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• Optimization-based control to manage peripheral equipment maximiz-
ing their efficiency.

• A continuous machine energy model adaptation scheme to react to its
degradation.

• Experimental validation of control in a real industrial application via
testbed.

• Energy efficiency performance comparison between adaptive and rule-
based control.

• Results show that the proper management of peripheral equipment
reduces energy costs.
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Abstract

The importance of implementing energy efficiency methodologies in indus-
trial environments has increased considerably in the last decade given the
high energy costs and environmental impact (e.g., greenhouse gas emissions).
This paper proposes a methodology to improve the energy efficiency of an
industrial machine, without sacrificing either production or quality, using an
adaptive predictive controller based on dynamic energy models that man-
ages peripheral devices to activate/deactivate them at the proper times. The
proposed adaptive mechanism aggregates robustness to the control system
in industrial environments, which experiment constantly changes related to
equipment degradation and that affect their energy consumption profile over
time. Thus, this novel adaptive mechanism automatically updates the energy
model to minimize the error between prediction and real energy consump-
tion, including new energy behavior resulting from machine degradation.
This methodology has been validated via a testbed and its performance was
compared with rule-based control, which is the most widely used control
strategy in industry. The energy efficiency of both approaches was evaluated
using performance indicators, which show the effectiveness of the proposed
control approach, highlighting remarkable improvements in reducing both
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energy consumption (about 2%) and sudden power peaks (more than 11 %).

Keywords: Energy management systems, energy efficiency, manufacturing
machines, model predictive control, adaptive control, subspace
identification, Peripheral devices

1. Introduction

Efficient resource management helps reduce environmental impact and
costs in manufacturing systems, which in turn contributes to a more sus-
tainable society. Factors such as rising energy prices, legal environmental
constraints, and incentives raise industry awareness, motivating companies
to implement energy efficiency (EE) strategies [1]. Industry is one of the top
consumers of energy in the world (around 42% in 2017), with a third of en-
ergy consumption corresponding to manufacturing [2]. In the last 40 years,
the study, design, and development of energy management and EE strategies
have led to a significant decrease in energy intensity, most especially in man-
ufacturing [3].Nowadays, thanks to the rise of new Industry 4.0 and smart
factory technologies, the implementation of energy management systems is
easier, more accessible, and risk-free [4].

As the industrial machines are one of the main energy consumers and
waste producers in a factory [5], in order to develop sustainable and efficient
manufacturing, the maximization of their EE must be promoted [6, 7]. The
basis for ensuring EE consumption in industrial machines is to design and
build them using efficient devices and components, while the performance
and EE of some devices (motors, air compressors, etc.) could be maximized
using suitable control systems (e.g. variable speed drives) [5]. However, those
measures are not enough to achieve overall machine efficiency, as proper syn-
chronization between devices will lead to homogeneous consumption over
time and better EE [6, 8]. Therefore, before incorporating a machine into an
industrial production line, the activation/deactivation sequence of the devices
should be optimized to achieve the required cycle time and EE consumption,
considering process constraints and end-user efficiency requirements [9, 7].
When in operation, a wide variety of approaches can monitor the energy
consumption of machine devices [10, 11]. Likewise, analyzing consumption
and looking for energy inefficiencies can lead to the development of strategies
to mitigate them [7, 12]. Other approaches have proposed a state-based con-
sumption model with a graph-based optimization theory, which establishes
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the optimal energy state sequence for given non-productive times [13, 14].
Since peripheral equipment may consume up to 70% of overall industrial

machinery at full power [5, 15], various approaches have been proposed to
manage this equipment; for instance, the EE of a cooling system improved
through on-off control can reduce consumption by up to 25% [16]. Nonethe-
less, this kind of approach is only applicable to hot-gas bypass-type spindle
cooling units with minimum thermal fluctuations. Activation/deactivation
criteria established for peripheral equipment during standby states can re-
duce energy waste [17]. Other methodologies use kinetic energy recovery
systems to feed peripheral equipment and an offline energy estimation tool
to detect deficiencies [18, 19]. Since some peripheral equipment items sup-
port several machines, approaches are oriented to energy management of
production chains [20, 21]. Although these approaches work well in specific
scenarios, energy models generally require a more granular approach to al-
low better visibility of the process chain. Since the models used are static,
they do not consider the dynamic behavior of real manufacturing facilities,
losing important information during non-stationary states, such as on power
spikes. Hence, the approach proposed in this paper outperforms previously
reported works in establishing a structured methodology based on state-space
realizations that adequately represents the dynamic behavior of the energy
consumption for a manufacturing machine. This proposed methodology is
properly integrated into a modular management scheme for such systems
towards the statement of a smart manufacturing architecture.

