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Abstract The recognition of human activities captured by a wearable photo-
camera is especially suited for understanding the behavior of a person. How-
ever, it has received comparatively little attention with respect to activity recog-
nition from fixed cameras. In this work, we propose to use segmented events
from photo-streams as temporal boundaries to improve the performance of activ-
ity recognition. Furthermore, we robustly measure its effectiveness when images
of the evaluated person have been seen during training, and when the person is
completely unknown during testing. Experimental results show that leveraging
temporal boundary information on pictures of seen people improves all classifi-
cation metrics, particularly it improves the classification accuracy up to 85.73%.
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1 Introduction

Behavior understanding plays a crucial role in improving the habits of people. The activ-
ities that people perform in their daily living help in describing their lifestyle. Therefore,
automatically discovering their activities is an important step towards understanding
their behavior. Several approaches have addressed this problem in the literature [1,2,3].
However, their performance is not close to being precise and automatic.

More recently, the recognition of activities from wearable photo-cameras has gained
increasing attention. These devices autonomously capture images at regular intervals of
30 seconds from the first-person perspective, also known as egocentric photo-streams.
Since this kind of camera can be worn everywhere and are able to collect sequences over
long periods of time such as days, they are well-suited not only for activity recognition
but also for understanding different socio-behavioral aspects of a person [4,5].

In this work, we take a step forward in this direction by investigating the questions:
How important are event boundaries for activity recognition from egocentric photo-
streams?, and Does the temporal coherence of segmented events from egocentric photo-
streams improves the activity recognition performance at the frame-level?. In [6], it was
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Figure 1. Event-based activity recognition. We first extract event boundaries from a photo-stream
sequence that clusters images with similar contextual and semantic features. These boundaries
determine the starting and ending frames of a CNN+BLSTM architecture.

demonstrated that the training strategy directly affects the performance of the activity
classifier. The core contribution of this work is to evaluate a training strategy for ac-
tivity recognition based on temporal boundaries that define events. We believe this is
a relevant problem to address in the field of egocentric vision, more specifically when
analyzing egocentric photo-streams. Our work presents a rich ablation study that de-
fines the basis for future works in the field. Our proposed model (see Fig. 1) allows
evaluating our hypothesis which states that we can obtain a more robust classification
of the activity occurring in the scene by the inclusion of temporal borders estimated
automatically during the training process.

Since egocentric photo-streams describe what the users see throughout their daily
routine, they tend to present visual patterns when performing their activities in consec-
utive days. This is the reason why the same location, people, and objects might appear
in several photo-streams when captured by the same person. However, the images that
describe such visual settings are not exactly the same, as they are not collected from the
exact viewpoint and not only people but objects change over time. Personalized learn-
ing over the egocentric photo-streams consists of training a model using single frames
or full-sequences from a set of users and later on evaluate them on the same set of
users. This kind of approach has achieved high classification performance on previous
works [7,8,9]. However, generic approaches are desired in order to avoid the need for
the training phase. We consider the generalization capacity of the algorithm that is when
the model is trained with data from a collection of users and is applicable to different
ones. In this paper, we evaluate both approaches for the task of activity classification.

The remainder of the paper is organized as follows. In Section 2 we describe the
relevant works in the field. Then, in Section 3 we present our event-based approach
for daily activity recognition from egocentric photo-streams. Later, in Sections 4 and
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5 we describe the experimental setup and results, respectively. Finally, in Section 6 we
outline our conclusions and possible future work.

2 Related work

Egocentric vision has shown to be a rich source of information for the understanding
of the behavior of the camera wearer. It has allowed the description of social behavior
[10,11], food-related scenes [12], and routine [13], among others.

The detection of event boundaries in egocentric videos has been an object of investi-
gation in recent years [14,15]. Events are generally understood as a group of sequential
images that are homogeneous with respect to a given criterion. What does the criterion
specify typically depends on the application at hand. Events were considered as tempo-
ral segments characterized by the same global motion and partitioned egocentric videos
based on motion-features in [14]. In [15] events are intended as groups of images high-
lighting the presence of personal locations of interest specified by the end-user. In the
domain of egocentric photo-streams events are defined as temporal semantic segments
sharing semantic and contextual information [16,17].

The classification of activities has been studied through the analysis of egocentric
videos [18,19,20]. In these works, the authors addressed the classification of atomic ac-
tions that describe a more detailed activity. For example the activity preparing a sand-
wich is composed of actions such as get bread, put ham, and put mayonnaise. However,
the approaches addressing this problem typically rely on information such as motion
and attention patterns that cannot be reliably estimated in photo-streams due to the very
low frame rate (1-2 fpm).

