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Numerous control strategies of temperature regulation have been carried out for proton-exchange membrane fuel cell systems
including a cooling fan in order to ensure operation at the desired condition and extend the lifetime of the fuel cell stack. However,
most existing control strategies are developed without considering the efficiency limitation of the cooling system such that the
cooling fan may be unable to eliminate the additional heat. Moreover, there are unknown modelling errors, external disturbance
and noise during modelling and experiment processes for fuel cells. Due to those unknown dynamics, the conventional control
strategies may fail to achieve the expectant results. To address this issue, an alternative control strategy is proposed in this paper,
which consists of a composite proportional-integral (PI) controller with an unknown system dynamics estimator. First, the
control strategy is developed by reducing the temperature of input air through the humidifier and simultaneously increasing the
mass flow of air in order to eliminate the excess heat that a cooling fan cannot remove. Moreover, an unknown system dynamics
estimator is proposed in order to compensate the effect of the unknown dynamics. )e construction of the estimator is designed
through finding an invariant manifold which implies the relation between known variables and the unknown manifold. )e
invariant manifold is derived by applying a simple low-pass filter to the system which is beneficial to avoid the requirement of the
unmeasurable state derivative. Furthermore, the proposed estimator is easily merged into the proposed PI control strategy and
ensures the exponential convergence of estimated errors. Besides, the estimator is further modified such that the derivative of the
desired temperature is not required in the controller. Finally, numerical simulations of the PEMFC system are provided and the
results illustrate the efficacy of the proposed control strategy.

1. Introduction

Proton-exchange membrane fuel cell (PEMFC) is regarded
as one of the cleanest alternative energy conversions which is
promising to replace traditional power generation tech-
nologies [1].)e energy conversion principle of PEMFC is to
transform chemical energy into electricity, thermal energy,
and water without requiring any moving part. Due to its
properties of low operation temperature and fast start-up
compared with other types of fuel cells, it has drawn wide
attention in the fields of power station systems and vehicle
systems [2, 3]. However, there are numerous stumbling
blocks for widely commercial applications [4, 5].

PEMFC involves a multiphysics coupling process which
leads to some difficulties for control strategy design and

implementation. Among those, temperature regulation of
PEMFC stack is essential to ensure the high operation ef-
ficiency, avoid the thermal fatigue, and prolong the stack
lifespan [6, 7]. Several control strategies regarding the
temperature regulation have been carried out in recent years.
In [8], an extremum seeking control with a proportional-
integral (PI) controller was proposed in order to achieve the
optimal temperature regulation. In [9], the temperature
control strategy was proposed for a PEMFC system with a
water cooling system, where the voltage of a water circu-
lation pump was manipulated through a PI controller, and a
water cooling fan was under the on/off modes. In [10], a
more advanced fuzzy logic controller was applied to regulate
the speed of the cooling fan and increase the convection ratio
between PEMFC and atmosphere. However, the proposed
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control strategy is validated for a low-power PEMFC. )us,
the limitation of cooling capacity is not considered in those
aforementioned control strategies [8–10]. When the gen-
erated heat from PEMFC is higher than the dissipated heat
from the cooling system, the temperature of PEMFC will
keep increasing. Recently, Chen et al. [11] considered the
limited capacity of a water cooling system and current
constraint in the PEMFC system and proposed three tem-
perature control strategies, which developed a constrained
model predictive control (MPC) strategy, and designed duty
ratio split controller and current governor both based on the
proportiona-integral-derivative (PID) control in order to
implement the trade-off between cooling capacity and power
demand.

On the other hand, most control strategies mainly de-
pend on a reliable mathematical model while more accurate
models with multiple dimensions can introduce mathe-
matical complexities. Due to those complexities, many
control design methodologies cannot be applied. Moreover,
the control-oriented model contains unmodelled dynamics
and modelling errors due to model simplification process.
Besides, external disturbances and noise from the experi-
ment cannot be avoided. )ose unknown dynamics may
result in unexpected control results and even cause system
unstable. )us, it is significant to develop an estimator or an
observer to eliminate the unknown disturbance and enhance
the controller performance.

In this line, the disturbance observer (DOB) was first
proposed to address the unknown dynamics [12, 13]. Fur-
thermore, the modified DOB for nonlinear system was
designed in [14]. Moreover, the extended state observer
(ESO) [15, 16] as an alternative method was developed,
where the extended states of the unknown dynamics and the
initial states were observed simultaneously. In [17], the ESO
incorporated into a sliding mode control was used to achieve
the temperature regulation in PEMFC. More recently, a
modified ESO based on the Kalman-Bucy filter was incor-
porated into PID control to implement the temperature
management for PEMFC in [18]. Besides, a new framework
of unknown system dynamics estimator (USDE) [19] was
proposed to deal with the unknown dynamics. It has been
incorporated in many control strategies and applied in many
industrial fields, such as hydraulic servo systems [20],
nonlinear robotic systems [21], and spark ignition engines
[22]. However, designing a proper control strategy with
consideration of unknown dynamics remains as an open and
interesting problem for PEMFC.

)is paper aims to propose an alternative control
strategy of temperature regulation for a PEMFC system with
consideration of the cooling fan limitation. Moreover, the
unknown dynamic compensation is developed in order to
enhance the performance for the proposed controller. To be
specific, we first consider the limitation of the fan efficiency,
where the maximum energy generated from a cooling fan is
not enough to force the stack temperature into the desired
value. Due to this limitation, the control strategy is proposed
through increasing the mass flow of the input air and re-
ducing the temperature of the humidifier to implement
PEMFC temperature management. By considering the

practical application, this control strategy is developed based
on the PI controller. Furthermore, an unknown system
dynamics estimator (USDE) is used in order to compensate
the effect of the unknown dynamics.)e construction of this
estimator is through generating an invariant manifold in
order to ensure the exponential convergence of the esti-
mation errors, where the invariant manifold provides the
information between known variables and the unknown
dynamics. It is noticed that the derived estimator is easily
merged into the proposed PI control strategy without in-
troducing any complexity. Since the derivative of the desired
temperature is not measurable, the estimator is further
modified such that the derivative of the desired temperature
is not required in the proposed controller. To summarize, the
main contributions of the proposed control strategy are as
follows:

(1) )e proposed estimator for unknown dynamics is
simple and easy to incorporate into the controller
through finding an invariant manifold. It is signif-
icant for practical application that the construction
of the invariant manifold is based on a simple low-
pass filter operation without introducing the un-
measurable state derivative. Moreover, only one
parameter of the bandwidth for the low-pass filter is
required to be tuned.

