking of motion. For instance,
2D position estimates are tracked with the aid of a particle filter in [22]. The method was
later extended into an SO(2) SLAM system in which a planar map of the ceiling was re-
constructed [23]. Another SLAM system that tracks only camera rotations and builds a
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Figure 1: Working principle of event cameras (left) with distorted (center) and undistorted
output (right).

high-resolution spherical mosaic of the scene was presented in [9]. Full 3D tracking is pro-
posed in [10] where three interleaved probabilistic filters perform pose tracking, scene depth
and log intensity estimation as part of a SLAM system. These systems were not designed
with high-speed motion estimation in mind.

More related to our approach is the full 3D tracking for high-speed maneuvers of a
quadrotor with an event camera presented in [14], extended later to a continuous-time tra-
jectory estimation solution [16]. The method is similar to ours in that it localizes the camera
with respect to a known wire-frame model of the scene by minimizing point-to-line reprojec-
tion errors. In that work, the model being tracked is planar, whereas we are able to localize
with respect to a 3D model. That system was later modified to work with previously built
photometric depth maps [8]. Non-linear optimization was included in a more recent ap-
proach [2];in this case, the tracking was performed in a sparse set of reference images, poses
and depth maps, by having an a priori initial pose guess and taking into account the event
generation model to reduce the number of outliers. This event generation model was ini-
tially stated in [7] for tracking position and velocity in textured known environments. In
a more recent contribution, a parallel tracking and mapping system following a geometric,
semi-dense approach was presented in [19]. The pose tracker is based on edge-map align-
ment using inverse compositional Lucas-Kanade method; additionally, the scene depth is
estimated without intensity reconstruction. In that work, pose estimates are computed at a
rate of 500 Hz.

In the long run, we are also interested in developing a full event-based SLAM system
with parallel threads for tracking and mapping, that is able to work in real-time on a standard
CPU. Since event cameras naturally respond to edges in the scene, the map, in our case, is
made of a set of 3D segments sufficiently scattered and visible to be tracked. This work deals
with the tracking part, and thus such map is assumed given. With fast motion applications
in mind, our tracking thread is able to produce pose updates in the order of tens of kHz on a
standard CPU, 20 times faster than [19], is able to process over a million events per second
and can track motion direction shifts above 15Hz and accelerations above 25.8 g.

The main contribution of this paper is first to present a new event-driven Lie-EKF formu-
lation to track the 6DOF pose of a camera in very high dynamic conditions -that runs in real
time (10kHz throughput). The use of Lie theory in our EKF implementation allows elegant
handling of derivatives and uncertainties in the SO(3) manifold when compared to the clas-
sical error-state EKF. Then we propose a novel fast data association mechanism that robustly
matches events to projected 3D line-based landmarks with fast outlier rejection. It reaches
real-time performance for over a million of events per second and hundreds of landmarks on
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a standard CPU. Finally the benchmarking of several filter formulations including Lie versus
classic EKF, three motion models and two projection models, adding up to a total of 12 filter
variants.

2 Motion estimation

The lines in the map are parametrized by their endpoints p{1,2} = (x,y,z){1,2} expressed in
the object’s reference frame. We assume the camera is calibrated, and the incoming events
are immediately corrected for lens radial distortion using the exact formula in [5].

The state vector x represents either the camera state respective to a static object, or the
object state respective to a static camera. This model duplicity will be pertinent for the
preservation of camera integrity in the experimental validation, where tracking very high
dynamics will be done by moving the object and not the camera.

To bootstrap the filter’s initial pose, we use the camera’s grayscale images. FAST cor-
ners [6] are detected in this 2D image and matched to those in the 3D predefined map. The
initial pose is then computed using the PnP algorithm [11]. After this initial bootstrapping
process, the grayscale images are no longer used.

2.1 Prediction step

The state evolution has the form xk = f (xk−1,nk), where nk is the system Gaussian pertur-
bation. The error state δx lies in the tangent space of the state, and is modeled as a Gaussian
variable with mean δ̄x and covariance P.