The classification of activities from egocentric photo-streams has been previously
addressed in multiple occasions [7,8,9]. In [7,9], the authors addressed the classifica-
tion based on information from a single frame, by leveraging semantic and contextual
features estimated via a convolutional neural network (CNN). The availability of se-
quences of images captured at regular intervals was later explored by integrating the
temporal information in the classification by using a long short-term memory (LSTM)
on the top of a CNN. In [8,21], a learning strategy based on sliding windows over the
image sequence improved the testing performance of the classification model.

There have been several multi-modal approaches in the field. For instance, in [1,22,23],
the authors proposed the classification of the performed activities by analyzing data col-
lected by different sensors or audio-visual data by using different fusion strategies. The
work in [24] presented a multi-modal dataset from sensor data and proposed two meth-
ods, one using crafted features and the other using deep learning.

3 Activity Recognition from Event Boundaries

In this paper, we aim to analyze and introduce a simple, but robust activity recognition
pipeline for the analysis of given collections of photo-streams.
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Figure 2. One hour photo-stream sequence clustered into four consecutive event segments. Each
row shows the first 15 frames of each segment.

3.1 Boundaries Detection

Events in egocentric photo-streams correspond to temporally adjacent images that share
contextual and semantic features, as defined in [16]. This method relates sequential
images represented as a combination of semantic and visual features extracted with a
CNN. Temporal boundaries are detected when combining the grouping results obtained
by under- and over-segmentation clustering methods, which are combined with graph
cuts for energy optimization. We relied on such an approach to extract event boundaries
from the daily visual lifelogs or photo-streams in our dataset [8], as shown in Fig. 2.
As it can be observed, these events constitute a good basis for activity recognition,
since typically, when the user is engaged in an activity, such as cooking contextual and
semantic features have little variation.

3.2 Event-Based Activity Recognition

In order to exploit the temporal boundaries determined by the event segmentation, we
proposed to use a recurrent neural network variant as a temporal learning mechanism.
We combined the encoding produced by a CNN with a bidirectional LSTM (BLSTM)
[25]. This recursive neural network evaluates a sequence in forward and backward order
and merges the result. Thus, it captures patterns that might have been missed by the
unidirectional version and it obtains potentially more robust representations [26]. The
pipeline of our approach is shown in Fig. 1.

4 Experimental Setup

We train our models in a single training split and evaluate them in two test settings,
namely Generic and Personalized. With Generic, we test the generalization capability
of our model in images from unseen users during training. We want to highlight the
difficulty of this task since what we consider the same class environment can be repre-
sented by completely different objects and descriptors. In contrast, in the Personalized
setting the model is tested using images from seen users during training, but from dif-
ferent collected days.
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Figure 3. Number of training/testing instances in the data splits. Note that the histograms are
normalized and the vertical axis has a logarithm scale, but their corresponding value appears at
top of each column.

4.1 Dataset

We carried out our experiments on the ADLEgoDataset [6], a visual lifelogging dataset
collected using the Narrative Camera. This dataset consists of 125 egocentric photo-
streams with 35 activity categories recorded by 15 students on their daily routine. In
this dataset, most of the sequences were labeled by the camera wearer himself and
the annotation process showed them consecutive frames instead of single frames to be
labeled.

In order to test generalization capabilities, we divided the data into training and the
two testing split sets, i.e. Generic and Personalized. These testing splits contain full-day
sequences not present in the training split, and their data percentage for the unseen and
seen users was around 5% and 10%, respectively. In contrast to [6], we discarded the
categories that were only performed by one participant, as the model would probably
overfit that category. Moreover, we also removed the categories that had less than 200
instances, since we considered that they had a few instances for training a convolutional
model. This resulted in a total number of 24 categories. The number of training, seen
and unseen test sequences are 91, 15, and 19, respectively. The resulting histogram of
the number of photos per category and split is shown in Fig. 3.

4.2 Implementation

In order to measure the performance of our proposed pipeline for the definition of a ro-
bust activity classification model, we perform an ablation study. To this end, we trained
the models CNN+RF+LSTM|[21] and CNN+LSTM][27], and their bidirectional ver-
sions using daily sequences of egocentric images. For comparative purposes, we used
as a baseline to train all temporal models the Xception network [28], and left its convo-
lutional layers frozen.

