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ABSTRACT
Model predictive control (MPC) facilitates online optimal resource scheduling in electrical networks,
thermal systems, water networks, process industry to name a few. In electrical systems, the capability of
MPC can be used not only to minimise operating costs but also to improve renewable energy utilisation and
energy storage system degradation. This work assesses the application of MPC for energy management in an
islanded microgrid with PV generation and hybrid storage system composed of battery, supercapacitor and
regenerative fuel cell. The objective is to improve the utilisation of renewable generation, the operational
efficiency of the microgrid and the reduction in rate of degradation of storage systems. The improvements in
energy scheduling, achieved with MPC, are highlighted through comparison with a heuristic based method,
like Fuzzy inference. Simulated behaviour of an islanded microgrid with the MPC and fuzzy based energy
management schemes will be studied for the same. Apart from this, the study also carries out an analysis of
the computational demand resulting from the use of MPC in the energy management stage. It is concluded
that, compared to heuristic methods, MPC ensures improved performance in an islanded microgrid.

INDEX TERMS Energy management, model predictive control, fuzzy systems, energy storage systems,
degradation reduction, islanded microgrid.

I. INTRODUCTION

RENEWABLE energy sources (RES) are increasingly
integrated into electric grids to replace the fossil fuel

based sources. Though RES provide a clean energy alter-
native, they are non-dispatchable and intermittent in nature.
These characteristics of RES have resulted in issues pertain-
ing to stability, voltage regulation and power quality in the
grids [1], [2]. The addition of energy storage systems (ESS),
in the grid, is currently considered to overcome these issues
and aid the increased integration of RES [3], [4].

A single type of ESS cannot provide an effective solu-
tion to the different problems arising from RES integration.
The ESS have different physical attributes which are suited
for different scenarios and a hybrid combination provides
an effective solution. The hybrid ESS also enables optimal
sizing of the different ESS [5]. In this context, hybrid ESS
combination of high power and energy density storages are

widely used in electrical systems [6]. The high energy density
ESS are capable of storing large amount of energy but have
slow response time due to physical constraints. These include
Pumped hydro storage, Fuel cells (FC)-electrolyser systems
(regenerative FC), batteries. These ESS provide dispatchable
energy reserves that allows deferral of RES power consump-
tion and facilitates energy arbitrage [4], [7]. The high power
density ESS can provide or absorb large amount of power,
albeit for a short duration due to their lower energy capacity.
These include supercapacitors (SC), flywheel to name a
few. These ESS have fast response capability which makes
them suited for ensuring stability and power quality (voltage,
frequency regulation) in grid [3], [8].

The RES integration has resulted in a shift from centralised
to distributed generation [9]. This has enabled the concept of
microgrids which can manage locally, the energy from RES
and load demand by forming subsections in the larger grid.
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FIGURE 1: Control architecture for renewable energy based
microgrid employing ESS

The microgrids are capable of operating in grid connected
or islanded mode. The islanded mode was traditionally em-
ployed during fault events in the main grid or in isolated
areas, where drawing long lines connecting to main grid is
physically and economically not viable. Traditionally, inten-
tional islanding was not allowed to avert any risk to main-
tenance operations [10]. However, new standards like IEEE
Std 1547.4 [11] provide guidelines for intentional islanding
operation.

The microgrid control is achieved using a hierarchical
scheme, with a lower-level power and a higher-level energy
management stage [12]. The two stages are differentiated by
the functions they carry out and the time scales in which
they operate. The power management stage ensures real-time
stable operation of microgrid under disturbances (variations
in load or generation) and the power quality. This stage is
characterised by small sampling times (ms-s) and fast con-
trol actions. The energy management stage is responsible for
managing the energy among the different units (ESS) in the
microgrid such that the operation of microgrid is optimised
based on a pre-defined criteria. The sampling times of this
stage tend to be larger (minutes - hours) and control actions
are slower, in comparison to the power management stage
[13], [14]. The functionalities and sampling times at each
level in the hierarchical control scheme is shown in Fig.1.
The inputs to each stage and flow of control action is also
highlighted in the above figure.

The focus of this work is on the energy management stage.
The decision making at the energy management level, in
microgrids, is carried out either heuristically (rule based [15],
[16], fuzzy inference methods [17]) or analytically (non-
heuristically) using optimisation based techniques [18]–[26].

The decision making in heuristic methods are typically based
on some deterministic rules and do not require explicit mod-
elling of the system. As a result, the decision making process
is not computationally intensive. The analytical methods, on
the other hand, rely on system models, forecast of generation
and load profiles in its decision making. The decision making
in analytical methods is achieved by solving an optimisation
problem. This guarantees optimality of the solution unlike
heuristic methods, which also require a prior in depth under-
standing of the system behaviour to formulate optimal rules.
As the analytical methods makes decisions by solving an
optimisation problem, the required, ideal, system behaviour
can be defined implicitly through the cost function of the
optimisation problem. In comparison, the heuristic methods
require that the required system behaviour need to be defined
explicitly. Finally, analytical methods allow an easy incorpo-
ration of forecast information in the decision making process,
through proper formulation of the optimisation problem. The
forecast provides more insight into future system behaviour
and enables better decision making. However, in heuristic
methods incorporating forecast information is tedious. The
rules for decision making in heuristic methods, when using
forecast data, need to be stated explicitly. In this scenario,
integrating the forecast information leads to complex rules
formulation and requires a comprehensive, prior, understand-
ing of system behaviour.

Analytical methods can be implemented either offline
[18]–[20] or online using techniques like model predictive
control (MPC) [21]–[27]. The offline methods are usually
employed when the system under consideration is large,
distributed [18] or when complex non-linear optimisation
problems have to be solved [19], [20]. In either case, the com-
putation time can be very large which makes an online imple-
mentation infeasible. The offline nature of implementation
can result in the decisions being farther away from optimum,
as the actual system behaviour (generation, load) can deviate
from that considered during the decision making process
(forecast). In online methods, like MPC, the decisions at any
instant are made using the current system state and updated
forecast at that time. This utilisation of current system value
for decision making ensure that performance with online
methods are closer to the optimum. In smaller systems like
microgrids, due to the limited number of decision variables
online methods, like MPC, can be easily implemented.