For the sake of performance evaluation, we implemented three different motion models:
constant position (CP), constant velocity (CV), and constant acceleration (CA). These are
detailed in Tab. 1, where r represents position, R orientation, v linear velocity, ωωω angular
velocity, a linear acceleration and ααα angular acceleration. Their Gaussian perturbations are
rn,θθθ n,vn,ωωωn,an, and θθθ n. The orientation R belongs to the SO(3) Lie group, and thus ωωω

lies in its tangent space so(3), although we express it in the Cartesian R3. The operator ⊕
represents the right plus operation for SO(3), R⊕θθθ ,RExp(θθθ), with Exp(·) the exponential
map given by the Rodrigues formula [21].

The error’s covariance propagation is Pk = FPk−1FT +Q ∈ Rm×m with m equal to 6,12
or 18 for the CP, CV, and CA models, respectively. F is the Jacobian of f with respect to
x, and Q is the perturbation covariance. Computation for all the motion models is greatly
accelerated by exploiting the sparsity of the Jacobian F and the covariance Q. We partition

Table 1: State transition for CP, CV and CA motion models. Right: error-state partition.
xt = f (· · · CP CV CA ) δxk

R3 3 rk = rk−1 + rn vk−1∆ t vk−1∆ t + 1
2 ak−1∆ t2

δrk ∈ R3

SO(3) 3 Rk = Rk−1 ⊕ ( θθθ n ωωωk−1∆ t ωωωk−1∆ t + 1
2 αααk−1∆ t2 ) δθθθ k ∈ R3

R3 3 vk = vk−1 + vn ak−1∆ t δvk ∈ R3

so(3) 3 ωωωk = ωωωk−1 + ωωωn αααk−1∆ t δωωωk ∈ R3

R3 3 ak = ak−1 + an δak ∈ R3

R3 3 αααk = αααk−1 + αααn δαααk ∈ R3
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these matrices and P in 3×3 blocks,

I 0 I∆t 0 I∆t2 0

0 JR
R 0 JR

ωωω 0 JR
ααα

0 0 I 0 I∆t 0
0 0 0 I 0 I∆t
0 0 0 0 I 0
0 0 0 0 0 I




F =

Prr PrR Prv Prωωω Pra Prααα

PRr PRR PRv PRωωω PRa PRααα

Pvr PvR Pvv Pvωωω Pva Pvααα

Pωωωr PωωωR Pωωωv Pωωωωωω Pωωωa Pωωωααα

Par PaR Pav Paωωω Paa Paααα

Pαααr PαααR Pαααv Pαααωωω Pαααa Pαααααα




P =

CP

CV

CA

(1)

We follow [21] to compute all the non-trivial Jacobian blocks of F, which correspond to the
SO(3) manifold. Using the notation Ja

b , ∂a/∂b, we have

JR
R = Exp(ωωω∆ t)> , JR

ωωω = Jr(ωωω∆ t)∆ t and JR
ααα = 1

2 JR
ωωω ∆ t , (2)

where Jr(·) is the right-Jacobian of SO(3) in [21, eq. (143)], θθθ = ωωω∆ t ∈ R3 is a rotation
vector calculated as the angular velocity per time, and [·]× ∈ so(3) is a skew symmetric
matrix. Notice that for CP we have JR

R = Exp(0)> = I and thus FCP = I.
The perturbation covariance Q is a diagonal matrix formed by the variances (σ2

r ,σ2
θ

) for
CP, (σ2

v ,σ
2
ω ) for CV and (σ2

a ,σ
2
α ) for CA, times ∆t. For example, for CV we have Q =

blockdiag(0,0,σ2
v I,σ2

ω I)∆ t. The 3×3 blocks of P are propagated in such a way that trivial
operations (add 0, multiply by 0 or by I) are avoided, as well as the redundant computation
of the symmetric blocks. For example the blocks PRr, PrR and Pvv in CV are propagated as,
PRr← JR

R(PRr +PRv∆t)+JR
ωωω(Pωωωr +Pωωωv∆t), PrR = P>Rr, and Pvv← Pvv +σ2

v I∆t .