Static-image level The following two models were trained for static-image level clas-
sifiers training:
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Table 1. Classification performance of the proposed model and the defined baseline models. We
present results when the users in the test sets have been seen during training (personalized), when
were hidden (generic), and their overall results. The best result is shown in bold, and the best
result other than the groundtruth boundaries is highlighted in blue.

STILL-IMAGE

LEVEL IMAGE-SEQUENCE LEVEL
CNN| CNN CNN+RF+LSTM CNN+RF+BLSTM CNN+LSTM CNN+BLSTM
+RF

; S| 5| §| 5| E| ) 5| 4| E| E| E| 5| E| £ E| ¢
o T ] = £ E|== = ] == E ] == = £
o E | E2E| 5| 2| ERE| E| E| E2%5| 5| €| ERE| E| £
E |pt |s5B5ls5El-585 s csls5 85|55 i-585 552
Measure > <& |Zgpggpocgpajzg i coa|zi o ol pPRr|ZEOE 08 LA
"2 Accuracy 79.27| 82.09 | 82.54|81.62|81.93|82.64|80.63|80.72|80.89 | 81.30 | 83.71 | 85.73 | 83.01 | 86.32 | 84.27 | 83.63 | 84.26 | 83.74
= mAP 58.08 ] 60.22 |53.41|45.93|46.64|51.63 |48.91|49.09 |48.89|53.93 | 67.33|67.55|65.39 |70.11 | 67.72 | 67.48 | 67.83 | 64.50

Macro precision| 54.74 | 64.67 | 58.36|47.19|47.31|56.67 | 52.29 | 48.79 | 48.90 | 53.74 | 59.33 | 64.12 | 59.13 | 61.95 | 60.78 | 62.62 | 62.73 | 59.55
S Macro recall 51.23 | 45.87 |46.07|44.20 |42.50 | 48.88 | 37.13 | 36.81 | 37.16 | 41.95 | 62.44 | 66.81 | 62.84 | 61.52 | 63.72 | 62.48 | 64.52 | 62.10

Accuracy 72.56 | 74.76 | 73.79|71.91|72.59|75.16 | 65.22 | 66.64 | 66.40 | 70.62 | 82.21 | 81.92 | 80.07 | 83.07 | 79.21 | 78.31| 78.49 | 77.92
‘£ mAP 4780 55.59 |47.07|41.74|46.76 | 53.97 | 40.92 | 40.51 | 42.92|43.59 | 61.77 | 57.78 | 62.58 | 67.25 | 59.97 | 61.75 | 60.87 | 56.19
5 Macro precision| 44.10 | 52.21 |48.40|36.10|38.69 | 44.41 | 31.87 | 31.91 | 31.87 [47.01 | 59.69 | 51.15 | 55.55 | 63.77 | 57.60 | 57.16 | 53.01 | 53.36
© Macro recall 43.61| 41.62 |40.10|35.67|36.58|54.85 | 32.32 | 32.41 | 33.11 | 38.40 | 55.22 | 53.11 | 52.45 | 60.57 | 54.53 | 52.86 | 50.62 | 52.50

Accuracy 77431 80.08 |80.14|78.95(79.37|80.58 | 76.40 | 76.86 | 76.91 | 78.37 | 83.30 | 84.69 | 82.20 | 85.43 | 82.88 | 82.17 | 82.68 | 82.14
= mAP 51.39) 55.96 |48.33|42.12|44.18 |48.67 | 43.95|43.84 | 43.98 | 47.24 | 64.17 | 61.65 | 63.61 | 66.77 | 63.02 | 62.97 | 63.21 | 59.52
& Macro precision| 54.63 | 63.98 [59.77]43.60[47.31|51.98 | 48.49[45.33]45.27[55.22 66.64[62.16[63.01]68.44 | 63.45]65.06 | 63.99 [ 60.96

Macro recall 48.00 | 41.71 |41.70|39.78|40.19|49.75 | 33.20 | 32.98 | 33.22| 38.01 | 61.00 | 59.68 | 59.29 | 61.39 | 56.40 | 55.25 | 56.98 | 56.39

CNN We used Xception [28] as backbone CNN and we replaced the top layer with a
fully-connected layer of 24 outputs. The fine-tuning procedure used Stochastic Gradient
Descent (SGD) and a class-weighting scheme based on [29] to handle class imbalance.
The CNN initially used the weights of a pre-trained network on ImageNet [30] that was
fine-tuned. During the first 2 epochs, only the fully connected layers were optimized
using a learning rate o« = 1 X 10~!, a momentum w = 0.9, and a weight decay equal to
a = 5 x 1075, For the last epoch, the last 2 separable convolutional layers from the exit
flow were also fine-tuned and the learning rate changed to o = 1 x 1073, In addition,
the data augmentation consisted of randomly applying horizontal flips, translation and
rotation shifts, and zoom operations at the frame level.