The main contribution of this work is a methodology to manage peripheral
equipment in real time using an adaptable data-driven model. This method-
ology increases the EE of a machine during the production cycle by manag-
ing the time-varying energy consumption of peripheral equipment, subject
to known periodic and fixed energy demand given by the devices associated
with the periodic process. Regarding the last devices, they are defined as
synchronous devices with optimally defined schedules to perform the process
correctly in terms of time and energy. Therefore, the proposed approach
ensures that the overall machine consumption is as homogeneous as possible,
avoiding peaks above the contracted electric power capacity and hopefully
reducing the electric consumption. Moreover, production and quality will
not be affected since the process configuration is not modified.

The proposed methodology consists of a strategy to generate data-based
energy models with high fitting, a adaptive mechanism online, and a con-
trol law based on real time optimization with system behavior prediction
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capabilities. The adaptive mechanism is proposed to consider changes in
the dynamics of energy consumption over time, caused by machine degra-
dation from continuous use. Whilst earlier approaches cannot react to new
environmental conditions (e.g., temperature, humidity, tool) and equipment
deterioration, which affects the performance of the machine and change its
consumption profile [19, 22]. Thus, with the proposed approach, the energy
model is automatically updated, reacting to changes in the energy consump-
tion profile of the machine and the environment, reducing the error between
model consumption prediction and real machine consumption. This method-
ology offers reliability and robustness, as the controller always makes deci-
sions from a valid energy model in relation to current energy consumption
by the machine.

For the validation of the proposed approach, a testbed was used to emu-
late the energy profiles of an industrial machine. This testbed is certificated
by the Industrial Internet Consortium (IIC) [23] and its objective is to val-
idate Industrial Internet of Things (IIoT) technologies for smart factories1.
The validation procedure compared the performance of the proposed ap-
proach with a rule-based control (RBC) in three different scenarios, whose
performance was measured by using four key performance indicators (KPIs).
Based on the results, the potential of the proposed approach is demonstrated,
as it yields improvements in EE in terms of energy savings and reductions in
power peaks.

The structure of this paper is summarized as follows: In Section 2, the
testbed and the strategy to emulate the consumption profiles of industrial
machines are described. Section 3 raises the industrial process emulated
using the testbed to validate the proposed methodology. Section 4 details the
peripheral management methodology to improve EE of industrial machines.
The validation process and results are presented in Section 5, in which the
benefits of using the proposed control strategy are demonstrated. Finally, in
Section 6, the main conclusions are drawn.

2. Testbed

Due to the high complexity and cost of performing tests on industrial
machines, part of the testbed was designed and built to emulate the energy

1https://hub.iiconsortium.org/smart-factory-machine-learning
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consumption behavior of a manufacturing machine. As shown in the diagram
in Figure 1, the testbed activates/deactivates devices to create consumption
profiles. The red lines represent electrical connections and the blue lines are
either data transfer channels or control signals. The devices used to build
energy profiles are two three-phase motors, a heater, and two uninterruptible
power supplies (UPS). In order to manage the UPS energy consumption (as
a security device that stores energy), each UPS supplies energy to two loads:
to a fan plus a lamp, and to two fans. Connected between the UPS and
the loads is an alternating current (AC) regulator that limits the current
to the loads, thereby regulating the energy consumption of each UPS. The
other devices are controlled through a variable-frequency drive for a three-
phase motor and relays for the heater and the other motor. Note that the
relay actuators only allow devices to be activated or deactivated, while other
actuators allow energy consumption to be regulated.

The embedded system (ES) is an Aingura Insights (AI) with a Zynq R©
Ultrascale+TM MPSoC, which is used in industry for data acquisition and
processing (i.e., an IIoT computing edge device). The ES executes the main
control logic to decide which devices should be activated/deactivated (emu-
lating the role of a programmable logic controller (PLC)), and through the
user datagram protocol (UDP), sends commands to the low-level control
devices to generate analog/digital signals to the actuators that establish de-
cisions made. An Arduino Leonardo (AL) and a WEB LAN IP ethernet relay
controller (WLIE-RC) are used as low-level controllers. Regarding the AL,
this generates a pulse-width modulation (PWM) signal, which configures the
actuator and allows a duty cycle to be established between the 0 and 255
logic levels. The energy consumption spectrum of those AL-governed devices
therefore has 256 logic levels, 0 when the device is fully off and 255 when
energy consumption is maximum. Although low-level controllers do not have
the same industrial robustness as a computer numeric control (CNC), but
for the scope of this research, both AL and WLIE-RC operate with adequate
scan cycle and especially AL has scan cycle (microseconds) comparable to
that of a CNC.