(2) With consideration of the limited operation property
of the cooling fan, the control strategy is proposed
through increasing air mass flow and reducing the
temperature of input air such that the voltage change
is affected less and the desired temperature can be
guaranteed simultaneously.

)e rest of the paper is organised as follows. In Section 2,
the model description of the PEMFC system and the relevant
problem formulation are presented. Section 3 and Section 4
illustrate the control strategy for the PEMFC system with
respect to the USDE and the composite PI controller. )e
numerical results of the proposed controller for the PEMFC
system are provided in Section 5. Finally, the conclusions are
given in Section 6.

2. Model Description of PEMFC System

2.1. Model Description. In this section, a PEMFC system is
first introduced, and its schematic diagram is depicted in
Figure 1. )e PEMFC system mainly consists of two hu-
midifiers, two line heaters, a cooling fan, and a fuel cell stack.
To begin with, the fuel cell stack is a low-temperature
PEMFC with 8 cells with an active area of 50 cm2. )e
combination of anode, cathode, and electrolyte layer con-
stitutes the core of PEMFC in the sandwich structure, as
depicted in Figure 2. With respect to gas transport processes
in the PEMFC system, the compressed air is first fed into the
cathode channel through a humidifier and a line heater. Due
to the material property of electrolyte, the PEMFC stack
requires enough humidity for the electrolyte layer. Before
entering into the fuel cell stack, the supplied gases need to
pass through the humidifier and the line heater in order to
guarantee the required humidity and maintain the gas
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temperature in the pipelines simultaneously. In the anode
channel, the pure hydrogen is provided by a hydrogen tank
and goes through another humidifier and another line heater
such that the hydrogen is injected with some required water
vapor. Furthermore, the hydrogen ions can pass through the
electrolyte to cathode layer and react with oxygen. During
this process, there is some generated water which can affect
the humidity in each channel. When the relative humidity of
each channel exceeds 100%, the vapor condenses into the
liquid form. In this paper, we assume the liquid water cannot
leave the stack until it evaporates into a gas form. Finally, the
unreacted gases will be exhausted to atmosphere, and the
output water vapor will be cooled down and stored in the
outside vessel.

For the cooling system, there is a fan (Fan 1 in Figure 1)
which works for regulating the PEMFC temperature. In
practice, this fan is not efficient enough to regulate the
PEMFC temperature when PEMFC operates at the high

power condition. Moreover, the humidifier contains internal
resistances to heat the injected liquid water and the input
gases, while the cooling system is not included in the internal
structure of the humidifier. Due to the constraint of this
structure, the cooling dynamics of the humidifier is ex-
tremely slow. )e outside fan (fan 2 in Figure 2) is used to
help reduce the humidifier temperature at the cathode side.
)erefore, the relevant modelling of the humidifier, the line
heater, and PEMFC stack including cooling process of the
fan will be presented in the following.

2.1.1. Auxiliary Components. )e humidifier is used to
ensure the desired relative humidity of input gases. Its main
process is that the water in the vapor form is injected into
input gases. )us, the total mass flow of output gases from
the humidifier is expressed as

_m
out
hum,j � _m

in
hum,j + _m

inj
H2O,j, (1)

where j represents the anode or cathode channel in PEMFC
and _min

hum,j is the input gas flow for the humidifier at the side
j. In order to achieve the desired relative humidity, the
required vapor water injected into the input gases _m

inj
H2O,j can

be computed as

_m
inj
H2O,j �

MH2Oϕhum,j _m
out
hum,jPsat Thum,j􏼐 􏼑

MjP
in
hum,j

, (2)

where ϕhum,j is the desired relative humidity of output
gases; MH2O is the molar mass of water; )e average molar
mass of gases for the channel j is denoted as Mj; Pin

hum,j

represents the pressure of input gases. And Psat(Thum,j) is
the pressure of vapor saturation at the humidifier tem-
perature Thum,j. Moreover, the saturation pressure
Psatrelated to the relevant temperature T0 is approximately
calculated as [23]
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Figure 1: Schematic diagram of a PEMFC stack and the PEMFC system.
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Figure 2: )e operation principle of the PEMFC stack.
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log10 Psat( 􏼁 � − 1.69 × 10− 10
T
4
0 + 3.85 × 10− 7

T
3
0

− 3.39 × 10− 4
T
2
0 + 0.143T0 − 20.92.

(3)

)e output gases from the humidifier enter into PEMFC
stack through a pipeline. )e temperature of this pipeline
has some effect on the gas pressure and relative humidity. In
order to avoid vapor condensation and maintain desired
relative humidify of input gases, the line heater is installed on
the pipe. Based on Dalton’s law, the partial pressure of vapor
water at the line heater is calculated as

P
lh
H2O,j �

Tlh,j

Thum,j

P
inj
H2O,j, (4)

where Tlh,j is the temperature of the line heater. )e partial
pressure of injected vapor is denoted as
P
inj
H2O,j � ϕhum,jPsat(Thum,j). Moreover, the relative humidity

of gases at the line heater is expressed as

ϕlh,j �
P
lh
H2O,j

ϕlh,jPsat Tlh,j􏼐 􏼑
, (5)

where Psatis the saturation pressure of vapor at the line
heater temperature Tlh,j, which can be calculated by (3).