2.2 Correction step
We have investigated the possibilities of either predicting and updating the filter for each
event, or collecting a certain number of events in a relatively small window of time. Single-
event updates are appealing for achieving event-rate throughput, but the amount of informa-
tion of a single event is so small that this does not pay off. Instead, we here collect a number
of events in a small window, make a single EKF prediction to the central time t0 of the win-
dow, and proceed with updating with every single event as if it had been received at t0. This
reduces the number of prediction stages greatly and allows us also to perform a more robust
data association.

After predicting the state to the center t0 of the window ∆ t, all visible segments Si, i ∈
{1..N} are projected. We consider two projection models: a moving camera in a static world
(3a) and a moving object in front of a static camera (3b), which are used according to the
experiments detailed in Sec. 3,

moving camera: u j = KR>(p j− r) j ∈ {1,2} ∈ P2 (3a)

moving object: u j = K(r+Rp j) j ∈ {1,2} ∈ P2 (3b)

projected line: l = u1×u2 = (a,b,c)> ∈ P2 (4)

where u j = (u,v,w)>j are the projections of the i-th segment’s endpoints p j ∈R3, j ∈ {1,2},
in projective coordinates, and K is the camera intrinsic matrix. Jacobians are also computed,

Jl
r = Jl

ui
Jui

r and Jl
R = Jl

ui
Jui

R ∈ R3×3 , (5)

Citation
Citation
{Sol{à}, Deray, and Atchuthan} 2018

Citation
Citation
{Sol{à}, Deray, and Atchuthan} 2018



CHAMORRO, ANDRADE-CETTO, SOLÀ: HIGH-SPEED EVENT CAMERA TRACKING 5

having Jl
u1

= −[u2]×, Jl
u2

= [u1]×, Ju1
r = −KR> for (3a), Jui

r = K for (3b), and Jui
R is the

Jacobian of the rotation action computed in the Lie-theoretic sense [21], which for the two
projection models becomes

moving camera: Jui
R = K[R>(pi− r)]× ∈ R3×3 (6a)

moving object: Jui
R =−KR[pi]× ∈ R3×3 . (6b)

Then, each undistorted event e = (ue,ve)
> in the window is matched to a single pro-

jected segment l. On success (see Sec. 2.3 below), we define the event’s innovation as the
Euclidean distance to the matched segment on the image plane, with a measurement noise
nd ∼N (0,σ2

d ),

distance innovation : z = d(e, l) =
e>l√

a2 +b2
∈ R , (7)

where e = (ue,ve,1)>. The scalar innovation variance is given by Z = Jz
xPJz

x
>+σ2

d ∈ R,
where the Jacobian Jz

x of the innovation with respect to the state is a sparse row-vector with
zeros in the velocity and acceleration blocks for the larger CV and CA models,

Jz
x =

[
Jz

r Jz
R 0 · · · 0

]
=
[
Jz

l J
l
r Jz

l J
l
R 0 · · · 0

]
∈ R1×m , (8)

with Jz
l = e>/

√
a2 +b2 the Jacobian of (7). At this point an individual compatibility test on

the Mahalanobis norm of the innovation is evaluated, z2

Z < n2
σ , with nσ ∼ 2. Upon satisfac-

tion, the Lie-EKF correction is applied:

a) Kalman gain : k = PJz
x
>Z−1

b) Observed error : δx = kz

c) State update : x← x⊕δx

d) Cov. update : P← P−kZk> ,
(9)

where the state update c) is implemented by a regular sum for the state blocks {r,v,ωωω,ααα}
and by the right-plus RExp(δθ) for R ∈ SO(3), as needed for the model in turn (CP, CV,
or CA). We remark for implementation purposes affecting execution speed that the Kalman
gain k is an m−vector, that to compute Z and (9a) we again exploit the sparsity of Jz

x, as we
did in 2.1, and that Z−1 is the inverse of a scalar.

