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Abstract: H∞-based controller design is one of the most powerful methodologies for controller
design in the frequency domain. Unfortunately, its use requires advanced knowledge of control
theory. The use of interactive tools allows to a non-specialized user to use these techniques
and to learn the fundamental concepts behind the H∞ theory. In this work a graphical and
completely interactive tool used to introduce students in H∞ control is presented.
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1. INTRODUCTION

Automatic control is a transversal subject explained in
most engineering studies and other careers (Arevalo et al.,
2020). Unfortunately, the time that different degrees de-
vote to this subject is quite limited, and in recent years the
theory of control has undergone many significant advances.
For all this, and in order to train students in advanced
techniques it is important to look for ways to transmit
knowledge quickly and efficiently.

Controller design in the frequency domain is one of the
most interesting approaches and offers the designer a wide
range of possibilities and tools. On many occasions stu-
dents learn algorithms as recipes but do not internalize
important concepts. The use of interactive loop-shaping
(Diaz et al., 2017) has been proposed to overcome these
problems. The open-loop transfer function is shaped but
having in mind the closed-loop transfer functions which
are the relevant ones. To address this problem interactive
closed-loop loop-shaping has been proposed (Diaz et al.,
2019). In this approach the controller is defined interac-
tively in order to met the required specifications. This
approach has two main drawbacks. The first is that it
is not so straightforward to obtain the optimal solution,
the second one is that shaping one transfer function is
not so difficult, but simultaneous shaping more than one
transfer function with just one degree of freedom (i.e. the
controller) is not so simple. Many constraints exist, and
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Figure 1. Closed-loop control system block diagram.

sometimes designers impose constraints which might not
be achievable (Boulet and Duan, 2007; Seron, 2010).

Some years ago there was an important research effort
to develop H∞ optimal theory. This theory allows to au-
tomatically determine the controller which minimizes the
H∞ norm of a transfer function relating a given input with
a given output. Although related numerical methods are
provided in most popular software packages like MATLAB
(Balas et al., 2019) it is not much used in preliminary
courses because it has a sophisticated mathematical for-
mulation and in some cases it is not so straightforward
to use (Llana and Almansa, 2016). However, used in the
appropriate manner H∞ optimal theory can be thought as
a way to shape closed-loop transfer functions. Nowadays
it is possible to integrate the numerical methods which
address the H∞ problem in interactive tools which help
the students to use them without needing to get in deep
on the numerical methods required to obtain the control.
This allows to start obtaining controllers from the very
beginning and focusing on relevant control objectives.

This paper describes the minimal theoretical contents
that students need to know to use the H∞ theory as
a way to perform closed-loop loop-shaping. Besides, the
paper describes the graphical and interactive software
tool that has been developed to address this. The paper



Figure 2. Signal frequency decomposition and desired
frequency responses.

is organized as follows: in section 2 basic concepts to
define the design objectives and how to write them in
terms of an H∞ optimization problem are introduced,
section 3 contains basic hints about the numerical methods
required to obtain the optimal controller, section 4 give
a brief description of the interactive tool that has been
developed, section 5 presents an example developed with
the interactive tool. Finally section 6 summarizes some
conclusions and future works.

2. CLOSED-LOOP LOOP-SHAPING: BASIC IDEAS

2.1 System Definition

In this work, the closed-loop control scheme shown in
Figure 1 will be assumed. The closed-loop system is
composed of a plant G(s), connected in negative feedback
with a controller C(s). Most relevant signals in the closed-
loop system correspond to the output, Y (s), the control
action, U(s) and the error, E(s). Finally, the inputs are
the reference, R(s), the output disturbances D(s) and the
measurement noise, N(s).

All these signals are related through the following set of
equations:
[
Y (s)
E(s)
U(s)

]
=

[
T (s) −S(s) −T (s)
S(s) −S(s) −S(s)

C(s)S(s) −C(s)S(s) C(s)S(s)

][
R(s)
D(s)
N(s)

]
,

(1)
where L(s) = C(s)G(s) is the open-loop transfer function,

S(s) = 1
1+L(s) is the sensitivity function and T (s) = L(s)

1+L(s)

is the complementary sensitivity function.

2.2 Constraints

Before analyzing the required transfer function shapes it
is convenient to consider to which constraints they are
subject to. As it is easy to see, all transfer functions depend
on the controller; and the controller is the only degree of
freedom the designer has ( Figure 1). Consequently if ones
changes one of the transfer function, all transfer functions
will be affected. This is particularly clear in the relation
between T (s) and S(s): T (s) + S(s) = 1.