Energy scheduling in electrical system with MPC has
been explored before. In [22], MPC was used in battery
management for smoothing the output from a wind power
plant. In [26], MPC was used for managing a regenerative
FC in a microgrid with PV and wind power to increase the
operational efficiency of FC system. In [23], the MPC was
used to improve economic benefit from energy arbitrage in
a microgrid with battery storage. The works in [21], [25]
also use MPC for energy arbitrage. In [21], a microgrid with
tri-hybrid storage was considered whereas in [25], thermal
storage was also considered. In [24], MPC was applied to
an isolated power grid with battery storage for reducing
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operating costs of the grid. Finally, the work in [27] uses
MPC to improve demand response capabilities in a microgrid
to improve the PV power utilisation. Recent works pertaining
to application of MPC in electric systems, have focussed on
implementing them in large scale networks, using online dis-
tributed optimisation techniques to reduce operational costs
[28], [29].

The previous works focussed mainly on utilising MPC
for grid connected systems, with the objective of economic
optimisation (operating cost or energy arbitrage). However,
the capability of the MPC can be extended beyond this.
Islanded microgrids present an interesting and relevant ap-
plication for MPC based energy management, considering
the increasing probability of such operation in future grids.
The management of islanded microgrid is challenging due to
the lack of an infinite energy reservoir in the form of main
grid, to handle imbalance power that cannot be catered by
the ESS and load. This requires power curtailment capabil-
ity and dispatchable generators to ensure reliable operation.
Islanded microgrids also require hybrid ESS of high energy
and power density to sustain the islanded operation. In this
context, MPC can be utilised in islanded microgrids beyond
the domain of economic optimisation. The availability of
forecast information can be used for reducing degradation in
ESS by altering their charge discharge cycle. The forecast
information can also be used for increasing the utilisation
of renewable source by reducing power curtailment while
ensuring uninterrupted operation.

Recently machine learning (ML) based approaches, like
Q-learning, have been employed for scheduling in microgrids
[30], [31]. These methods utilise reinforcement learning
techniques [32] to train an ML system so as to facilitate
optimal battery scheduling in microgrids. The decision mak-
ing with ML system can be considered akin to heuristic
methods. These methods do not solve an analytical equation
for its decision making. Instead, they automatically develop
an in-depth understanding of the optimal system behaviour
in the training process that aids the decision making process.
However, ML system uses only current system state for
its decision making [30], [31]. Incorporating forecast infor-
mation, which is beneficial for reducing ESS degradation
and increased utilisation of renewable sources, can lead to
complex and computationally intensive training process. In
this context, analytical methods that enable easy integration
of forecast information in its decision making can perform
better when the objective of ESS degradation minimisation
and maximising RES utilisation is considered.

Considering the above mentioned reasons, the main objec-
tive of this paper will be to develop an MPC based energy
management system for an islanded microgrid. The islanded
grid will have RES generation with PV system, dispatchable
generation and hybrid ESS. The proposed MPC will man-
age the energy among the different ESS to minimise their
degradation, increase the consumption of RES power in the
microgrid and improve operational efficiency in microgrid. In
order to demonstrate the improvement with MPC scheduling,

the work also carries out a comparative analysis with a fuzzy
based energy scheduling scheme. The computational demand
arising from the utilisation of MPC at energy management
stage will be assessed. Therefore, the contributions of this
work involve developing an MPC based energy manage-
ment system that a) ensures uninterrupted operation of an
autonomous islanded microgrid with ability for RES power
curtailment b) manages energy among the hybrid ESS such
that degradation of ESS is reduced and operating efficiency
is maximised c) manages ESS and dispatchable generators
to ensure increased utilisation of renewable generation and
d) provides improved performance over multiple objectives
compared to heuristic scheduling schemes. As far as the au-
thors knowledge goes such an application of MPC in islanded
microgrids, to achieve the above mentioned outcomes, have
not been proposed before. A deterministic MPC, where the
future generation and load demand is known with certainty,
will be used in this work, demonstrate the above outcomes.

The rest of the paper is organised as follows. Section
II provides an overview of the islanded microgrid under
consideration. Section III provides an overview of the MPC
and Fuzzy inference based energy management schemes
considered in this work and their formulation. Section IV
presents the results of MPC scheduling in islanded microgrid
and its comparison with the fuzzy inference scheme. Finally
the work is concluded in Section V.

II. SYSTEM DESCRIPTION
The DC microgrid under consideration for the unit com-
mitment problem is shown in Fig.2. This is an aggregated
representation of the system. The microgrid has RES genera-
tion from PV arrays, dispatchable generators and hybrid ESS
comprising of batteries, regenerative FC and SC. Considering
the islanded operation, to ensure reliable grid functioning,
dispatchable sources in the form of fast acting generating
units is considered here. Load following reserves capable of
fast responses and very little start up time like, diesel or gas
engine generators will be considered as dispatchable units
[33].

It should be noted that in the islanded grid two ESS with
high energy density, battery and regenerative FC, are used.
This is because in islanded operation, due to the absence of
the main grid, a large storage capacity is needed to ensure
maximum utilisation of the excess PV power generated. The
battery is a system that stores energy internally (in the form
of chemical energy) and in order to store large amount of
energy, a large capacity battery should be used. This is
not economically beneficial; as the battery has very high
storage costs [34]. This means that larger the battery capacity,
larger the capital investment needed. In comparison, the FC
system stores energy externally in the form of hydrogen (in
tanks). As a result, increasing energy storage capability of FC
system is not expensive. This is confirmed by the fact that
the storage costs of an FC system, with hydrogen, is 0.005
times the battery’s cost [34]. However, as mentioned before
the regenerative FC suffers from poor operational efficiency.
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FIGURE 2: Schematic of the proposed microgrid under
consideration

Therefore, both battery and regenerative FC is considered in
the islanded microgrid, as a trade off, considering economic
factors and operational efficiency.