2.3 Fast event-to-line matching
The Lie-EKF update described above is preceded by event outlier detection and rejection.
The goal is to discard or validate events rapidly before proceeding to the update. We use
image tessellation to accelerate the search for event-to-line candidates. To do so, for each
temporal window of events, we first identify the visible segments in the map and project them
using either (3a) or (3b) as appropriate. Fig. 2(a) displays a capture of a temporal window of
events of 100µs.

The image is tessellated in m×n (reasonably squared) cells, each one having a list of the
segments crossing it. These lists are re-initialized at the arrival of each new window of events.
The cells (Cu,Cv) crossed by a segment are identified by computing the segment intersections
with the horizontal and vertical tessellation grid lines. We use the initial segment endpoint
coordinates (u0,v0), the line parameters (4) and the image size w× h, see Fig 2(b). The
computation of the crossed cells coordinates departs from a cell given by the initial segment
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Figure 2: Data association process: (a) event window sample with projected lines, (b) cell
identification for a single line based on the tessellation guidelines, (c) thresholding and am-
biguity removal.

endpoint, C0
u = du0m/we and C0

v = d(v0n/he, where dCe , ceil(C). Then we sequentially
identify all horizontal and vertical intersections,

Horiz:

{
Ci

v = i
Ci

u = d(−bhi− cn)m/anwe
Vert:

{
C j

u = j
C j

v = d(−aw j− cm)n/bmhe,
(10)

where the iterators i and j keep track of the horizontal and vertical intersections. Their values
start from C0

v and C0
u , respectively and are increased or decreased by one in each iteration

until reaching the opposite endpoint cell location. The sign of the increment depends on the
difference between the first and last endpoint cell coordinates.

For each event in the temporal window we must check whether it has a corresponding
line match in its corresponding tessellation cell. Although we are capable of processing all
events at the rate of millions per second, there might be cases in which this is not achievable
due to a sudden surge of incoming events. This depends on the motion model used, the scene
complexity, or the motion dynamics. We might need to leave out up to 1/10th of events on
average in the most demanding conditions (see last row of Tab. 3), and to do so unbiasedly,
we keep track of execution time and skip the event if its timestamp is lagging more than 1µs
from the current time.

Each unskipped event inside each cell is compared only against the segments that are
within that cell. This greatly reduces the combinatorial explosion of comparing N segments
with a huge number M of events from O(M×N) to the smaller cost of updating the cells’
segments lists, which is only O(N). The (very small) number of match segment candidates
for each event are sorted from min to max distance. To validate a match between an event and
its closest segment the following three conditions (evaluated in this order) must be met, see
Fig 2(c): a) the distance d1 (7) to the closest segment is below a predefined threshold, d1 <
α; b) the distance d2 to the second closest segment is above another predefined threshold,
d2 > β ; and c) the orthogonal projection of the event onto the segment falls between the two

endpoints, 0 <
v>1 v2
v>1 v1

< 1, where v1 = u2−u1, v2 = e−u1, and ui are the endpoints in pixel

coordinates. Events that pass all conditions are used for EKF update as described in Sec. 2.2.
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Table 2: Perturbation
and noise parameters.

σσσ Value
σr 0.03 m/s1/2

σθ 0.3 rad/s1/2

σv 3 m/s3/2

σω 10 rad/s3/2

σa 80 m/s5/2

σα 300 rad/s5/2

σd 3.5 pixels

Table 3: RMSE mean values and timings. L: Lie parameteriza-
tion, and Cl: classic algebra.