The energy sensor is a combination of AI and industrial clamp meters to
measure five energy signals (voltage, current, active power, reactive power
and apparent power) for each electrical phase, with a sampling frequency
between 4 and 8 kHz. In this case, the sensor was configured at 4 kHz to
have a sample every 250 µs. Each second the sensor transmits a set of last-
second measurements to the ES, i.e., each second the ES receives a set of
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Figure 1: The testbed block diagram.

4000 energy measurements corresponding to the total energy consumption of
the testbed. All single-phase devices (e.g., UPS and heater) were connected
to the B phase, so most of the electrical profiles shown are from the B phase.

3. Case study

The energy consumption of a manufacturing process, called electro-discharge
machining, was emulated using the testbed. For this use-case, the process
is performing two cutting operations on a workpiece. The energy profiles
of the machining process and the peripheral devices are presented in Fig-
ure 2, where the peripheral device profiles are independent of the machining
process, to illustrate their energy consumption behavior for different input
values. The periodic consumption produced by the process is the result of
combining the heater (Ds1) and UPS1 (Ds2), which is shown in Figure 2a
with a period of Tmp = 29 s. Based on previous work [24], the main machine
process is assisted by the following three peripheral systems:

(i) Air-supply pump. For the pneumatic actuators to work properly, this
pump must maintain pressure conditions in the accumulator. The
three-phase Motor1 (Dp1) represents the energy consumption of this
pump, as shown in Figure 2b. The dynamic model of the accumulator
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(a)

(b)

(c)

(d)

Figure 2: Energy consumption profile for the machining process and peripheral devices
(dashed lines indicate the set input value): (a) shows the energy consumption during a
period of the machining process, from grabbing the raw material, removing the material
to releasing the workpiece. (b) and (d) display the energy profiles for different speed
conditions of the air pump and the coolant recirculation pump, respectively. (c) shows the
on-off power consumption of the hydraulic pump.

was proposed in the following way:

q1(k + 1) = q1(k) + [Minair
−Moutair ]

[
up1(k)
us1(k)

]
, (1a)

yq1(k) = q1(k)
R T

VT WM

+ Patm, (1b)

yq1 ≤ yq1 ≤ yq1 , (1c)

being q1 ∈ R the mass and yq1 ∈ R the pressure inside the accumulator
with an operating range of yq1 = 500000 Pa to yq1 = 750000 Pa. The

model constants are defined as Moutair = 1.5 × 10−3 m3/s the air dis-
charge coefficient, Minair

= 2.5×10−3 m3/s the coefficient of recharging
air, R = 8.314472 Jk−1mol−1 the gas constant, T = 298.15 K the en-
vironmental temperature, VT = 5 × 10−3 m3 the tank volume, WM =
28.966× 10−3 kg/mol the molecular weight and Patm = 101325 Pa the
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value of an atmosphere. The input pump up1 operates between 160
and 200 logic levels, and the input us1 ∈ {0, 1} is associated with the
pressure losses when the Ds1 is activated. The control rule established
for this pump is to enable the pump when the pressure yq1 is near the
lower bound yq1 , then the pump is activated with a maximum speed

(200 logical level) until the upper bound yq1 is reached.

(ii) Hydraulic pump. Similarly to the air-supply pump, the machine has a
hydraulic pump to supply flow with enough power to meet the pressure
demanded by hydraulic actuators. The energy profile of the three-phase
Motor2 (Dp2) is used as the consumption profile of the hydraulic pump,
as displayed in the Figure 2c. The hydraulic system was modeled as

q2(k + 1) = q2(k) +Minpressup2(k)−Moutpress , (2a)

yq2(k) = q2(k), (2b)

yq2 ≤ yq2 ≤ yq2 , (2c)

where q2, yq2 ∈ R are the accumulator pressure, Minpress = 5 bar the
pump inlet pressure, Moutpress = 3 bar the pressure losses of the accu-
mulator and up2 ∈ {0, 1}. The control rule is to keep the accumulator
pressure within a range of yq2 = 50 bar to yq2 = 150 bar through an
on-off control.