A. ESS
The tri-hybrid ESS considered here comprises of both high
power and high energy density ESS. The SC is the high
power density ESS, whereas the battery and regenerative
FC form the high energy density ESS. The SC provides
a degree of inertia to the system through fast response to
sudden power imbalances, thus arresting the large deviations
in system parameters (voltage, frequency). In this context,
the SC operation can be considered analogous to the inertial
response from conventional synchronous generator. The bat-
tery and regenerative FC system follow the imbalance power
in the system (difference of renewable generation and load)
ensuring long term energy balance.

The operation of SC is mostly controlled by the low-level
controllers (power management stage), tasked with maintain-
ing the stability of the grid. The energy management level
will ensure that sufficient energy reserves are maintained in
the SC at any instant so that it can respond to unexpected
events in the grid. The battery and regenerative FC will be
managed by the energy management stage.

A discrete-time model of the ESS showing the evolution of
stored energy during ESS operation will be used here. This
simple ESS model using State of Charge (SOC) for battery,
SC and Level of hydrogen (LOH) for regenerative FC is given
by

xα(i+ 1) = xα(i)− Ts
Cα
· pα(i) (1)

where x = {SOC,LOH}, α = {bat, SC, FC}, Ts is the
sampling time, pα(i) is the power set point and Cα is the
capacity of respective ESS. The above equation does not
account for the effect of the interfacing converters and the
round cycle efficiency of the ESS. The converters usually
have high efficiency (> 95%). Nevertheless, ESS like the FC
have poor round cycle efficiency (∼ 50%) [8] which cannot
be captured effectively with (1). Under such a scenario,
hybrid models accounting for ESS efficiency can provide a

better representation of the ESS behaviour. This model is
given by

xα(i+ 1) =

{
xα(i)− Ts·ηα

Cα
· pα(i) if pα ≤ 0

xα(i)− Ts
ηα·Cα · pα(i) if pα > 0 (2)

where ηα is a combination of the power converter and round
cycle efficiency of the ESS.

B. PV SYSTEM
The PV system is considered as the renewable energy source
in the islanded microgrid. One of the objective of the energy
management system is to ensure that there is maximum utili-
sation of the PV power possible. The widely used method in
PV systems to ensure that maximum power (for a particular
irradiation level) is generated from the PV array, is the maxi-
mum power point tracking (MPPT) strategy [35]. The MPPT
is implemented at the PV converter control, thus forming part
of the low level control system. This ensures that the PV array
is generating the maximum power (ppvm) possible at any
instant. In islanded operation, using MPPT in the PV systems
can lead to instances where the load and ESS may not be
able to meet the maximum PV power generated. This requires
that the power is curtailed to ensure reliable grid operation.
This curtailment can be implemented using the modified
MPPT strategy with constant power generation (CPG) [36]
capability. In this method, the PV array generates maximum
power in normal condition but if the power generated cannot
be met by the load or ESS the PV array output is curtailed
to a constant power value. The PV array output (ppv) in the
MPPT with CPG scheme is given by

ppv =

{
ppvm No curtailement
ppvm − pcurr Under power curtailemt

(3)

where pcurr is the amount of power to be curtailed by the PV
system. The decision on the amount of pcurr will be made by
the energy scheduling system.

In this work, the PV system and the load will be emulated
using the data measured from a test case microgrid from
Lindenberg, Germany [37]. The data is available for one
year. The value of maximum PV power (ppvm) that can be
generated by the arrays for the irradiation levels occurring in
the year is obtained from this data. A detailed discussion on
the MPPT or MPPT with CPG strategies are not provided in
this work, as they have been widely researched [35], [36] and
is beyond the scope of this work. The objective of this work
will be determining an optimal value of pcurr.

C. GRID
The grid is modelled, under all instances, as a static system
using power balance equation given by:

psc(i) + pbat(i) + pfc(i) + ppvm(i) + pgen(i)

−pload(i)− pcurr(i) = 0
(4)
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FIGURE 3: Schematic representation of the MPC scheduling
process in islanded microgrid.

where pbat, psc, pfc are the power set points for the ESS
while pload is the load demand and pgen is the set point for
dispatchable generation unit.

A detailed modelling of dispatchable generation unit is not
done here, especially with regards to ramping rate limitation.
Instead it is considered only as a decision variable in this
problem. The reason behind the same is that the dispatchable
generating unit considered here is a fast acting system ( as
mentioned before) which is brought into operation quickly
with minimum delay. The power imbalances created by the
small delay in deployment will be compensated by the SC
under the control action generated by the low level controller.

III. ENERGY MANAGEMENT SYSTEM
A. MODEL PREDICTIVE CONTROL BASED ENERGY
SCHEDULING
In this work the receding horizon MPC is considered. In
the MPC framework, at any instant k, the state of hybrid
ESS, the sampled value of generation and load demand at
that instant and their forecast for N points into the future
(k + 1, k + 2, ..., k + N ) are given as inputs. This window
for which the forecast is provided is called the prediction
horizon. The predicted values are then utilised to evaluate
how the system state evolves for different set points in the
horizon. The set points that define the optimal trajectory,
based on some optimisation problem will then be generated.
Considering the size of prediction horizon, N+1 set points
will be generated at any sampling instant k. These set points
are defined as, u0|k,u1|k,u2|k...uN |k where ui|k = u(k +
i)∀i = 0, 1, ...N . Among the N+1 set points the first one,
u0|k, will be applied to the system. This process will be
repeated at every sampling instance, thus allowing for the
MPC to make decisions based on current system state and
ensure some feedback [38].

The entire process of MPC scheduling discussed above is
schematically represented by Fig.3. In the islanded micro-
grid, considered in this work, the input to the MPC will be

sampled state of all ESS, PV generation and load demand
values at the instant k. Along with the sampled values, the
forecast of PV and load demand for the prediction window
will also be provided as input. The output from the MPC
will be the set points for the ESS converters, the dispatchable
generator and the PV power curtailment value. The u0|k
comprises of all the above mentioned outputs.