2.1.2. PEMFC Stack. For control design purpose, we assume
that the temperature of gases in the stack is the same as the
electrolyte structure. )e temperature variation along the
structure dimension is not considered in this paper. Based
on the energy conservation principle, the thermal energy
balance of PEMFC is built as follows:

mfcCp,fc
dTfc

dt
� H

in
ca + H

in
an − H

out
ca − H

out
an

+ Hr − VfcIfc − Hfan + d,

(6)

where mfc and Tfc are the mass and the temperature of
PEMFC, respectively.)e specific heat capacity of PEMFC is
denoted as Cp,fc; Vfc is the output voltage of PEMFC; d is
regarded as the unknown disturbance. )e input energy
values of cathode Hin

ca and anode layers Hin
an generated by the

input gases calculated by

H
in
ca � 􏽘

ca

w
in
i

Mi

􏽚
Tlh,ca

Tref

Cp,i(T)dT ,

H
in
an � 􏽘

an

w
in
i

Mi

􏽚
Tlh,an

Tref

Cp,i(T)dT ,

(7)

where i denotes as each species of gases in the cathode or
anode layer and Mi is the molar mass of the gas i. )e mass
flow rate of gas i is represented as win

i ; Tref is the reference
temperature. )e specific heat capacity of gas i is denoted as
Cp,i. It can be computed as Cp,i(T) � c0,i + c1,i T+

c2,iT
2 + c3,iT

3, where the heat capacity coefficients c0,i, c1,i,
c2,i, and c3,i can be found in [24].

Furthermore, the output energy of cathode Hout
ca , anode

Hout
an , and the generated energy Hr from chemical reaction

are expressed as [25]

H
out
ca � 􏽘

ca

w
out
i

Mi

􏽚
Tfc

Tref

Cp.i(T)dT,

H
out
an � 􏽘

an

w
out
i

Mi

􏽚
Tfc

Tref

Cp.i(T)dT,

Hr � −
w

r
H2

MH2

ΔHo
r,

(8)

where wout
i represents the mass flow rate of gas i. )e mass

flow rate of reacted hydrogen is denoted as wr
H2
; MH2

is the
molar mass of hydrogen. And the specific heat of chemical
reaction is represented as ΔHo

r .
)ere is a fan (Fan 1 in Figure 1) close to the PEMFC

stack which is used to regulate the stack temperature. )e
operation principle is that when the stack temperature is
higher than the desired temperature, the fan turns on in
order to reduce the stack temperature. Otherwise, it turns
off. )is procedure is expressed as the following mathe-
matical expression:

Hfan �
ClossAfc Tfc − Tref( 􏼁, Tfc >Tset,

0, Tfc ≤Tset,
􏼨 (9)

where Afc is the surface area of PEMFC; Closs is the heat
transfer constant; and Tset is the desired temperature of the
stack.

In the PEMFC, the potential difference is generated by
ion flow transports from the electrochemical reaction. )e
theoretical voltage of PEMFC can change reversibly, which is
affected by the variation of partial pressures for reactants and
products. )us, the theoretical voltage at the nonstandard
condition can be determined by the Nernst equation, that is,

VN � VN0 +
Δs
2F

Tfc − Tref( 􏼁 +
RTfc

2F
ln PH2

􏼐 􏼑 +
1
2
ln PO2

􏼐 􏼑􏼔 􏼕,

(10)

where VN0 is the theoretical voltage at the standard con-
dition; PH2

and PO2
are partial pressures of hydrogen and

oxygen, respectively; Δs is the correction coefficient related
to the entropy of chemical reaction; F is Faraday’s constant;
and R denotes the gas constant.

Moreover, there are three types of voltage losses which
can affect the voltage variation irreversibly during operation
processes. Considering those voltage losses, the output
voltage of PEMFC is expressed by [23]

Vfc � n · VN − Vact − Vohm − Vcon( 􏼁, (11)

where n is the number of cells for PEMFC; Vact is the ac-
tivation losses; Vohm denotes the ohmic losses; and Vcon
represents the concentration losses. )ey are calculated as
follows:

Vact � Vact,0 + Kact 1 − e
− c1i

􏼐 􏼑, (12)

Vohm �
δmIfc

ηmAfc
, (13)
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Vcon � Ifc c2
Ifc

Imax
􏼠 􏼡

c3

, (14)

where Vact,0 is the initial activation voltage drop; )e
membrane thickness is denoted as Δm; Kact, c1, c2, and c3 are
the empirical constants, which depend on gas partial
pressure and temperature; Imax is the maximum current; and
ηm denotes the membrane conductivity, which is related to
the membrane water content λm and stack temperature. It
can be calculated as

ηm � b1e
b2 1/T0( − 1/Tfc), (15)

where T0 � 303 K is the reference temperature for mem-
brane conductivity test. )e empirical value related to the
membrane water content is represented as b1 � b11λm − b12
and constants b11, b12, and b2 are determined empirically.
)ose empirical constants have been discussed in [23].

For the mass flow transports, the detailed model can be
found in [23]. )e reacted mass flows of hydrogen and
oxygen and the generated mass flow of water are calculated
based on the electrochemical relationship:

w
r
H2

�
NMH2

Ifc

2F
,

w
r
O2

�
NMO2

Ifc

4F
,

w
g

H2O
�

NMH2OIfc

2F
,

(16)

where MO2
and MH2O are the molar mass of oxygen and

water. It is noticed that the reacted mass flows are directly
related to the current Ifc. Moreover, the input mass flows are
computed as

w
in
H2

� KH2
w

r
H2

,

w
in
O2

� KO2
w

r
O2

,
(17)

where KH2
and KO2

are the stoichiometric ratios. )us, the
input mass flows can be determined by the desired stoi-
chiometric ratio and the current.

2.2. Problem Formulation. For the PEMFC system shown in
Figure 1, it has been well recognized that the fan 1 can be
used to regulate the temperature of the fuel cell stack.
However, the fan 1 has not enough power to regulate the fuel
cell temperature when it operates at relative high power.
Without introducing extra cooling systems, reducing the
temperature and increasing mass flows of input gases are
possible ways to achieve the PEMFC temperature regulation.
Besides, some parameters in the mathematical model are
empirical values which can lead to some modelling errors.
Furthermore, there are unmodelled dynamics derived from
the model simplification during the modelling procedure
and external disturbances resulted from the experiment
measurement. However, ignoring those unknown dynamics
and modelling errors may cause the system performance

degradation or even instability when the controllers apply to
the PEMFC system. )us, this paper will develop a novel
control strategy in order to address both temperature reg-
ulation problem and the unknown dynamic compensations.