(iii) Coolant-supply pump. The coolant system maintains proper machining
conditions, reducing the high temperature and removing the eroded
particles between the workpiece and the electrode. Through a recircu-
lation pump system, the dirty coolant is filtered and transferred to the
clean tank for reuse. The consumption profile of this system is emu-
lated by UPS2 (Dp3) and is shown in the last row in Figure 2d. The
dynamic model of this system is presented as follows:[

q3,1(k + 1)
q3,2(k + 1)

]
=

[
q3,1(k)
q3,2(k)

]
+

[
z1

−Mtp1

Ac ρc

−z1 Mtp2

Ad ρc

] [
up3(k)
us2(k)

]
, (3a)

z1 =
η

(Ad ρc)(Ht1→t2 ρc + ∆Pfilter)
, (3b)[

yq3,1(k)
yq3,2(k)

]
=

[
q3,1(k)
q3,2(k)

]
, (3c)

q3,1 ≤ q3,1 ≤ q3,1, (3d)

q3,2 ≤ q3,2 ≤ q3,2, (3e)
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with q3,1 ∈ R and q3,2 ∈ R the level in the clean tank and dirty tank,
respectively. The bounds are q3,1 = 0.3 m, q3,2 = 0.6 m, q3,1 =
0.5 m and q3,2 = 0.8 m. The model constants are defined as Ac =
0.0314 m2 the clean tank area, Ad = 0.0314 m2 the dirty tank area,
ρc = 1042.48 kg/m3 the coolant density, η = 0.85 the efficiency of
pump, Ht1→t2 = 0.6 the energy losses by friction, ∆Pfilter = 1000 Pa
the filtering coefficient and, Mtp1 = 11×10−3 and Mtp2 = 9.1×10−3 are
constants associated with the coolant flow required. The input pump
operates up3 with inputs between 100 and 140 logic levels, and the input
us2 ∈ {0, 1} associated with device Ds2 indicating when clean coolant
is used. The control rule for this system is to activate the pump (at full
speed up3 = 200) when the dirty coolant reaches maximum level q3,2,
then all the dirty coolant will filter and transfer to a clean tank until
the dirty coolant level reaches a minimum q3,2 allowed.

4. Proposed approach

4.1. Energy models

Traditional methodologies to determine mathematical models imply an
exhaustive procedure and are exclusively focused on a particular machine or
device. However, this paradigm is changed due to the boom in technology
that allows real-time monitoring and measurement of energy consumption.
System identification (SI) methodologies, which generate control-oriented
models based on measurements [25, 26], allow an interface to be created
that applies the theory of control to real-world scenarios, reducing modeling
efforts. The model is determined by observing input and output measure-
ments only, without using physical laws.

A previous work proposed a methodology for identifying energy models
via subspace identification (Sub-ID) algorithms [27]. This methodology is
oriented to the identification of multiple-input and multiple-output (MIMO)
systems, given that a machine may have several devices to consider. There-
fore, each activation of device is used as model inputs and the energy con-
sumption information used as outputs. Note that the number of outputs may
vary depending on the energy sensor or the electrical phases to consider; in
this case, a three-phase line is used. The approach used here is state-space
identification based on the Hankel matrix created with an input-output iden-
tification dataset. This matrix performs as a regressive matrix that solves
a least-squares problem, given the linear combination of subspace matrices
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that describe the data. The state-space matrices are computed through the
decomposition of the subspace matrices, using reliable and widely known
and available numerical algorithms. As a result, the following discrete linear
time-invariant state-space model is obtained:

x(k + 1) = A x(k) +B u(k) + ω(k), (4a)

y(k) = C x(k) +D u(k) + υ(k), (4b)

being u ∈ Rm, y ∈ Rl and x ∈ Rn vectors at discrete-time instant k of
the m inputs, l outputs and n states (i.e., the model order) of the system,
respectively. Furthermore, A ∈ Rn×n the system matrix that describes the
dynamics of the system, B ∈ Rn×m the input matrix that represents a linear
transformation of the current input in the contribution to the next state,
C ∈ Rl×n the output matrix that describes the effect of current states on
outputs, D ∈ Rl×m the feedthrough (or feedforward) matrix allows modeling
when there is a direct influence of the input over the measurements, ω ∈ Rn

and υ ∈ Rl are non-measurable vector signals that affect the states and
measures, respectively.

In general, real systems have intrinsic input-output delays associated with
data transmission and processing. Although this algorithm supports those
delays with a high-order model, it is recommended to shift the input to
remove those delays. Thus, the model accuracy is enhanced while avoiding
increasing its order. Finally, following this identification procedure, a discrete
linear time-invariant energy model is generated with a low fitting error with
respect to real behavior and with a low model order, also potentially useful for
the design of reliable and reactive controllers. State-space models are widely
used in the design of modern control strategies, with numerous industrial
processes already described with great precision [28].