Finally, it should be noted that the application of MPC
can also be extended to multi-carrier system where, as the
name suggests, multiple carriers are used to handle energy
like electric, gas to name a few. MPC can used in the
energy management of these systems as well [39], [40]. The
formulation of the optimisation problem used in the MPC is
discussed next.

B. COST FUNCTION
In this work MPC is tasked with maximising operating
efficiency, renewable energy utilisation and minimising ESS
degradation. In this context, the multi objective cost function
for the optimisation problem considered in MPC is chosen as

J =

k+N∑
i=k

[Jbat(i) + Jfc(i) + Jsc(i) + Jbal(i)] (5)

where Jbat, Jfc, Jsc are the cost terms pertaining to battery,
FC, SC while Jbal pertains to cost of using dispatchable
generation and imposing power curtailment in the microgrid.

1) Battery cost function
The battery cost term Jbat is selected as

Jbat(i) = λsoc · SOCbat(i)
2+

λdbat · (SOCbat(i+ 1)− SOCbat(i))
2

(6)

where λsoc, λdbat are weighting factors for each term in Jbat
and SOCbat is the SOC of battery.

The cost function for the battery does not explicitly pe-
nalise the battery power, pbat. As there is no explicit penalisa-
tion of pbat the surplus power from PV system will be readily
stored in the battery for later use. This promotes an increased
utilisation of battery. In terms of operating efficiency, the
increased utilisation of battery presents a better choice as the
round cycle efficiency of battery is higher than 90% [41].

Nevertheless, battery degradation rate should be min-
imised as much as possible during the operation. This is
achieved with cost function in (6). The battery degradation
arises from calender and cycling ageing [42]. The former is a
result of the increased dwell times at high SOC levels in the
battery. Penalising SOCbat in (6) will limit high SOC dwell
times whenever possible and reduces calender ageing. The
second term in (6) penalises the battery cycling. Excessive
charge-discharge cycles have been found to accelerate cy-
cling ageing mechanism in Li-ion battery [42]. The penalisa-
tion in (6) can limit the ageing arising from this phenomena.
Though (6) appears to penalise the SOC of battery, indirectly
it is the pbat that is being modified to ensure minimisation of
(6). The forecast based scheduling in MPC allows for better
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reduction in battery degradation, especially calender ageing.
The utilisation of forecast allows MPC to have information
of future generation and load profile. This facilitates altering
the battery charge-discharge cycle such that the battery is not
kept in a charged state for longer duration, thereby reducing
the calender ageing.

It should be noted that explicit utilisation of the battery
degradation equation was not considered here as it is non
linear. This can result in optimisation problems that are more
complex and computationally intensive [43] to solve. In order
avoid this, the cost function is kept quadratic, as in (6), which
will result in a quadratic programming (QP) problem that can
be solved efficiently [44].

2) Regenerative fuel cell cost function
The fuel cell cost term Jfc is given by

Jfc(i) = λfc ·
pfc(i)

pmaxfc

2

+ λrate · (pfc(i+ 1)− pfc(i))2 (7)

where λfc, λrate are the weighting factors and pmaxfc is the
maximum power that can be delivered by FC. The regenera-
tive FC is characterised by poor round cycle efficiency [41].
Therefore, in order to maintain high operational efficiency
the utilisation of FC should be minimised as much as possible
by penalising the same, as shown in (7). Penalising the FC
power by using a high value for λfc ensures that the FC util-
isation happens only after the battery is either fully charged
or discharged, thereby increasing operating efficiency.

Regarding the ageing mechanism of FC, a major cause
is the degradation of the electrocatalyst layer under fuel
starvation. The fuel starvation arises when there is a sudden
change in the power set point applied to the FC system. As
the FC system tries to increase the power output there is
higher consumption of fuel at the electrodes. In the event of
sudden increase in power output, the consumed fuel is not re-
plenished at the same rate by the fuel delivery system, which
has a slower response time. This leads to fuel starvation and
irreversible damage at the electrodes [45]. The second term
in (7) limits the sudden set point change thereby limiting
this degradation mechanism. The availability of forecast of
generation and load demand allows the MPC to control the
FC profile, such that the rate of change of set points are
minimised.

3) Supercapacitor cost function
In the case of SC, the objective of the energy management
system is to ensure that sufficient reserves are maintained in
the SC at all instances. This allows the SC to meet the sudden
imbalances arising in the grid and maintain system stability.
To this extent the Jsc penalises the deviation of SOCsc from
a nominal value (SOCnom) . The Jsc is chosen as

Jsc(i) = λsc(SOCsc(i)− SOCnom)2 (8)

where λsc is the weighting factor. The SOCnom is kept at 0.5
so that there is always half the SC capacity available.

4) Power balance ensuring cost function
As discussed in Section II-B, the energy management stage
determines the optimal value of pcurr. The higher curtailment
of PV power leads to reduced operation of the PV array in
the MPPT mode, thus reducing the PV power utilisation.
Therefore, the objective of the MPC will be to minimise the
pcurr for increasing the PV power utilisation. The same is
applied to pgen. The higher utilisation of dispatchable gen-
erator means more load is being catered by them and lesser
utilisation of PV power. Nevertheless, these two variable are
also essential to ensure the reliable grid operation according
to (4). Minimising the value of pcurr, pgen can be achieved
using the cost function

Jbal(i) = λgen ·
pgen(i)

pmaxgen

2

+ λcurr ·
pcurr(i)

pmaxpv

2

(9)

where λcurr, λgen are the weighting factors, pmaxgen is the
maximum power rating of the generator and pmaxpv is the
maximum power rating of the PV array. In order to ensure
maximum utilisation of renewable generation the weighting
factors λcurr, λgen are chosen to be greater than that of
battery and FC cost function.