In the mathematical model of the PEMFC system, there
are many empirically determined variables. )e value of
those variables may change during the fuel cell operation
such that the real performance cannot be precisely presented
in the mathematical model. One of the most important
variables for the thermal energy balance model is the em-
pirical specific heat of chemical reaction ΔHo

r , which affects
the generated energy Hr in the PEMFC. Moreover, there are
some noises or disturbances d from the experiment. Due to
those facts, we consider the reacted heatHr and disturbances
d as the unknown dynamics D1, which can be expressed as
follows:

D1 � Hr + d. (18)

From the thermal energy balance of PEMFC in (6),
reducing the input energy and increasing the output energy
can further achieve the temperature regulation when the
energy of the cooling fan reaches the maximum. )ose
energies are mainly related to the input mass flow rates and
the temperature of input flows, which can be adjusted by the
humidifier and the mass flow controller. Without the in-
ternal cooling system, the dynamics of reducing the hu-
midifier temperature is extremely slow. )e fan 2 is used to
improve the cooling process of the humidifier. However, the
cooling performance of the humidifier with the fan 2 is still
slow. Due to the slow dynamics, increasing the input mass
flow is considered to extract the excess heat from the PEMFC
stack. Furthermore, considering the economic costs, the
input mass flow and the input temperature of air are chosen
to regulate the temperature of PEMFC in this paper. For the
control design purpose, the total extract heat by employing
the additional mass flow of air is calculated as follows:

Qloss � − Δwin
air T

set
hum,ca − Tfc􏼐 􏼑, (19)

where Δwin
air is the additional mass flow of air and Tset

hum,ca is
an ideal operation point for the temperature of cathode
humidifier. )erefore, the extracted heat Qloss is considered
as the control input. By the simple algebraic calculus, the
total mass flow of the air is the sum of the initial mass flow
and the additional mass flow, which is the real control input
in practice.)us, the thermal energy balance of PEMFCwith
the control input u � Qloss is expressed as

mfcCp,fc
dTfc

dt
� H

in
ca,0 + H

in
an − H

out
ca,0 − H

out
an

+ Hr − VfcIfc − Hfan + d + u,

(20)

where Hin
ca,0 and Hout

ca,0 are the initial heat of input and output
energy for the cathode layer. Furthermore, (20) is rewritten
as follows for analysis purpose:

dTfc

dt
�

1
mfcCp,fc

u + D1 + F( 􏼁, (21)
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where F � Hin
ca,0 + Hin

an − Hout
ca,0 − Hout

an − VfcIfc − Hfan is the
known nonlinear function.

To summarize, this paper aims to propose an alternative
control strategy for a high-power PEMFC, where the cooling
system cannot regulate the PEMFC temperature.)e control
strategy is available when the cooling fan turns on, which
consists of a composite PI controller with unknown system
dynamic estimator (USDE) in order to achieve the tem-
perature regulation and eliminate the effect of the unknown
dynamics D1 through the measurable output Tfc and the
known functions F. )e schematic block of the proposed
control strategy is shown in Figure 3.

Before we illustrate the control strategy with the USDE,
the following assumptions are given with respect to the
thermal energy balance of PEMFC (21).

Assumption 1. )e temperature Tfc and the control input u

are measurable and bounded. And the function F is com-
putable and bounded.

Assumption 2. )e unknown dynamics of D1 is continuous
and its derivative is bounded such that ‖ _D1‖≤ η.

Remark 1. It is easy to measure the variables of stack
temperature Tfc, the current Ifc, the voltage Vfc, and the
input mass flows for each channel. )us, the PEMFC can
fulfill the aforementioned Assumption 1 trivially. Besides,
the derivative of unknown dynamics _D1 in Assumption 2 is
not required to be known, which is used for the stability
analysis of the proposed controller.

3. Controller Design of PEMFC System

In this section, we first present the USDE for D1.)en, it will
be incorporated into the PI controller. )e stability analysis
for USDE and the composite PI controller will be provided
separately.

3.1. Estimator of Unknown Dynamics. In order to derive an
invariant manifold, a low-pass filter operation is applied to
the variables Tfc, F and u. )e filtered variables Tfc,f, Ff and
uf are expressed as follows:

κ _Tfc,f + Tfc,f � Tfc, Tfc,f(0) � 0,

κ _Ff + Ff � F, Ff(0) � 0,

κ _uf + uf � u, uf(0) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

where κ> 0 is a filter constant, which is the only parameter
that needs to be tuned for USDE.

)en, the invariant manifold is provided in the following
lemma, which illustrates the relation between the unknown
dynamics D1 with the measurable parameter Tfc and the
filtered variables Tfc,f, Ff, and uf.

Lemma 1. From the thermal energy balance of PEMFC in
(21) and filtered vectors in (22), we can derive the following
manifold:

lim
t⟶∞

lim
κ⟶0

Tfc − Tfc,f

κ
−

1
mfcCp,fc

uf + Ff + D1􏼐 􏼑􏼠 􏼡􏼢 􏼣 � 0.

(23)

For any small constant κ> 0, it is invariant and expo-
nentially attractive for the derived manifold (23).

Proof. )e auxiliary coordinate for analyzing the manifold
invariant is defined as

z1(t) �
Tfc − Tfc,f

κ
−

1
mfcCp,fc

uf + Ff + D1􏼐 􏼑. (24)

By differentiating (24), we can derive that

_z1 �
_Tfc − _Tfc,f

κ
−

1
mfcCp,fc

_uf + _Ff + _D1􏼐 􏼑

� −
1
κ

z1 +
κ

mfcCp,fc

_D1􏼠 􏼡.