For the purposes of this research, an offline model was identified using
an identification dataset, and a second dataset was used to validate model
performance. As shown in Figure 3, the generated model has a high fit rate
with respect to the measurements: it only applies the input sequences and
compares the outputs with the measurements (without any feedback). The
calculated fit rate is defined as the complement of the normalized root mean
squared errors [29], i.e.,

γ(S, Ŝ) = 100 max

(
1− ‖S − Ŝ‖2
‖S − µS‖2

, 0

)
%, (5)
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Figure 3: Comparison between the validation data (three machine cycles) and the model
estimation.

where S is the energy consumption measurement, µS the mean measured
consumption and Ŝ the estimated consumption. The model demonstrates the
ability of the Sub-ID algorithm to generate highly accurate energy models
(greater than 80%). Note that the results may depend on the system and its
non-linearities.

4.2. Optimization-based control

In manufacturing processes, machinery is constituted by synchronous and
peripheral devices that are controlled via two subsets of discrete inputs Us

and Up, respectively. Both types of inputs form the input vector of the control
system

U =

(
Us

Up

)
. (6)

Therefore, as a notation, the subscripts •s and •p are used to refer to the
matrices of synchronous devices and peripheral devices, respectively. The
periodic process is predefined with a fixed, known and periodic activation
sequence of Us, with a machine period (Tmp) that must be synchronized
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with other machines involved in the production line. Peripheral devices per-
form auxiliary tasks to maintain, cool, clean and ensure correct operation of
the machine. The activation/deactivation of Up depends on sensors and/or
timers, e.g., the pressure in a pneumatic system. Thereby, peripheral equip-
ment control law must guarantee that the values of the sensors comply with
the defined operating ranges, ensuring the proper conditions of the machine.
Dynamic models, called q-relations, are used to estimate the behavior of
peripheral systems, which indicate the impact of Up on sensor values.

The only energy sensor installed in the machine provides real-time mea-
surements of energy consumption (S) for the entire machine, including syn-
chronous, peripheral, passive, and unknown devices. Passive devices, which
have constant consumption, are frequently seen as an offset in electrical sig-
nals, e.g., actuators, sensors, and embedded systems, while unknown devices
refer to the inputs of devices that are unknown to the controller. Figure 4a
depicts the inputs and outputs considered in the control problem.

Due to the periodic and fixed nature of the process, the diverse constraints
imposed by the process and device operation modes, a model predictive con-
trol (MPC) strategy is proposed to manage the peripheral devices. Based
on the previously identified model, the following finite-time open-loop opti-
mization problem is stated:

min
U(k)

Ŝs(k)Ŝp(k)T (7a)

subject to

x̂p(k|k) = x̂p,0(k), (7b)

x̂p(k + kh + 1|k) = A x̂p(k + kh|k) +Bp Up(k + kh|k), (7c)

Ŝp(k + kh|k) = C x̂p(k + kh|k) +Dp Up(k + kh|k), (7d)

q(k + kh + 1|k) = fq(q(k + kh|k), Up(k + kh|k), Us(k + kh|k), (7e)

Yq(k + kh|k) = hq(q(k + kh|k)), (7f)

Up(k + kh|k) ∈ Up, (7g)

q(k + kh|k) ∈ Q, (7h)

where (7b) is the initial condition that will change at each sampling time,
(7c) and (7d) reflect the energy model considering only the inputs of the
peripheral devices, (7e) and (7f) are dynamic models of the q-relations, and
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(7g) and (7h) are constraints related to the device inputs domain and states
of q-relations, respectively. Depending on the actuator, the inputs domain
may be a binary domain (on/off) or a range of values that allow establishing
a connection with the power consumption level of the equipment (from low
to high levels).

The objective function (7a) seeks the optimal future sequence of periph-
eral devices inputs

U(k) , {Up(k|k), . . . , Up(k +Hp|k)}

along the prediction horizon Hp to obtain the most efficient total consump-
tion. This goal is achieved by dividing the estimated total future consumption
into

Ŝs(k) =
[
Ŝs(k|k) Ŝs(k + 1|k) · · · Ŝs(k +Hp|k)

]
and

Ŝp(k) =
[
Ŝp(k|k) Ŝp(k + 1|k) · · · Ŝp(k +Hp|k)

]
,

corresponding to estimates of the future energy consumption from synchronous
and peripheral devices, respectively. Besides, Ŝs(k) is computed beforehand
to solve the problem, using the model and the future sequence of synchronous
device inputs that are always known. In this way, Ŝs(k) act as weights to
penalize activation in high-energy consumption instants; thus, weights will
be higher when a peripheral device is activated in the same instant as a
synchronous device than when activated when all synchronous devices are
deactivated. The resulting linear objective function does not require tuning
parameters and has low computational complexity.