The use of forecast information in the decision making of
MPC allows better utilisation of PV power through minimal
curtailment and reliance on dispatchable generation. The
forecast information enables the MPC to alter ESS utilisation
such that ESS capacity will be available as much as possible
to cater the PV power. This will be demonstrated through the
results in Section IV.

C. CONSTRAINTS
The constraints address physical and electrical operating
limits of ESS and associated power converters. The physical
limits on the ESS are expressed through

xlα ≤ xα(i) ≤ xuα|α={bat,sc,FC} (10)

where xlα, xuα are the upper, lower bounds for ESS storage ca-
pacity. The lower bound on SOC also prevents deep discharge
which can degrade the batteries. Hard constraints introduced
as in (10) can result in infeasibility of solution in MPC. In
order to ensure convergence, soft constraints are introduced
for (10). This allows for the violation of bounds but at the cost
of heavy penalisation [46]. The soft constraints are given by

xlα − εα ≤ xα(i) ≤ xuα + εα|α={bat,sc,FC} (11)

where εα ∈ R3 is the slack variable that represents the extent
of violation on the original bounds (10). In order to ensure
that this violation is minimal a penalisation term has to be
added to the cost function in (5). This additional term is
chosen as

Jslack = ρT · ε2α (12)

where ρ ∈ R3 represents the penalising factor for the slack
variables.
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Constraints on the power delivery capability of interfacing
power converters and dispatchable generator are introduced
through

pminα ≤ pα(i) ≤ pmaxα |α={bat,sc,fc}
0 ≤ pgen(i) ≤ pmaxgen

(13)

where pminα , pmaxα are the minimum, maximum power ratings
of interfacing converters and pmaxgen is the rated power of the
generator unit. These are maintained as hard constraints, as
violation of the same can result in irreversible damage to
power electronic and generator systems.

1) MLD constraints

The hybrid dynamical model of (2) represents a system
behaviour that varies depending on the nature of the power
flow in ESS (charging or discharging). Such models cannot
be directly used in a conventional optimisation problem. The
hybrid dynamical model needs to be converted into a mixed
logical dynamic (MLD) model comprising of boolean and
auxiliary variables as explained in [47]. The MLD formula-
tion of the ESS model in (2) and constraint (13) is given by

xα(i+ 1) = xα(i) +
Ts
Cα
· zα(i) · (ηα −

1

ηα
)− Ts · ηα

Cα
· pα(i)

(14)

− pminα · δα(i) ≤ pα(i)− pminα

− pmaxα · δα(i) ≤ −pα(i)

zα(i) ≤ pmaxα · δα(i)

zα(i) ≥ pminα · δα(i)

zα(i) ≤ pα(i) + pmaxα · (1− δα(i))

zα(i) ≥ pα(i) + pminα · (1− δα(i))

∀x = {SOC,LOH}, α = {bat, SC, fc}

(15)

where δ(i) ∈ {0, 1} such that [δ(i) = 1] ↔ [pα ≥ 0]
and zα(i) = δ(i) · pα. The δα, zα are the boolean and aux-
iliary variables respectively. The boolean variable indicates
whether the ESS is in a charging or discharging state (in
this case δα = 1 is discharging). The auxiliary variable has
been introduced to avoid the multiplicative term (δα · pα) so
as to avoid non-linear formulations. It was also necessary to
redefine (13) to complete the MLD formulation, so that the
appropriate constraint based on the charging or discharging
state, of ESS, is enforced.

The use of MLD constraints in optimisation problems
with quadratic cost results in a Mixed integer quadratic
programming (MIQP) problem. Solvers like Gurobi [48] use
algorithms like branch and bound (BB) [49], to solve these
type of problems.

Representing the manipulated inputs (
[
pα, pgen, pcurr, εα

]
)

to the microgrid as u, the optimisation problem considered in

MPC is given by

min
u

[
J(u, xα) ,

k+N−1∑
i=k

[Jbat(i) + Jfc(i) + Jsc(i) +

Jbal(i) + Jslack(i)]

]
(16)

subject to

ESS model (14) in variable xα
Grid model (4)

Constraints (11), (13), (15).
(17)

Finally, it should be noted that MPC is formulated such
that the operational efficiency is not only improved by lim-
iting the use of regenerative FC to periods where the battery
cannot cater imbalance power. The use of MLD models for
ESS, accounting for their efficiencies, and use of QP in
optimisation problem ensures that the energy conversion pro-
cesses in microgrid are minimised. These conversions from
renewable to stored energy in ESS or between different ESS
always results in losses. As the MPC identifies the optimal
trajectory (for converter set points) in terms of operational
efficiency, the information regarding ESS efficiencies allow
the MPC to ensure that unwanted conversion of energy is
minimised, thus maximising operational efficiency.

D. FUZZY INFERENCE BASED ENERGY SCHEDULING
Fuzzy inference is a method of mapping input variables to
output decision variables using a defined procedure that is
heuristic in nature. In fuzzy inferencing the space of each
input is divided into fuzzy sets [50]. Each fuzzy set will
be associated with a membership function which can take a
value between 0 to 1 and defines the degree of membership of
an input variable to each set. The first step of the inferencing
process is fuzzification of the inputs. This is the process of
identifying the degree of membership of each input, based
on its value, to a fuzzy set using the membership function.
The next step involves fuzzy implication where fuzzy rules
are used to map the fuzzified inputs to an output. Simple
if-then rules are considered which are defined based on the
designers prior knowledge of the system. The if part of the
rule is the antecedent which are combined through AND/
OR logical operators for the different inputs. The consequent
is the then part of the rule which defines to which fuzzy
set of the output variable the antecedent is mapped. The
implication process also defines the degree of membership
of the output variable to an output fuzzy set. The final step
is aggregation and defuzzification. At any instant, for a given
input value, multiple rules can be active resulting in outputs
with varying degree of membership to multiple output fuzzy
sets. In the aggregation process these outputs are aggregated
and using defuzzification methods like centroid or bisector
or middle of maximum, converted to a crisp output value.
For a detailed exposition on fuzzy systems and inferencing
process interested readers are directed to [51], [52]. Through
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Fuzzy scheduling: 4 inputs, 3 outputs, 34 rules
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FIGURE 4: Fuzzy inference scheme for the energy manage-
ment in autonomous microgrid operation.