CNN+RF One random forest (RF) having a different number of trees (100, 200, .. .,
500) was trained using output layers from Xception network. Specifically, the RF was
trained using as input the features extracted from the average pooling (avg. pooling) and
fully-connected (FC) layers. The random forest used the Gini impurity criterion [31].
The best configuration resulted in using a number of trees equal to 200.

Image-sequence level The image-sequence level models took into account temporal
information and used as a backbone the previously trained models. Our event bound-
aries were segmented using the SR-Clustering [16]. In order to measure the importance
of the temporal information in the models, we used boundaries from three other settings.
As a lower bound, the first setting considered the full-day sequence (no segmentation).
The second setting used event boundaries segmented using the contextual event seg-
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Table 2. Mean average precision as the overlap of different IoU thresholds 6. We present results
when the users in the test sets have been seen during training (personalized), when were hidden
(generic), and their overall results. The best result is shown in bold, and the best result other than
the groundtruth boundaries is highlighted in blue.
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mentation (CES) algorithm [32] trained over the R3 dataset. As an upper bound, the
last setting used the groundtruth activity boundaries.

With the purpose of making a fair comparison, the weights and outputs of the back-
bone models were frozen during training. All the day and event photo-stream sequences
were considered as full sequences during training. All the models were trained using
the SGD optimization algorithm using different learning rates, but the same momentum
p = 0.9, weight decay equal to o = 5 x 10~°, batch size of 1, and a timestep of 5.

CNN+LSTM and CNN+BLSTM Both models removed the top layer of the Xception
network and respectively added an LSTM and BLSTM layer having 256 units, followed

by a fully-connected layer of 24 outputs. For both models, the learning rates were o =
1x 1072 and o = 1 x 1073, respectively.

CNN+RF+LSTM and CNN+RF+BLSTM These models were trained using as input
the prediction of the CNN+RF model. Both models added an LSTM and BLSTM layer
having 30 units, followed by a fully-connected layer of 24 outputs. The learning rate

for both models was o = 1 x 1073.
4.3 Evaluation Metrics

We considered that the sequential classification of frames from a photo-stream can be
seen as an action recognition and detection tasks. Therefore, we used a specific set of
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Figure 4. Normalized confusion matrices of the best models for the seen and unseen test sets
and their difference with respect to the CNN model. The increase and decrease of confidence is
represented by the intensity of red and blue colors.

metrics for each task. In the case of action recognition, we considered that using only
the accuracy for measuring the model performance would be misleading as the testing
splits are highly imbalanced. Therefore, we also used mean average precision (mAP)
and other macro metrics for precision and recall as in [6]. In the case of action detection,
we measured the mAP as the overlap of intersection over the union (IoU) with different
thresholds as defined in [33].

Since the event segmentation clusters contextual consecutive images and not activity
boundaries, we measured their homogeneity and completeness and summarized them
using the V-measure. We also used the adjusted Rand index (ARI) to measure how close
to the real activity segments are.
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5 Results

In Tables 1 and 2, we present the classification performance and mAP overlap of IoU
for all the static and temporal models, respectively. The next subsections discuss the
results in detail.

5.1 Generic vs Personalized learning

Since the test categories have different proportions in the personalized and generic users
splits, a straight performance comparison per category between them cannot be made.
Nevertheless, the temporal models can be compared with respect to their static models,
as illustrated in Fig. 4. It shows the confusion matrices for the best temporal models of
each test split and their difference with respect to the CNN model. It can be observed
a low performance for the categories Formal Meeting, Cooking, and Relaxing. They
might be due to the large intra-class variability of the category (Relaxing), the social
context ambiguity (Formal and Informal meeting), and to the fact that same activities
occur on very similar places (Cooking and Dishwashing). Additionally, the performance
of these classes does not increase even using temporal methods. A comparison of all the
models over the test set is presented in Table 1. It shows that the best recall scores are
obtained using fully deep temporal models (CNN+LSTM and CNN+BLSTM).

5.2 Random forest based models vs. deep models

The results show that the deep models have a better and more robust performance than
the RF based models. Although the CNN-+RF improved the overall accuracy and pre-
cision of the Xception network, it decreased the rest of the evaluated macro metrics.
Particularly, the recall decreased in both test splits, thus it missed a large number of test
images. Furthermore, its temporal models CNN+RF+LSTM and CNN+RF+BLSTM
performed consistently worse in both splits. This contrasts the results previously ob-
tained in [21] using another dataset and it is likely due to the fact that here we are using
unseen users in our test set.