(25)

)en, we select Vz1
� (z2

1/2) as Lyapunov function to
show the bound of z1. )us, the time derivative of Vz1

is

_Vz1
� z1 _z1 � −

1
κ
z
2
1 −

1
mfcCp,fc

z1
_D1. (26)

From Assumption 2 and Young’s inequality, (26) can be
further be derived as

_Vz1
≤ −

1
2κ

z
2
1 +

κ
2m

2
fcC

2
p,fc

_D
2
1 ≤ −

1
κ
Vz1

+
κ

2m
2
fcC

2
p,fc

η2. (27)

Furthermore, we apply the integration into (27) and we
can obtain Vz1

(t)≤ (e− (t/κ)Vz1
(0) + κ2η2/(2m2

fcC
2
p,fc)). )us,

it is concluded that z(t) converges exponentially to a small
compact around zero, which is expressed as

z1(t)
����

����≤

�������������������

z
2
1(0)e

(− t/κ)
+

κ2η2

2m
2
fcC

2
p,fc

􏽶
􏽴

. (28)

Based on Assumption 2, the upper bound of _D1 is η. Due
to this fact, (28) implies that lim t→∞z1(t) � (κη/mfcCp,fc).
)en, we can further obtain that κ _D1⟶ 0 and κ2η2⟶ 0
as κ⟶ 0.)us, z1(t) will converge to zero for κ⟶ 0 and/
or η⟶ 0. Finally, the manifold z1 � 0 in (23) is invariant
and exponentially attractive.

Based on the renderedmanifold in (23), the estimator for
unknown dynamics D1 can be designed as

􏽢D1 �
mfcCp,fc

κ
Tfc − Tfc,f􏼐 􏼑 − uf − Ff. (29)

)e following theorem is summarized the convergence
of the estimator errors for the proposed estimator in
(29). □

Theorem 1. =e estimator (29) is used to obtain the un-
known dynamics D1 in the thermal energy balance of PEMFC
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(21). =e estimation error 􏽥D1 � D1 − 􏽢D1 will exponentially
converge to a small compact set around zero.

Proof. To avoid requiring the information of temperature
derivative _Tfc, we first apply a low-pass filter to the equation
(21). )en, we get

κ
κs + 1

Tfc􏼈 􏼉 �
1

mfcCp,fc

1
κs + 1

u{ } +
1

κs + 1
F{ } +

1
κs + 1

D1􏼈 􏼉􏼒 􏼓

&9; +ε1,
(30)

where ε1 is the exponentially vanishing term from the fil-
tered initial value of state Tfc(0), which can be neglected.

Moreover, the filtered variable D1,f is defined as

κ _D1,f + D1,f � D1,

D1,f(0) � 0.
(31)

Since the effect of the exponentially vanishing term ε is
not considered, the equation (30) can be rewritten as the
following form based on (22) and (31):

_Tfc,f �
Tfc − Tfc,f

κ
�

1
mfcCp,fc

uf + Ff + D1,f􏼐 􏼑. (32)

From the comparison between (24) and (32), it is implied
that 􏽢D1 � D1,f. Hence, we compute the derivative of the
estimation error 􏽥D1, that is,

_􏽥D1 � _D1 − _􏽢D1 � _D1 − _D1,f � _D1 −
D − D1,f

κ
� −

1
κ

􏽥D1 + _D1.

(33)

To show the boundedness of the estimation error 􏽥D1, we
choose Lyapunov function as VD1

� ( 􏽥D
2
1/2). Its derivative is

computed as

_VD1
� 􏽥D1

_􏽥D1 � −
1
κ

􏽥D
2
1 + 􏽥D1

_D1. (34)

Considering Young’s inequality andAssumption 2, we get

_VD1
≤ −

1
2κ

􏽥D1 +
κ
2

_D
2
1 ≤ −

1
κ
VD1

+
κ
2
η2. (35)

)en, the integration of (35) is VD1
≤

(e(− t/κ)VD1
(0) + κ2η2/2). Based on this, it can be derived that

the estimation error 􏽥D1 will exponentially converge to a
small compact:

􏽥D1
����

����≤
���������������
􏽥D
2
1(0)e

− t/κ
+ κ2η2

􏽱

. (36)

Finally, 􏽥D1 will converge to zero when κ⟶ 0 and
η⟶∞ □

Remark 2. For the unknown system dynamics estimator
(29), there are two main advantages in comparison with
other estimation (i.e., [14, 26]). First, only one parameter κ is
required to be tuned. From (22) and (31), κ determines the
bandwidth of the low-pass filter such that it has an impact on
robustness. Moreover, the boundedness of the unknown
dynamics derivative η can affect the estimation performance
while the constant κ can be used to reduce the effect of this
boundedness η. Besides, the convergence speed of the es-
timation error is related to this constant κ, which can be
found in the proof of )eorem 1. Hence, the selection of this
parameter κ need to consider the trade-off between the
convergence speed of the estimation error and the robust-
ness against disturbance. Moreover, the information of the
state derivative _Tfc,f is not required due to the low-pass filter
operations. )e discontinuities and chattering phenomena
can be avoided compared with the sliding mode-based
estimator.

3.2. Composite PI Controller with Unknown Dynamic
Compensation. In this section, a composite PI controller
based on the USDE is presented. From )eorem 1, the
estimator (29) will exponentially converge to a small
compact, even to zero when κ⟶ 0. Hence, it can be used to
compensate the unknown dynamics and enhance the control
performance. Based on the framework of controller in
Figure 3, a composite PI control is designed as

u � Qloss � kper + ki 􏽚
t

0
er(τ)dτ − 􏽢D1 + F − mfcCp,fc

_Tfc,r􏼐 􏼑,

(37)

where Tfc,r denotes the desired temperature of PEMFC; er �

Tfc,r − Tfc is the control error; and the proportional and
integral gains are represented as kp > 0 and ki > 0, respec-
tively. Since the dynamics of PEMFC temperature is slow,
the desired temperature is usually considered as a constant

Δw inair

Hfan

in
air,0w

PEMFC
plantT set

hum,ca

Tfc,r

PI controller

D1
Estimator

Relay

u

Fan
d

Tfc

Figure 3: Schematic block of the composite PID controller.
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or slow-varying value. )us, the derivative of the desired
temperature _Tfc,r can be neglected.

Remark 3. )e proposed control (37) is combined with the
estimator of unknown dynamics (29), which has the function
to compensate the unknown dynamics. )e PI controller is
widely used for the PEMFC system in practice. Hence, the
proposed control strategy has an advantage to enhance the
predesigned PI controller for practical applications.

Moreover, the convergence of the tracking error and the
estimation error for the proposed controller are summarized
in the following theorem.