0.2 0.4 0.6 0.8
SOCsc

0

0.5

1

D
eg

re
e 

of
 m

em
be

rs
hi

p

N Z P

0.2 0.4 0.6 0.8
SOCbat

0

0.5

1

D
eg

re
e 

of
 m

em
be

rs
hi

p

NB NS Z PS PB

0 0.5 1
LOHfc

0

0.5

1

D
eg

re
e 

of
 m

em
be

rs
hi

p

N Z PNB PB

-5 0 5
pdef

0

0.5

1

D
eg

re
e 

of
 m

em
be

rs
hi

p

NB NM NS PM PBPSZ

FIGURE 5: Fuzzy sets for the input variables and their
membership functions.

proper selection of fuzzy sets and membership functions,
fuzzy inferencing have been proved to provide a reasonable
approximation of an optimal input-output mapping in the
decision making problem [53], hence the same has been
considered in this work. It should be noted that the capability
of fuzzy inference system to ensure an approximation of the
optimal input-output mapping depends extensively on prior
understanding of system behaviour and resulting rule formu-
lation from the designer. This can be difficult in complex
system like electrical networks.

The input/output mapping of the fuzzy inference based
energy management system is shown in Fig.4. The inputs
for the energy management system are the states of the ESS,
and the imbalance power, pdef = ppv − pload, in the grid.
The outputs are set points for the psc, pfc and pgen. Mamdani
fuzzy inference methodology [54] is employed here with 34
rules mapping the inputs to the outputs.

TABLE 1: System parameters and their values used

Parameter Value
Csc 0.5 kWh
Cbat 9 kwh
CFC 32 kWh
Prediction horizon length, N 24 hours
Sampling time (Ts) 5 min
pmin
bat , p

max
bat 3 kW

pmin
sc , pmax

sc 32 kW
pmax
fc , pmin

fc 3kW
pmax
gen 5kW
SOCl

bat, SOC
l
sc, LOH

l
fc 0.1

SOCu
bat, SOC

u
sc, LOH

u
fc 0.9

SOCnom 0.5
λSOC , λdbat 1, 10
λfc, λrate 10,10
λgen, λcurr 25,25
λsc 10
ρ 100

The fuzzy sets for the input, output variables and the
associated membership functions are shown in Fig. 5. The
range of fuzzy sets and the membership function shapes
were defined using an iterative procedure to obtain the best
results. The N,Z,P define the categorizing of the associated
input variable value as negative, zero and positive by the
fuzzy sets. Similarly, NS, NM, NB define negative small,
negative medium and negative big categorization of input
value. Finally, the PS, PM, PB defines the positive small,
positive medium and positive big categorization. The under-
lying objective in defining the rules for fuzzy based energy
scheduling is to ensure maximum operational efficiency and
utilisation of renewable source. In this context, the rules were
defined such that any imbalance power in the grid will be
catered by the battery and when the SOCbat reaches its limits
the regenerative FC is utilised. The SC rules were formulated
such that any deviation from nominal SOC value (0.5) will
result in charging or discharging just like in MPC. The Fig.6
shows outputs from fuzzy system and their dependency on
relevant inputs as a surface plot. In comparison to MPC,
it is difficult to address the degradation issues with fuzzy
inference. This requires incorporating future generation and
load values to calculate SOCbat and ∆SOCbat. Even if this
can be achieved, incorporating them as inputs and defining
explicit rules so that battery degradation is minimised is
complex.

In the fuzzy system it can be noticed that pbat is not
considered as one of the output variables. This has been
left as a free variable and the value was decided outside the
fuzzy system to ensure the power balance in the grid. It is
difficult to incorporate the power balance constraint inside
the fuzzy system. The decision process for pbat is shown in
Fig.7. The decision on power curtailment and modification of
dispatchable generator set points, to ensure power balance, is
also made outside the fuzzy system as shown in Fig.7.
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(a) (b)

(c)

FIGURE 6: The different fuzzy inference output surfaces
showing the correlation between (a) psc with LOHfc and
SOCsc, (b) pgen with LOHfc and SOCbat and (c) pfc with
SOCbat and pdef .

FIGURE 7: Flow chart of fuzzy inference base energy man-
agement for the autonomous microgrid operation.

IV. RESULTS
The capacities of hybrid ESS, dispatchable generating unit,
the parameters and the penalisation weight values used in
the MPC are listed in Table 1. The optimisation problems
in MPC were solved using Gurobi (version 8) [48] with
YALMIP as the parser in the MATLAB environment. The
fuzzy inference scheme was realised using the Fuzzy Logic
Designer tool from Matlab (version 2018b). All the algo-
rithms were run in an Intel i7 2 core, 2.5 GHz processor and
8 GB RAM machine. The microgrid emulated in this work is
based on the data obtained from a test case microgrid based
in Lindenberg, Germany [37]. The sampling interval for the
data from Lindenberg was 5 min. As mentioned before, since
the deterministic MPC is considered the forecast to the MPC,
at any sampling instant, will be the actual generation and load
demand for that prediction horizon.

A. ESS SIZING
Prior to discussing the results, a short discussion is provided
explaining the rationale behind sizing of ESS. The problem
of sizing the ESS is not the main focus of this work and as
such an in depth analysis of the same will not be provided.
The work in [55] provides an interesting approach for sizing
grid connected batteries, considering annual PV generation
and load demand. The similar approach was undertaken
in this work to determine the battery capacity. If the total
energy annually generated by PV system (Epv) is higher than
the annual energy demanded by load (Eload) then battery
capacity is determined based on load demand

Cbat = 0.5 · Eload (18)

whereas if annual PV power generated (Epv) is less than load
demand then

Cbat = 0.5 · Epv. (19)

This sizing criteria ensures that there is a trade off between
economic factors and battery degradation [55]. The regener-
ative FC’s hydrogen storage capacity was chosen such that
it can cater to at least one week operation. This ensures
energy sufficiency for a week’s islanded operation. Typically
intentional islanded operation is enforced for a short duration
ranging from days to weeks, hence one week’s energy suffi-
ciency is considered for islanded operation.