Another important constraint, is what it is known as the
sensitivy integrals or the waterbed phenomena (Skogestad
and Postlethwaite, 2005; Costa-Castelló and Dormido,
2015), which for the sensitivity function states that if
S(s) = 1

1+L(s) is a stable transfer function, then:

∫ ∞

0

ln |S (jω) |dω = −κπ
2

+ π

nnmp∑

k

pk,

where pk ∈ C+ are the unstable poles of L(s), nnmp are the
number of unstable poles of L(s) and κ = lims→∞ sL(s).
For L(s) being relative degree one or more, S(s) is relative
degree 0 with lims→∞ S(s) = 1.

An interesting relationship between the open-loop and the
closed-loop transfer function is that the minimal distance
from L(jω) to the point −1 + j0 in the Nyquist plot can
be computed as:

d (−1, L (jω)) = inf
ω
| − 1− L (jω) | = inf

ω
|1 + L (jω) |

=

[
sup
ω

1

|1 + L (jω) |

]−1
= ‖S(s)‖−1∞ .

All these characteristics are intrinsic to linear control
systems and cannot be avoided by selecting a controller.

2.3 Specifications

In order to determine the desired form for a transfer
function, it is necessary to see what relationship the
different signals have between each other. These can be
summarized as follows:

• The output, Y (s), must track the reference, R(s).
• The output, Y (s), must be insensitive to distur-

bances, D(s), and measuring noise, N(s).

To achieve this, S(s) ≈ 0, which implies T (s) ≈ 1,
although this would be appropriate for the reference and
the disturbance it would not be from the noise point of
view. To overcome this problem, hypotheses are often
made about the frequency content of the different signals.
Thus, it is assumed that references and disturbances only
have relevant frequency components in the low frequency
range, while noise has them in the high frequency range.
This induces a frequency decomposition and indicates the
range of values for the frequency responses of S(s) and
T (s) (Figure 2).

Desired specifications can be graphically visualized in
different diagrams and different transfer functions. Figure
4 shows the specifications for the sensitivity function in
the Bode diagram while Figure 5 shows the specifications
for the sensitivity function in the polar diagram.

2.4 Specificactions in the H∞ framework

Although it would be possible to define an optimization
problem based defined by the line segments shown in
Figure 4, this would lead to a non-convex optimization
problem. Therefore, the constraints on the sensitivity
function are defined by a transfer function of the form:

|S(jω)| < 1

|We(jω)| , ∀ω, (2)



Figure 3. Interactive application main view

where We(s) is a transfer function used to define a bound
over |S(jω)|. (2) can be transformed in the following

‖S(s)We(s)‖∞ < 1.

In order to obtain a controller which guarantees (2),
usually the Linear Fractional Transformation (LFT) can
be used. Given the LFT shown in Figure 6, it is possible to
numerically obtain the controller K(s) such that the H∞
norm between W (z) and Z(z) is minimized.
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Figure 4. Bode plot Sensitivity function specifications.

The LFT formulation can be used by using the scheme

shown in Figure 7, with Z(s) = Ẽ(s), W (s) = R(s),
V (s) = E(s), and X(s) = U(s).

Although minimizing ‖S(s)We(s)‖∞ produces excellent
results over S(s) and T (s). In some cases the transfer func-
tion relating the noise with the control action, C(s)S(s).
To avoid this, it is necessary to include additional con-

straints over the |C(jω)S(jω)|. To do this, the mixed sen-
sitivity formulation (Skogestad and Postlethwaite, 2005)
is used. The LFT formulation can be used by using the

scheme shown in Figure 8, with Z(s) =

[
Ẽ(s)

Ũ(s)

]
, W (s) =

R(s), V (s) = E(s), and X(s) = U(s). This approach
usually offers very satisfactory results.

3. NUMERICAL SOLVING

The H∞ norm of a SISO stable transfer function corre-
sponds to the maximum of the frequency response gain.
For the MIMO case the concept is exactly the same but
one should look for it in the Singular Value Decomposition
plot. Computing the H∞ norm using the transfer function
gain (or the maximum SVD value) is not so straight
forward (iterative methods are required) and it is a non-
convex problem.

Similarly the solution of the H∞ optimal controller was
not an easy task and was a hot research topic for many
years. Doyle et al. (1989) come up with a solution. In Doyle
et al. (1989) two very important elements were introduced:

• A Riccatti equation, depending on a free parameter
γ, which fulfillment implies that the H∞ norm of the
system under study is lower than γ.

• A Riccatti equation, depending on a free parameter
γ, which fulfillment implies that the controller makes
the closed-loop system H∞ norm lower than γ. Addi-
tionally, the analytic expression for a controller which
makes the closed-loop system H∞ norm lower than γ
is provided.
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Figure 5. Sensitivity function specifications over the polar
diagram.
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Figure 6. LFT problem formulation
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Figure 7. Control scheme used to minimize ‖We(s)S(s)‖∞
in the LFT framework.