Theorem 2. To regulate the temperature of the PEMFC
system, the control strategy of the composite PI controller (37)
combined with an unknown dynamic compensation is pro-
posed as depicted in Figure 3. =e control error er and the
estimation 􏽥D1 will exponentially converge to a small compact
set around zero.

Proof. Based on the thermal balance equation (21) and the
controller (37), the derivative of control error is calculated as

_er � _Tfc,r − _Tfc � _Tfc,r −
1

mfcCp,fc
u −

1
mfcCp,fc

D1 −
1

mfcCp,fc
F

� −
1

mfcCp,fc
kper + kieri + 􏽥D1􏼐 􏼑,

(38)

where eri � 􏽒
t

0 er(τ)dτ denotes the integral error. To analyze
the stability of the controller, the error including the control
error and the integral error is defined as e � [eri er]

T. )us,
the equation (38) is reformulated as

_e �

_eri

_er

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

−
ki

mfcCp,fc
−

kp

mfcCp,fc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eri

er

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

−
1

mfcCp,fc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
􏽥D1

� A1e + B1
􏽥D1.

(39)

In the matrix A1, parameters mfc and Cp,fc and control
gains ki and kp are positive constants. In order to guarantee
the stability of the control system, the control gains ki and kp

are chosen such that the matrix A1 is a Hurwitz matrix.
According to the Lyapunov theory, there are symmetric and
positive definite matrices P1 > 0 and Q1 > 0 such that the
matrix A1 satisfies the equation P1A1 + AT

1 P1 � − Q1.
Moreover, we choose the Lyapunov function as Ve �

((eTP1e/2) + ( 􏽥D
2
1/2)). )en, its derivative is expressed as

_Ve �
1
2

e
T
P1 _e +

1
2

_e
T
P1e + 􏽥D1

_􏽥D1

�
1
2

e
T
P1A1e +

1
2
e

T
A

T
1 P1e + e

T
P1B 􏽥D1 + 􏽥D1

_􏽥D1

� −
1
2

e
T
Q1e + e

T
P1B

􏽥D1 −
1
κ

􏽥D
2
1 + 􏽥D1

_D1.

(40)

Based on Young’s inequality with a positive constant
m> 0, we can further derive that

_Ve≤ −
1
2

λmin Q1􏼈 􏼉 −
m

2
􏼒 􏼓‖e‖

2
−

1
κ

−
1+ P1B

����
����
2

2m
⎛⎝ ⎞⎠ 􏽥D

2
1 +

mη2

2

≤ − ψ1V + ζ1,
(41)

where there are positive constants of ψ1 �

min λmin Q1􏼈 􏼉 − (m/2)/λmax P1􏼈 􏼉,􏼈 2(1/κ − (1 + ‖P1B‖2))/
(2m)} and ζ1 � (mη2/2) when constants m and κ are sat-
isfied, m≤ 2λmin Q1􏼈 􏼉 and κ≤ 2m/(1 + ‖P1B‖2); the maxi-
mum eigenvalue of the matrix P1 is denoted as λmax P1􏼈 􏼉;
And λmin Q1􏼈 􏼉 is the minimum eigenvalue of the matrix Q1.
)en, we can further derive that V(t)≤ e− ψ1tV(0) + ζ1/ψ1,
which implies that the control error e and the estimation
error 􏽥D1 will exponentially converge to the following small
compact set around zero.

Ω ≔ e, 􏽥D1|‖e‖≤

���
ζ1
ψ1

􏽳

, 􏽥D1
����

����≤

���
ζ1
ψ1

􏽳
⎧⎨

⎩

⎫⎬

⎭. (42)

□

4. Alternative Controller Design of
PEMFC System

In Section 3.2, the controller requires the information of the
desired temperature derivative _Tfc,r. Since the desired
temperature of the PEMFC system is usually a constant or
slow time-varying value, the influence of the desired tem-
perature derivative _Tfc,r has a small impact on the proposed
controller. In order to further eliminate this small impact, an
alternative composite PI controller is proposed to further
avoid requiring the derivation of the desired temperature
_Tfc,r in this section.

4.1. Alternative Estimator of Unknown Dynamics. Before we
present the USDE, we first calculate the derivative of control
error in order to find the relation containing the derivative of
the desired temperature.)us, the derivative of control error
is computed as

_er � _Tfc,r − _Tfc � _Tfc,r −
1

mfcCp,fc
u −

1
mfcCp,fc

D1 −
1

mfcCp,fc
F

� D2
_Tfc,r,D1􏼐 􏼑 −

1
mfcCp,fc

u −
1

mfcCp,fc
F,

(43)

where D2, including _Tfc,r and D1, is considered as a new
unknown dynamics in this section. For analysis, we assume
this unknown dynamics is continuous and its derivative is
bounded such that ‖ _D2‖≤ η2. )erefore, _Tfc,r and D1 as
unknown dynamics will be estimated in this subsection
though the feedback control error er, control input u, and
known function F.

Following the previous procedure of designing the es-
timator in Section 3, we define the filtered variable er,f with
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respect to er in order to avoid requiring the information of
derivative of control error _er in the USDE. We obtain

κ _er,f + er,f � er,

er,f(0) � 0.
(44)

)en, we can find the following invariant manifold.

Lemma 2. Based on the equation of control error (43), the
filtered variables er,f, Ff, and uf defined in (22) and (44), the
manifold is derived as follows:

lim
t⟶∞

lim
κ⟶0

er − er,f

κ
+

1
mfcCp,fc

uf + Ff􏼐 􏼑 − D2􏼠 􏼡􏼢 􏼣 � 0. (45)

)is manifold is invariant and exponentially attractive
for any small positive constant κ> 0.

Proof. we define the auxiliary coordinate for analyzing the
manifold invariant:

z2(t) �
er − er,f

κ
+

1
mfcCp,fc

uf + Ff􏼐 􏼑 − D2. (46)

)en, we differentiate (46) with respect to time, that is,

_z2 �
_er − _er,f

κ
+

1
mfcCp,fc

_uf + _Ff􏼐 􏼑 − _D2 � −
1
κ

z2 + κ _D2􏼐 􏼑.