The current states of the model and the energy consumption Ŝs(k) of
the synchronous devices are estimated and used as the initial condition in
the optimization problem (7) that is solved in each second. Thus, from the
computed optimal sequence U∗(k), only the inputs of the first step Up(k) =
U∗p (k|k) are applied to the peripheral devices while the rest of the sequence is
discarded [30]. The current states of the devices according to the models can
be estimated by an observer and the block diagram of the proposed control
system using such a proposed observer is shown in Figure 4b.

4.3. Adaptive mechanism
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(a) Inputs and outputs of machine.
(b) MPC-based closed loop.

(c) Adaptive scheme.

(d) Adaptive-MPC scheme.

Figure 4: Block diagrams related to the proposed approaches.

The energy consumption profiles of devices change over time due to degra-
dation resulting from constant use in an industrial environment. Figure 4c
depicts an online adaptation scheme to fit the energy model with new energy
consumption behaviors. The reference model is initialized using a model
identified offline and used to estimate the machine consumption, which is
compared with real energy consumption in the adaptation law block. This
block generates a new model in each NTmp machine period, using the S, Us,
and Up signals stored in the previous NTmp machine periods. Using the new

model and stored inputs, a new energy consumption estimation Ŝnew is cal-
culated. The fit rate (5) is computed for both the Ŝ and Ŝnew, calculations,
and chosen is the model with the best fit. If the new model fit-rate value is
higher than that of the reference model, the reference model parameters will
be updated accordingly.

4.4. Adaptive model predictive control design
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Integrating the adaptive mechanism explained in Subsection 4.3, the con-
troller was improved to obtain adaptive capabilities against changes in device
energy consumption dynamics over time. The new control system block di-
agram is shown in Figure 4d, where the observer is replaced by the adaptive
mechanism. When the adaptation law updates the reference model, the
controller model will also be updated, while estimated current states are ob-
tained from the reference model. Thusly, Algorithm 1 gathers all the main
steps that the implementation of the control system must follow. Note that
cTmp is a counter that increments when the machine period ends, and when
cTmp equals NTmp , the adaptation strategy is executed, otherwise only the
measurements are stored.

5. Energy efficiency improvements

The proposed approach was validated and compared with a RBC strategy
– traditionally the most widely used controller for peripheral device manage-
ment in industry – with the ability to pose or translate expert knowledge
using natural language via decisions tree [31]. Initially, the machine used
one RBC for each peripheral device. The following three scenarios were de-
signed for the progressive replacement of each RBC and to be able to evaluate
the yield of both approaches:

– Scenario 1. The proposed approaches (MPC and Adaptive MPC) only
managed two peripheral devices, exclusively measuring the power con-
sumption of the periodic process and peripheral devices P1 and P3.

– Scenario 2. The P2 consumption was included, but the proposed ap-
proach handled the same peripheral devices as in the first scenario; this
was because this scenario focused on evaluating the controller when no
device was considered. Nonetheless, the consumption of this device
should be viewed as a disturbance in the system output. Thus, the
aim was to verify the capacity of the adaptive mechanism to reject
disturbances and to explore how controller decisions could be affected.

– Scenario 3. The proposed approaches managed the three peripheral
equipment, evaluating possible improvements in EE when all peripheral
devices are smartly synchronized with the power consumption of the
machining process.
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Algorithm 1 Adaptive MPC scheme

Require: Uiden and Siden, the identification input-output data
Require: n, the model order

1: Compute the initial model

x̂(k + 1) = A x̂(k) +B U(k)

Ŝ(k) = C x̂(k) +D U(k)

2: Start-up of the machine and control system
3: Sensor and reference model generate S(k) and Ŝ(k), respectively
4: Adaptation law block receives and stores Us(k), Up(k), S(k) and Ŝ(k), if
k is the end of the machine period then cTmp = cTmp + 1

5: If the cTmp is equal to NTmp , then let cTmp = 0 and go to step 6, otherwise
go to step 9

6: A new model is calculated from stored measurements

x̂new(k + 1) = Anew x̂new(k) +Bnew U(k)

Ŝnew(k) = Cnew x̂new(k) +Dnew U(k)

and computes the Ŝnew

7: If γ(S, Ŝnew) is bigger than γ(S, Ŝ) then, go to step 8, otherwise go to 9
8: The model used in both the controller and the reference model are up-

dated with the new one
9: Controller computes Ŝs and executes the optimization problem

10: Up(k) = U∗p (k|k) is established in peripheral equipment
11: If the process has finished then exit, otherwise go to step 3

All scenarios were designed to emulate a real production facility as closely
as possible: the devices should experience progressive degradation pattern on
energy consumption emulated by changing configurations. Figure 5 shows the
initial and final energy consumption profiles for each energy profile. Note that
emulated degradation behaviors are non-linear, not only to mimic a realistic
scenario, but also to demonstrate the robustness of the proposed adaptive
mechanism.