B. RESULTS AND ANALYSIS OF MPC BASED ENERGY
MANAGEMENT
The selection of weights, used in the optimisation problem
of MPC, was done intuitively such that the utilisation of PV
power is maximised. In this context, it was always ensured
that λgen, λcurr was kept higher than the penalising weights
of ESS. Another important criteria in the weight selection
was to keep λsoc low. A high value for the same will force the
battery to keep its SOC at a low value throughout islanded
operation. This leads to under utilisation of battery and
subsequent over utilisation of regenerative FC, resulting in
lower operational efficiency.
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FIGURE 8: Scheduling results with MPC in microgrid (a)
Imbalance power to be managed by the ESS and generating
unit, (b) SOC evolution of the ESS, (c) Power profile of ESS,
generating unit and power curtailment.
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FIGURE 9: Scheduling results with fuzzy scheduler in mi-
crogrid for the same imbalance power profile as in Fig.8
(a) SOC evolution of the ESS, (b) Power profile of ESS,
generating unit and power curtailment.

The Fig.8 and Fig. 9 show one week scheduling results for
the islanded microgrid with MPC and Fuzzy based energy
management schemes respectively. The MPC is operated
with a prediction horizon of 24 hours, considering daily
periodicity of generation and load profiles. The results cor-
respond to the second week of April. The obvious advantage
of MPC, over the fuzzy scheduler, stems from the fact that
the MPC utilises forecast of generation, load profile in its
decision making. The effect of the same can be observed
by comparing the ESS behaviour with the two scheduling
techniques.

This is highlighted with Fig.10, which illustrates typical
daily battery power and SOC profile with MPC and Fuzzy
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FIGURE 10: Typical daily battery power and SOC profile
comparison with MPC and fuzzy based scheduler along with
PV power profile for the considered day

schemes. The profile in Fig.10 is that of the first day shown
in Fig.8 and Fig. 9. The major difference between the two
schemes is in temporal behaviour of the battery charging
profile. As discussed before, the fuzzy scheduler rules are
defined to ensure high operational efficiency. As there is no
information regarding the predicted generation or load, this
results in battery being charged earlier in the day whenever
surplus power is available, to ensure most of the energy is
handled by the battery. This is highlighted in Fig.10. The
charging of the regenerative FC will happen after the full
charge of the battery, as evident in Fig.9. The early charging
leads to battery being kept in fully charged state for a longer
time as also shown in Fig.10. This increased dwell time at
high SOC is detrimental to battery as it leads to calender
ageing.

In comparison, the battery charging with MPC is shifted
to the period of high PV generation rather than early in the
day. The availability of generation and load forecast allow the
MPC to make its decision not only considering operational
efficiency but also battery degradation. The shifting of battery
charging to peak generation period ensures that the battery
is fully charged later in the day, as seen in Fig.10. As a
result, MPC facilitates a reduction in dwell time at high SOC
levels and calender ageing. Another important aspect is that,
since the forecast is available the MPC knows in advance
the load demand for the day and the battery will be charged
considering the same. This ensures that later in the day,
when the battery caters the load demand the stored charge
gets completely utilised leaving the battery with no residual
charge at the end of the day. This again reduces the dwell time
at charged level of the battery. This is also shown in Fig.10.

The lower dwell times at high SOC levels achieved with
MPC is demonstrated effectively with the bar graph of
Fig.11. The amount of time the battery spends in highly
charged state (>0.8) is significantly higher in the case of
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FIGURE 11: Comparison of the dwell times at different SOC
levels in the battery for MPC and Fuzzy based scheme

TABLE 2: Curtailed and generated energy with different
scheduling methods

Scheduling method Curtailment Generation
MPC 9.27 kWh 1.70 kWh

Fuzzy scheduler 19.51 kWh 8.28 kWh

Fuzzy based scheduling. This is a general issue with all
heuristics based scheduling schemes, as they make the de-
cision based on current sampled values unlike forecast based
analytical methods like MPC. The dwell times at high SOC
level with fuzzy scheme can accelerate the calender ageing
of the battery.

In the case of regenerative FC, MPC scheduling ensures a
very smooth set point (pfc) variation unlike the Fuzzy scheme
as shown in Fig.8 and Fig. 9. The degradation in the regen-
erative FC system is mainly caused by fuel starvation due to
sudden changes in the FC set points. Preventing these sudden
set point changes can be easily achieved with MPC scheme
through cost function formulation as in (7). Incorporating
the same in the Fuzzy scheduler makes the decision making
process complicated as the control system designer will have
to state explicitly what the optimal set point change should be
in the FC. As a result, incorporating this constraint on the FC
set point change is difficult in fuzzy scheduling. However,
the issue of sudden set point variation can be effectively
addressed in the low-level controllers using rate limiting
techniques which can protect the FC by providing a gradual
set point variation.

C. IMPACT OF PREDICTION HORIZON
The performance of MPC based scheduling is influenced by
the choice of the prediction (control) horizon, which also
affects the computational resources required. The increased
need for computational resources is one of the major draw-
backs with MPC over fuzzy system.
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FIGURE 12: Bar graph showing average computation times
for MIQP and QP problem in MPC at constant sampling
time, Ts, for various control horizon lengths. The worst case
computation time in the MIQP for different horizon lengths
is also shown.