(47)

Moreover, we select Vz2
� (z2

2/2) as Lyapunov function
to show the bound of z2. )us, the time derivative of Vz2

is

_Vz2
� z2 _z2 � −

1
κ
z
2
2 − κz2

_D2

≤ −
1
2κ

z
2
2 + κ _D

2
1 ≤ −

1
κ
Vz2

+ κη22.

(48)

Furthermore, (48) is integrated such that we can get
Vz2

(t)≤ e− t/κVz2
(0) + κ2η22/2. )us, it is concluded that

z2(t) converges exponentially to a small compact around
zero, which is expressed as

z2(t)
����

����≤

��������������

z
2
2(0)e

− t/κ
+
κ2η22
2

􏽳

. (49)

Following the same analysis in Lemma 1, we can draw
the conclusion that z2 will converge to zero for κ⟶ 0 and/
or η2⟶ 0 along the time. Finally, the manifold z2 � 0 in
(45) is invariant and exponentially attractive.

)erefore, the estimator is provided based on the in-
variant manifold in (45)

􏽢D2 �
1
κ

er − er,f􏼐 􏼑 +
1

mfcCp,fc
uf +

1
mfcCp,fc

Ff. (50)
□

Theorem 3. Based on the proposed estimator (50) and the
derivative equation of control error (43), the estimation error

􏽥D2 � D2 − 􏽢D2 will exponentially converge to a small compact
set around zero.

Proof. for the analysis purpose, the filtered variable D2,f is
defined as

κ _D2,f + D2,f � D2,

D2,f(0) � 0.
(51)

)en, a low-pass filter is applied to the equation (43). We
get

κ
κs + 1

er􏼈 􏼉 � −
1

mfcCp,fc

1
κs + 1

u{ } +
1

κs + 1
F{ }􏼒 􏼓

+
1

κs + 1
D2􏼈 􏼉 + ε2,

(52)

where the exponentially vanishing term ε2 from the filtered
initial value of state er(0) is neglected.

By substituting (22) and (51), the equation (52) is
reformulated as

_er,f �
er − er,f

κ
� −

1
mfcCp,fc

uf + Ff􏼐 􏼑 + D2,f. (53)

By the comparison of (46) and (53), we can get the fact
􏽢D2 � D2,f. Before we provide the bound of the estimation
error 􏽥D2, the derivative of the estimation error is first
computed as follows:

_􏽥D2 � _D2 − _􏽢D2 � _D2 − _D2,f � _D2 −
D − D2,f

κ
� −

1
κ

􏽥D2 + _D2.

(54)

Furthermore, we choose Lyapunov function as
VD2

� ( 􏽥D
2
2/2). )e derivative of this function is

_VD2
� 􏽥D2

_􏽥D2 � −
1
κ

􏽥D
2
2 + 􏽥D2

_D2

≤ −
1
2κ

􏽥D2 +
κ
2

_D
2
2 ≤ −

1
κ
VD2

+
κ
2
η22.

(55)

)en, the integration of (55) is
VD2
≤ (e− t/κVD2

(0) + κ2η22/2). Based on this, it can be de-
rived that the estimation error 􏽥D2 will exponentially con-
verge to a small compact:

􏽥D2
����

����≤
���������������
􏽥D
2
2(0)e

− t/κ
+ κ2η22

􏽱

. (56)

Finally, 􏽥D2 will converge to zero when κ⟶ 0 and
η⟶∞. □

4.2. Alternative Composite PI Controller with Unknown Dy-
namic Compensation. In this section, an alternative com-
posite PI controller is proposed without requiring the
derivative of the desired temperature. Since the alternative
estimator is designed based on the equation (43), the de-
rivative of the desired temperature _Tfc,r and the unknown
dynamics D1 are estimated by estimator (56). )us, the
composite PI controller can be designed as
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u � kper + ki 􏽚
t

0
er(τ)dτ + mfcCp,fc

􏽢D2 − F. (57)

)en, the following theorem illustrates the convergence
of the tracking error and the estimation error for the pro-
posed controller (57).

Theorem 4. To regulate the temperature of the PEMFC
system, the control strategy of the composite PI controller (57)
is combined with an unknown dynamic compensation (50).
=e control error er and the estimation 􏽥D2 will exponentially
converge to a small compact set around zero.

Proof. by substituting (57) into (43), we can get

_er � −
1

mfcCp,fc
kper + kieri􏼐 􏼑 + 􏽥D2, (58)

where eri � 􏽒
t

0 er(τ)dτ denotes the integral error. To analyze
the stability of the controller, the errors including the control
error and the integral error are defined as e � [eri er]

T. )us,
the equation (58) is reformulated as

_e �

_eri

_er

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

−
ki

mfcCp,fc
−

kp

mfcCp,fc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eri

er

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 􏽥D2

� A2e + B2
􏽥D2.

(59)

Moreover, there are symmetric and positive definite
matrices P2 and Q2 such that the matrix A2 fulfills the
equation P2A2 + AT

2 P2 � − Q2. )en, we choose the Lya-
punov function as Ve2 � ((eTP2e/2) + ( 􏽥D

2
2/2)). Its derivative

is expressed as

_Ve2 �
1
2

e
T
P2 _e +

1
2

_e
T
P2e + 􏽥D2

_􏽥D2

�
1
2

e
T
P2A2e +

1
2

e
T

A
T
2 P2e + e

T
P2B2

􏽥D2 + 􏽥D2
_􏽥D2

� −
1
2

e
T

Q2e + e
T

P2B2
􏽥D2 −

1
κ

􏽥D
2
2 + 􏽥D2

_D2.