Metric CP+L CV+L CA+L CP+Cl CV+Cl CA+Cl
x (m) 0.0149 0.0091 0.0095 0.0162 0.0093 0.0106
y (m) 0.0125 0.0085 0.0081 0.0119 0.0086 0.0088
z (m) 0.0167 0.0111 0.0012 0.0171 0.0121 0.0113

φ (rad) 1.2205 0.7522 0.8333 1.2729 0.8613 0.9539
θ (rad) 1.4569 0.9842 1.0209 1.2729 1.2366 1.2645
ψ (rad) 1.2955 0.9252 0.8066 1.1549 1.1201 0.9902

Tproc (µs) 0.32 0.46 0.72 0.29 0.42 0.64
Nevents (%) 97.73 90.96 85.51 98.06 92.68 89.09

3 Experiments and results
Our algorithm is set up with a temporal event-window size of ∆ t = 100µs. The continuous-
time perturbation parameters of the motion models (see Sec. 2.1) are listed in Tab. 2, and the
outlier rejection thresholds are set at α = 2.5 pixels, and β = 3.5 pixels. These parameters
were set in accordance with the velocities and accelerations expected. The experiments were
carried out with different random camera hand-movements and a four-bar mechanism to test
the tracking limits of our approach. For future comparisons, the dataset used to generate
this results, parametrized maps using endpoints, camera calibration parameters, and detailed
information about data format is available at https://www.iri.upc.edu/people/
wchamorro/.

We make use of our C++ header-only library “manif” [4] for ease of Lie theory com-
putations. The event-rate tracker runs single-threaded on standard PC hardware with Ubuntu
16.04.5 LTS and ROS Kinetic.

3.1 Position and orientation RMSE evaluation

The RMSE evaluation allow us to statistically determine the accuracy and consistency of the
tracker. We execute N = 10 Monte Carlo runs of different motion sequences of about 60 s
of duration in different conditions such as: speed changes from low (0.5 m/s, 3 rad/s approx.
avg.) to fast (1 m/s, 8 rad/s approx. avg.), moving the camera manually inside the scene
in random trajectories; aleatory lightning changes, turning on/off the laboratory lights and
strong rotation changes.
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Figure 3: RMS errors and 2-sigma bounds: (a-c) position, (d-f) orientation.
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Figure 4: (a) Strong hand shake (∼ 6Hz) sequence example (using CV+L), (b) with zoom in
the high speed zone, (c) event quantification and (d) visual output snapshots at a given time.

In this evaluation, we use the projection model (3a); i.e., the camera is moving in a
static world. From the 10 runs, we measure the root mean square error (RMSE) of each
component of the camera pose and plot it in Fig. 3. To analyze consistency of the filter, the
errors obtained are compared against their 2-sigma bounds as in [20]. An OptiTrack motion
capture system calibrated with spherical reflective references will provide the ground truth
to analyze the event-based tracker performance.

For the sake of comparison, we also implemented the classic ES-EKF using quaternions,
where Jacobians are obtained using first-order approximations. The error evaluation for the
various filter variants tested are summarized in Tab. 3.

The overall results show a small but noticeable improvement in accuracy when the tracker
is implemented with Lie groups, where the CV model has the best response. Though the Lie
approach is somewhat slower, this can be taken as the price to pay for improved accuracy.
During the RMSE evaluation, CV and CA errors were mostly under the 2-sigma bound (see
Fig. 3 (b,c,e,f)) indicating a sign of consistency. On the other hand, the error using the CP
model is shown to exceed the 2-sigma bound repeatedly. This situation was evidenced during
the experiments by observing less resilience of the tracker in high dynamics (see Fig. 3 (a,d)).

In all cases, per-event total processing time Tproc falls well bellow the microsecond,
where, on average, less than 0.1 µs of this time is spent performing line-event matching,
the rest being spent in prediction and correction operations. With this, the tracker is capa-
ble of treating between 89.1% and 97.7% of the incoming data, depending on the motion
model and state parameterization used, reaching real-time performance, and producing pose
updates at the rate of 10 kHz, limited only by the chosen size of the time window of events
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of 100 µs.
A comparison of the tracker performance versus the OptiTrack ground truth is shown

in Fig. 4 for the best performing motion model and state parameterization combination:
constant velocity with Lie groups. In this case, the camera is hand-shaked by a human in
front of the scene. The frequency of the motion signal increases from about 1 Hz to 6 Hz, the
fastest achievable with a human hand-shake of the camera. The camera pose is accurately
tracked despite the sudden changes in motion direction, where the most significant errors –in
the order of mm– are observed precisely in these zones where motion changes direction (see
Fig 4(a,b)).