Although these methods do not allow obtaining either the
H∞ norm nor the H∞ optimal controller directly, they can
be used to obtain both using bisection methods.

Unfortunately, the optimal controller described in Doyle
et al. (1989) requires the plant to fulfill certain conditions
that are not usually met. In (Safanov et al., 1989) a
transformation that allows to put almost any plant in the
form required by (Doyle et al., 1989) was introduced. This
makes it easier for the method to be used widely

All these methods have been implemented in Sysquake
(Piguet, 2018), which directly supports Riccati equations
solving. Obtaining the optimal controller takes much less
than one second for low-order systems.
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Figure 8. Mixed sensitivity LFT formulation.

4. INTERACTIVE TOOL

Figure 3 shows the main window of the interactive appli-
cation designed to interactively apply the design method-
ology described in section 2.4. In the left-lower part of
the application, an interactive pole-zero map used to de-
fine the plant can be seen. In the left-upper part of the
application, the scheme used to define the LFT prob-
lem is shown(Figure 7 or Figure 8). In the left part,
the optimization problem, the solution controller and

the values of γ =

∣∣∣∣
We(s)S(s)
We(s)S(s)

∣∣∣∣
∞

, ‖We(s)S(s)‖∞ and

‖Wu(s)C(s)S(s)‖∞ can be seen (other information such
as the parameters of We(s) and Wu(s) can also be seen in
this area depending on the concrete mode). Finally, two
colored bullets are shown to indicate if the specification
on S(s) and C(s)S(s) are fulfilled (shown in green) or not
(shown in red).

The right upper diagram allows to interactively define
the specification, We(s), over the sensitivity function.
Specifications defines a forbidden region (shown in yellow).
The value of the controller, C(s), is automatically updated
when the specification changes and consequently the value
of S(s) is automatically updated.

In case that the Mixed sensitivity is active a diagram with
the frequency response of C(s)S(s) and its specifications,
Wu(s), are shown. Finally, in the right bottom part the
output and control action step responses are shown. This
view is automatically updated each time the specifications
are redefined. The variables that are drawn automatically
changed by selecting them over the diagram in the left
upper part.

The application has been designed to define interactively
the closed-loop specifications, allowing to automatically
see the effect of these specifications over the different
closed-loop transfer functions and how the specifications
from the different transfer function interact between them.

5. EXAMPLE

Let’s assume a given plant defined by :

G(s) =
1

(s+ 1)3
.

This is a relatively simple plant with a monotonous fre-
quency response. For the closed-loop system, the specifi-
cations are defined by

We(s) =
s

Ms
+ ωb

s+ ωb · ess
, (3)



Figure 9. Example I proposed design

with Ms = 2, ess = 10−3 and ωb = 5 · 10−5. The upper
part of Figure 9 shows the specifications and the obtained
sensitivity function.

This design guarantees a very small error in frequencies up
to 10−7 rad/s and good robustness margins. Additionally,
as it can be seen in the lower part of Figure 9 the frequency
response of C(s)S(s) shows a low-pass profile which will
extinguish the noise over the control action. Consequently,
it is not necessary to include additional constraints.

6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this paper a tool which allows to perform H∞ optimal
closed-loop loop-shaping for generic linear plants has been
introduced. The specification over the sensitivity function
can be interactively defined over the Bode plot, when
required additional specification over C(s)S(s) can also
be taken into account. Both types of specifications can be
interactively and simultaneously analyzed so the trade-off
between them can be easily visualized.

The use of this tool helps students to internalize the
different concepts and understand the commitments that
the designer should always keep in mind. In addition, the
tool allows the student to focus on controller design issues
without having to invest time in the numerical resolution
aspects, which is especially interesting in areas where there
are not many class hours.

6.2 Future Works

The authors are currently working to improve the de-
scribed tool in different directions, most relevant is in-
cluding the plant uncertainty handling in the tool. H∞
methodologies are generic so they could take into account
this with no difficulties. The effort is focusing on how to
visualize in a graphical way this uncertainty and how to
represent the trade-off between uncertainty and perfor-
mance.

H∞ methodologies generate normally high order con-
trollers, in many cases similar performance could be
achieved with lower order controller. A way to check this
is reducing the controller order. The authors are working
to include order reduction capabilities in the application.
Then the comparison between the original controller per-
formance and the new one could be done.

Finally, the authors are working to integrate this tool in
the students grading processes. Currently, the applications
automatically generates a report summarizing the results
achieved by the student. Next step will be including an
automatic grading mechanism (Sánchez et al., 2020).
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(2020). Generación automática de problemas de diseño
de controladores para sistemas lineales autoevaluables
con doctus. Revista Iberoamericana de Automática e
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