The EE and performance of the approaches were measured through the
following KPIs:
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Figure 5: Emulation of degradation impact on energy consumption profiles.

(i) Total electrical energy consumed. This value represents the amount of
energy that will be charged, so any energy savings will mean a mon-
etary saving for the factory. According to IEEE Std 260.1-2004 [32],
consumed electrical energy is measured in terms of Watt hour (Wh)
and is expressed as

KPI1 =
Ts

3600

NS∑
k=0

S(k), (8)

where S(k) is the real power consumed in instant k, Ts is the sampling
time and NS is the number of measurements made.

(ii) Maximum peak. Decreasing maximum consumption allows contracted
energy capacity to be reduced, which in turn means cost savings and
better management of available resources. It can be computed as

KPI2 = ‖S‖∞, (9)

where S = [S (0) , S (1) , . . . , S (NS)] is the set of measurements made.
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Table 1: KPI values for each approach and scenario.

KPI \ Controller
RBC MPC Adaptive MPC

Np = 2 Np = 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
KPI1: Energy consumption [Wh] 752.50 796.66 748.33 791.66 794.16 738.33 785.83 780.36
KPI2: Maximum peak [kW] 1.03 1.09 0.96 0.99 0.96 0.95 1.02 0.96
KPI3: Load factor [%] 72.20 72.39 77.32 78.92 81.32 76.71 76.23 80.24
KPI4: Standard deviation [W] 372.15 384.57 326.95 336.60 320.00 324.03 343.07 314.16

*Np: the number of peripherals devices considered.

(iii) Load factor. This is the ratio between the energy consumed and the
maximum energy demand contracted during a defined period ( hours,
days, weeks or months). The load factor is expressed as a percentage
as follows:

KPI3 = 100
KPI1

NS KPI2
%, (10)

where NS KPI2 is energy consumption at maximum demand con-
tracted in a period of NS samples. A suitable load factor must be
greater than 50% since it means that at least half the capacity is used.

(iv) Standard deviation. Energy consumption in an industrial process with
low deviation represents an optimal use of resources, as it reflects the
avoidance of power peaks and convergence to constant consumption.
Standard deviation is defined as:

KPI4 =

√√√√ 1

NS

NS∑
k=0

(S(k)− µS)2, (11)

where µS is the mean value of energy consumption in an instant S(k)
and NS is within a suitable time frame for analysis (greater than a
machine period), in this case, one hour.

Each approach and scenario was executed 10 times and in 125 Tmp, rep-
resenting an hour of machine work. The mean KPI values obtained are pre-
sented in Table 1, for a deviation of less than 5%. The KPI values obtained
for both proposed approaches were an improvement over the RBC approach;
with an energy saving of up to 16.3Wh, the maximum peak and standard
deviation decreased by around 13 W and 96 W, respectively. Although the
RBC strategy obtained a load factor value greater than 50%, which is desir-
able, both approaches proposed improved on that value by between 4% and
9%.
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Table 2: Energy efficiency improvements.

KPI \ Controller
Efficiency [%]

MPC Adaptive MPC
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

KPI1: Energy consumption 0.55 0.63 0.31 1.89 1.36 2.04
KPI2: Maximum peak 7.07 8.57 11.17 7.66 5.97 11.61
KPI3: Load factor 7.08 9.06 12.34 6.24 5.34 10.85
KPI4: Standard deviation 22.77 23.49 30.71 24.13 20.51 33.24

The EE gains using the proposed approach for each scenario are sum-
marized in Table 2. Although the 2% energy saving may not seem to be
very important in terms of quantity, it should be understood that the im-
provement was accomplished by changing the scheduling of peripheral devices
without modifying device hardwares or machining sequences. The inclusion
of an adaptive mechanism has managed to save more energy than keeping a
computed model offline. When the controller has an updated model of the
machine’s current energy consumption, decision making is better. However,
the adaptive approach sacrifices other KPIs to maximize energy savings and
is more sensitive to disturbances. The MPC maintained a high load factor
improvement and produced better results for scenario 2, when there were
disturbances. The MPC is not sensitive to disturbances, however, because
they have not been modeled, whereas in the adaptive approach, the measures
used to generate new models online include disturbances. Finally, the best
scenario in terms of maximizing performance is to manage all the peripheral
devices (scenario 3).