5.3 LSTM vs. BLSTM temporal models

The RF based and fully deep temporal models have contrasting results, as seen in Ta-
ble 1. In the case of the RF based models, the bidirectional models performed worse
than the unidirectional counterparts and even than its baseline model CNN+REF, thus
indicating that the RF output did not provide enough information for generalization. In
the case of the fully deep temporal models (CNN+LSTM and CNN+BLSTM), they
showed improvement in all metrics and were the best in general terms. The unidirec-
tional models achieved the highest classification accuracy in both test splits and the rest
of the metrics showed a more solid classification, specifically achieving an accuracy of
85.73% and 82.21% for the Personalized and Generic test sets, correspondingly.
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PERSONALIZED TEST SET
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Figure 5. Example of qualitative results obtained from personalize and generic test sets. Each
row shows the first 12 frames of segmented events having only one activity. Full-day and Events
refers to no-segmentation and SR-Clustering from photo-streams, correspondingly. False and true
activity labels are marked in red and green, respectively.

5.4 Event clustering vs. No segmentation

We present the results of event segmentation with respect to the groundtruth activity
boundaries in Table 3. They show that the event segments obtained with the CES algo-
rithm have slightly less mixed categories with a V-measure equal to 0.936. Additionally,
it shows that its clusters are closer to actual activity boundaries by having an ARI of
0.679. Their similarity of clustering performance also was reflected in achieving simi-
lar classification scores. Nevertheless, the CES algorithm obtained better performance
than our segmentation algorithm for the best model CNN+LSTM (84.69% accuracy
for both test splits).

The overall performance shows that the most robust performance is achieved us-
ing the CNN+LSTM with no segmentation, as shown in Table 1. Nonetheless, the re-
sults indicate that the events segmentation helps the classification when the users have
been previously seen during training, and especially when they are used in conjunction
with unidirectional LSTMs (achieving 85.73% accuracy as seen in Table 1). Moreover,
their effect over the CNN+LSTM consistently has a better performance for higher IoU
thresholds (6 € {0.2 — 0.5}) in both test splits, as seen in Table 2. The results show
that bidirectional models are not benefited from activity boundaries provided by the
groundtruth, as seen from the results presented in Table 2. Specifically, having no seg-
mentation at all for the CNN+BLSTM model is better than the groundtruth. This might
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Table 3. Activity events clustering performance. The best result is shown in bold.

Method Homogeneity| Completeness| V-measure| Adjusted
Rand index

SRclustering [16] 0.897 0.953 0.924 0.620

CES[32] 0.905 0.969 0.936 0.679

be explained as the BLSTM having a smoothing effect over mixed input categories. As
a classification example over sequences, Fig. 5 shows some qualitative results.

6 Conclusions

This paper addresses the effect of event boundaries for activity recognition in egocen-
tric photo-streams, a poorly investigated topic. By using a recently published egocen-
tric dataset acquired from 15 users, our contributions are the following. First, we pro-
pose an event-based architecture for a robust activity recognition in photo-streams. This
architecture automatically segments egocentric photo-streams into subsequences with
similar contextual and semantic features. These segments define the training and testing
event boundaries for a CNN+BLSTM model. Second, in order to determine the effect of
event boundaries, we provide a rich ablation study of different state-of-the-art methods
comparing them with groundtruth boundaries and their lack of. Additionally, these tests
thoroughly evaluate the generalization capabilities of these methods on a generic and
a personalized training. Our results show that event boundaries benefit activity recog-
nition performance of the CNN+LSTM when tested on users previously seen during
training, thus achieving a classification accuracy of 85.73%. Moreover, our tests show
that actual activity segments in the photo-stream are better classified using event bound-
aries for higher IoU thresholds (f € {0.2 — 0.5}) using this architecture. The results
also point that event boundaries make more robust the activity classification and detec-
tion performance of the CNN+BLSTM than not using them, but their improvement is
not as good as its unidirectional counterpart. Finally, the results also indicate that event
boundaries improved the detection of activity segments for temporal RF based archi-
tectures but failed to improve their classification baseline. Since activity recognition
from egocentric photo-streams could be posed as a multi-classification problem, future
research lines should consider the context ambiguity. For example, a person might be
eating something while reading a book inside a train.
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