Illumination changes were produced by turning on and off the lights in the laboratory
with no noticeable performance degradation in the tracking nor the event production (see
grey shaded sections in Figs. 4(a),(c)), which reached peaks of about one million events per
second with the most aggressive motion dynamics (see zoomed-in region in Fig. 4(b) and
(c)). The green lines in the snapshots in Fig. 4(d) are the projected map segments using the
estimated camera pose.

3.2 High speed tracking
Our aim is to explore the limits of this sensing technology and submit the event camera
to the highest dynamics it is able to track, and provide a mean of comparison with other
approaches in terms of speed. To protect the camera from destructive vibrations, we switch
now to a motion model in which the camera is stationary and the tracked object moves in
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Figure 5: High dynamics position and orientation evaluation using CV+L: (a,b), poses
up to 950 rpm (15.8 Hz) were accurately estimated before the tracking disengaged, (c) Z-Y
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visual snapshots of the tracker for crank angular speeds of 300, 500 and 800 rpm respectively.
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front of it, using Eq. 3b for the projections.
This experiment is reported for our best-achieving version of the tracker, CV with Lie

parametrization. We built a constrained motion device (see Fig. 5(d)), consisting of a four-
bar mechanism powered with a DC motor and dimensions stated in Fig. 5(e). The mechanism
very-rapidly shakes a target made of geometric shapes, delimited by straight segments, in
front of the camera.

A kinematic analysis performed for our mechanism using real dimensions gives a 4.7 cm
maximum displacement of the target reference frame (peak-to-peak). An evaluation point in
the target (e.g. OOO in Fig. 5(d)) describes a motion with rotational and translational compo-
nents, and has a simulated trajectory as the one in red dots in Fig. 5(e) (around the axes Y
and Z). The estimated trajectory of the object in the axes Y and Z was compared to the sim-
ulated one considering the previously known dimensions and constrains of the mechanism.
The estimated trajectory is within the motion limits and has a low associated error as can be
seen in Fig. 5(c). For visualization purposes we plotted ten motion periods chosen randomly
along the running time.

The camera is placed statically at a distance of roughly 20 cm in front of the target while
a DC motor drives the mechanism. During the experiment (see Fig. 5(a,b)) its speed was
increased gradually until about 950 rpm (15.8 Hz) where tracking performance starts to de-
grade. At such crank angular velocity, the velocity analysis of our mechanism reports a
maximum target speed of 2.59 m/s. Linear target accelerations reach over 253.23 m/s2 or
25.81 g, which are well above the expected range of the most demanding robotics applica-
tions, and above the maximum range of 16 g of the user-programmable IMU chip in the
Davis 240c camera [13]. The green lines in Fig.5(f-h) are plot using the estimated camera
pose.

4 Conclusions and future work
In this paper, an event-based 6-DoF pose estimation system is presented. Pose updates are
produced at a rate of 10 kHz with an error-state Kalman filter. Several motion model variants
are evaluated, and it is shown that the best performing motion model and pose parameteri-
zation combination is a constant velocity model with Lie-based parameterization. In order
to deal with the characteristic micro second rate of event cameras, a very fast event-to-line
association mechanism was implemented. Our filter is able to process over a million events
per second, making it capable of tracking very high-speed camera or object motions without
delay. Considering the low resolution of the camera, our system is able to track its position
with high accuracy, in the order of a few mm with respect to a calibrated OptiTrack ground
truth positioning system. Moreover, when subjected to extreme motion dynamics, the tracker
was able to reach tracking performance for motions exceeding linear speeds of 2.5 m/s and
accelerations over 25.8 g. Our future work will deal with the integration of this localization
module into a full parallel tracking and mapping system based on events.
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