1) Computational complexity analysis

As larger prediction horizons are considered the number of
variables for which the optimisation problem is to be solved
increases. This results in an increase in computational time
needed. Besides, the nature of the optimisation problem also
affect the computational complexity. In this work the optimi-
sation problem is of MIQP type, as MLD formulations were
used for incorporating the hybrid ESS models. However,
it has been well established that MIQPs are NP-complete
[56]. They are usually solved with algorithms like Branch
and Bound techniques [49], the computational complexity
of which in the worst case scenario is the size of the entire
search space [57]. In the problem considered here with binary
decision variables this is O(23·N ). However, solvers like
Gurobi employs a significantly efficient implementation of
Branch and Bound algorithm which reduces the computation
time complexity significantly. Despite this, as the length of
the prediction horizon increases the algorithm tend to show
a rapid increase in computation times. This is highlighted
in Fig.12 where average computation times for the MPC
is compared for a MIQP and QP optimisation problem, for
varying lengths of prediction horizon. The QP problem was
realised without considering the hybrid model of the ESS by
using (1). Though the QP problem cannot capture the hybrid
behaviour of ESS, this comparison allows to highlight the
exponential increase in computational time encountered with
MIQP. The QP problems are solved in polynomial time [44].

The rapid increase in computational time with MPC (hav-
ing MIQP) as the prediction horizon increases, highlight the
scalability issues. In a small system, as considered here, this
does not pose a major problem, as the average and the worst
case computation times for solving MIQP (for all horizon
lengths) is still less than the sampling interval of 5 min.
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FIGURE 13: Comparison of dwell times at various SOC
levels for different lengths of prediction horizon with MPC

However, in larger systems where more ESS are needed to be
represented with hybrid models, the computation time with
MIQP in MPC can reach very high values exceeding the
sampling period. This can make the implementation of online
scheduling with MPC, using hybrid model, impractical in
such cases.

In comparison, the heuristic fuzzy inference based system
requires an average computation time of 1 ms for its decision
making.

2) Analysis of scheduling performance with prediction
horizon
As discussed above, the larger computation times with MPC,
as length of prediction horizon increases, can make them
impractical for online implementation. In this problem, as
mentioned earlier, the 24 hr prediction horizon was con-
sidered due to the daily periodicity of generation and load
profiles. This ensures that at any instant, the MPC makes it
decision considering entire load demand and generation for
the day. However, if scalability is an issue in larger systems
it will be beneficial to analyse the system performance when
MPC is utilising shorter prediction horizons.

The Fig. 13 and Fig. 14 shows the performance of the
MPC for shorter lengths of prediction horizon (3,6 and12
hours), in comparison to 24 hour length discussed before.
The performance is assessed based on the battery behaviour,
PV power curtailment and utilisation of the dispatchable
generator unit for the same one week period discussed before.
As the prediction horizon is shortened the MPC will have
to make the scheduling decisions without having the full
information of the generation profile. This can lead to early
battery charging and increased dwell times at high SOC
levels, as in Fuzzy scheduling. This is ascertained through the
results demonstrated in Fig.13, where the battery dwell time
at various SOC levels are compared when using MPC with
different prediction horizon lengths. In the case of 3 hour
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FIGURE 14: Comparison of PV power curtailment and en-
ergy from dispatchable generating units for different lengths
of prediction horizon with MPC

prediction horizon the dwell time of the battery at high SOC
levels (>0.8) is comparable to the fuzzy scheme as shown in
Fig.11.

In the case of 6 and 12 hour prediction horizon the MPC
has more information regarding the generation profile. This
allows the shifting of battery charging to peak generation
period and lowering dwell times at high SOC level, as shown
in Fig.13. It should be noted that with the 24 hour prediction
horizon the battery is kept at a highly charged state (0.9) for
more time than in the case of 6 and 12 hours. This is because,
when the prediction horizon is reduced the entire information
of load demand is not available to MPC. As a result, the
battery is charged without accounting for total load demand.
In some cases this can lead to battery not storing sufficient
charge for the meeting entire load demand. In the 24 hour
prediction window this is not the case and the battery will
store higher charge to cater the total load demand, leading to
increased dwell time at higher SOC levels. This is also clear
from Fig.14, where the 6 and 12 hour prediction window
cases has to rely more on the dispatchable generating unit
to cater the load demand in comparison to the 24 hour case.

In terms of PV power curtailment and utilisation of dis-
patchable generator, the performance with shorter prediction
horizons were similar to that of the 24 hour case. In all the
cases (3, 6, 12 hours) the PV curtailment with MPC was
lesser than that of the fuzzy scheduler system.

This concludes that in shorter prediction horizons of 6 and
12 hours, the MPC performance is similar to the 24 hour
case without undergoing significant deterioration in system
performance, while also reducing computational complexity.
In comparison to the fuzzy scheme, the MPC with shorter
horizon still ensures an improved performance. As a result,
if computational complexity associated with larger systems
is a concern, MPC can be employed with shorter prediction
horizons.
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V. CONCLUSION
An MPC based energy scheduling system was developed
for an autonomous islanded microgrid with PV, dispatch-
able generator and hybrid ESS. The MPC based energy
scheduling exhibited improved performance over a fuzzy
based heuristic scheme due to its ability to make decisions
accounting for the future generation and load demand. The
improvements with MPC are summarised as

• Significant reduction in dwell time at high SOC levels
of battery (> 0.8) by shifting battery charging to peak
generation period.

• Smoother set-point variation in regenerative FC using
MPC.

• Almost 50% and 80% reduction in PV power curtail-
ment and dispatchable generator use with MPC. This
highlights increased utilisation of PV power.

In terms of computational requirement, MPC was more de-
manding in comparison to the fuzzy scheme. Nevertheless for
the islanded microgrid considered in this work, the worst case
computational time encountered with the 24 hour prediction
window was significantly lower than the 5 minute sampling
interval used.

Finally, as future work the research should be extended
to asses the performance of MPC when there is uncertainty
in forecast. An important step in this direction will be to
develop uncertainty models, that better describe the real
world scenario, which can be used in simulation studies.
Stochastic MPC techniques should also be considered in
future research as means of optimal decision making under
forecast uncertainty.
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