(60)

Based on Young’s inequality with a positive constant
m> 0, we can further derive that

_Ve2≤ −
1
2

λmin Q2􏼈 􏼉 −
m

2
􏼒 􏼓‖e‖

2
−

1
κ

−
1+ P2B2

����
����
2

2m
⎛⎝ ⎞⎠ 􏽥D

2
2 +

mη22
2

≤ − ψ2V + ζ2,
(61)

where there are positive constants of ψ2 � min (λmin􏼈 Q2􏼈 􏼉 −

(m/2))/λmax P2􏼈 􏼉, 2(1/κ − (1 + ‖P2B2‖
2))/(2m)} and

ζ1 � (mη22/2) when constants m and κ are satisfied,
m≤ 2λmin Q2􏼈 􏼉 and κ≤ 2m/(1 + ‖P2B2‖

2); the maximum
eigenvalue of the matrix P2 is denoted as λmax P2􏼈 􏼉 and
λmin Q2􏼈 􏼉 is the minimum eigenvalue of the matrix Q2. )en,
we can further derive V(t)≤ e− ψ2tV(0) + ζ2/ψ2, which

implies that the control error e and the estimation error 􏽥D2
will exponentially converge to the following small compact
set around zero:

Ω ≔ e, 􏽥D2| ‖e‖≤

���
ζ2
ψ2

􏽳

, 􏽥D2
����

���� ≤

���
ζ2
ψ2

􏽳
⎧⎨

⎩

⎫⎬

⎭. (62)

□

5. Simulation Results

In this section, the proposed control strategy for the PEMFC
system is conducted in the MATLAB/Simulink environ-
ment. For the simulation of PEMFC, the stoichiometric
ratios of oxygen and hydrogen are set as KO2

� 4 and
KH2

� 2.5, respectively. And the current of fuel cell is set as
Ifc � 15A, where the cooling fan cannot remove enough
heat to maintain the temperature of PEMFC. Moreover, the
disturbance is set as a bounded signal
d(t) � 0.005 sin(0.1t)e(− 0.001t) + 0.005. )e temperature of
the humidifier at the anode side is set as Tset

hum,an � 40°C. )e
initial temperature of the cathode humidifier is 34.5°C. )e
ideal operation temperature of the humidifier at the cathode
side is set as Tset

hum,ca � 29.5°C. )e temperature profile of the
cathode humidifier in the simulation is depicted in Figure 4.
It is illustrated that the humidifier performs a slow dynamics
of reducing its temperature to reach the idea operation
temperature. Due to lack of the effective cooling system, the
humidifier takes almost 2000 s to reduce its temperature,
which implies that reducing the temperature of input gases is
not effective enough to regulate PEMFC temperature. )e
temperature of line heaters is chosen as the average value
between the humidifier temperature with the desired
PEMFC temperature, which fulfills the purpose of line
heaters to maintain the gas temperature in the pipelines.

Based on the USDE in (29) and (50), only one tuning
constant is set as κ � 10− 3. For the PI controller, the gain
coefficients are kp � 4 and ki � 1, which are determined
based on the tuning rule in the frequency domain [27] in
order to maintain the stable performance. )e comparison
of temperature profiles regulated by the proposed composite
PI controllers ((37) and (57)) and the classical PI is shown in
Figure 5. It is illustrated that the controllers ((37) and (57))
and the classical PI can achieve the temperature regulation.
In the steady-state, the PEMFC temperature can reach to the
desired value by the controllers. However, it is noted that the
composite PI control performsmuch better than the classical
PI control in the transient performance. )e control errors
in the composite PI controllers are small and bounded.
Moreover, the convergence speed of the composite PI
controllers is faster than that of the classical PI controller.

Before the control input enters into the system, the anti-
windup scheme is used to avoid the input mass flows in the
negative value or over the system bounds. )e control input
u of the total energy is given in Figure 6. In practice, the
additional mass flow of the air is considered as a practical
control input. Based on the relation in (19), the additional
mass flow of the air can be obtained and the profile of the
additional air mass flow is depicted in Figure 7. It is shown
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that the anti-windup has a good performance such that the
additional mass flow of the air cannot exceed the system
constraint.

Since the mass flow of the air is changed during the
control process, the partial pressure of oxygen will be
changed which has an impact on the PEMFC voltage of (10).
Moreover, there are many variables in the PEMFC voltage
related to the temperature, which has been discussed in
(12)–(15). )e voltage profile affected by the proposed
composite PI controllers ((37) and (57)) and the classical PI
is depicted in Figure 8, which implies that the proposed
control strategy has a small impact to the PEMFC voltage.
Besides, the profile of the cooling energy generated by fan 1
is shown in Figure 9. It is noticed that the fan turns on when
the PEMFC temperature reduces. )us, there are no cou-
pling effects between the controller and the fan operation
mode. Figure 10 shows the result profile of estimated un-
known dynamics D1 and D2. It is illustrated that the USDE

can achieve accurate estimation. )ere are some sharp
transient peaks in D2, which are affected by the change of the
desired temperature and the fan operation condition.

For the presented simulation results above, the anti-
windup scheme plays an important role in the proposed
control strategy. In order to further show the efficacy of
composite PI controllers, the amplitude of the desired
temperature is set as a small variation. )e control input u

for this case is given in Figure 11. It is shown that the
unknown system dynamics estimators ((29) and (50)) can
compensate the unknown dynamics in the composite PI
controllers ((37) and (57)). )e regulated temperature
profiles by the proposed composite PI controllers ((37) and
(57)) and the classic PI controller are depicted in Figure 12.
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Figure 4: )e profile of the humidifier temperature at the cathode
side.
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It is shown that the temperature errors by the composite PI
controllers ((37) and (57)) are always small while the result
by the classic PI controller is affected by the unknown
dynamics D1 and D2 such that the temperature cannot be
regulated to the desired temperature.

6. Conclusions

In this paper, a composite PI control with the USDE is
proposed for a PEMFC system. Considering the limitation of
the cooling fan system, an alternative control strategy is de-
veloped by reducing the temperature of input air through the

humidifier and simultaneously increasing the mass flow of air
in order to eliminate the excess heat that a cooling fan cannot
remove.)en, a low-pass filter is applied to the system in order
to obtain an invariant manifold. )is invariant manifold
contains the information between the unknown dynamics with
the known variables, which can be directly used to construct
the estimator.Moreover, the requirement of the state derivative
can be avoided which is suitable for practical application. )e
derived estimator can ensure the exponential convergence and
is easily incorporated into the proposed control strategy such
that the performance of the PI control is improved and the
effect of unknown dynamics can be eliminated. Finally, nu-
merical simulations of the PEMFC system are provided. )e
simulation results demonstrate the efficacy of the proposed
control strategy and the improvement of control performance.
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