Figure 6 depicts the profiles for four machine cycles when each approach
managed all the peripheral devices. The reduction in high energy demand is
appreciable and is, furthermore, intelligently distributed over time. Note how
the proposed approaches activated peripheral devices when consumption for
the machining process was lower. Although their decisions were very similar,
the adaptive approach achieved lower consumption than the MPC approach,
which depends on the reference model used by the controller. This explains
why it is important to have an updated model that has been calculated with
suitable parameters.

The adaptive approach achieved a fit greater than 80% in all the exper-
iments. Two examples are shown in Figure 7a and 7c, of scenarios 2 and 3,
respectively. In scenario 2, as the input P2 was not considered, the identifi-
cation method could not adequately model the corresponding energy profile.
This was because, when P2 was activated, there were no changes in the model
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Figure 6: Energy profiles for each approach managing all peripheral devices.

output since the model inputs experienced no changes. Furthermore, an in-
correct model with a high fit can be generated that assigns disturbance (P2)
consumption to other known devices, increasing steady-state error. When
that happens, the reference model might be replaced by an incorrect model
and the estimated consumption may deviate from real consumption in the
ensuing machine periods. An example is displayed in Figure 7b at around
78 Tmp, where the evolution of the fit of the reference model, in each ma-
chine period, is presented without and with an adaptive approach. Note how
the adaptive approach was rapidly self-adjusting and maintained a high fit.
The fit of the MPC model deteriorated over time, while in most periods, the
adaptive approach maintained a fit of over 80%.

For scenario 3, the adaptive mechanism provided a fit greater than 82%
during the entire experiment for all the tests carried out; an example is shown
in Figure 7c. Note that, during the production process, when the second
cut was made in the material, there was some steady-state error due to non-
linearity between input and output that the linear model could not represent.
Figure 7d shows how the adaptive approach that began with a model with
high error converged to models with low error. Although the MPC and Ada-
MPC started with the same reference model, the first fit for each approach
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Figure 7: Adaptive mechanism performance. (a) and (c) Comparison of energy measure-
ments with the reference model output. (b) and (d) Comparison of model fit evolution
between the adaptive model and the model identified offline.
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was very different, because this depended on the state of the machine or
the environment, which changed energy consumption, especially the offset.
Similar to what happened in scenario 2, the model used for MPC deteriorated
over time, whilst the adaptive approach maintained fit at between 82% and
92%. These results show the ability of the proposed approach to adapt
to changes in the consumption profile of the machine over time and the
feasibility of carrying it out in real industrial applications.

6. Conclusions

A methodology to reduce the cost and environmental impact associated
with the energy consumed by an industrial machine has been defined. The
methodology is based on identification algorithms towards getting a linear
data-driven model that generates a highly accurate (greater than 80%) ma-
chine energy model. With this energy model, an optimization-based con-
troller with prediction features manages peripheral devices to maximize ma-
chine efficiency. The proposed controller minimizes the total power con-
sumption while reducing the maximum power peak, ensuring efficient power
consumption.

Since in an industrial production environment the constant operation of
devices causes progressive device degradation and may lead to energy con-
sumption dynamics changing over time, an adaptive mechanism is proposed
to react to new dynamic behaviors, keeping the controller up-to-date. As a
result, the estimated consumption will be close to the current consumption
of the machine. The controller and adaptive mechanism were implemented
in a real time and validated using the IIC testbed.

The proposed approach was compared with the widely used rule-based
control approach, whose performance and energy efficiency were assessed
using four key performance indicators. The validation was designed to pro-
gressively replace the rule-based control of each peripheral equipment, pre-
senting three scenarios: the first scenario, the control system manages only
two peripheral devices without measuring the consumption of the third. The
second scenario, the consumption of the third peripheral was measured but
the control system did not consider its input, performing as a disturbance.
Finally, the third scenario, the control system manages all peripheral equip-
ment. Furthermore, in all scenarios, the energy degradation of all devices
was emulated by changing the configuration of each one.
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In Scenario 2 (with disturbances), both the control and the adaptive
mechanism demonstrate robustness against disturbances; the controller man-
aged to save approximately 1.3% energy and reduce the maximum power peak
by up to 5.9%, the adaptive mechanism ensured that the prediction had an
fit rate of around 80 %. In scenario 3 (controlling all peripheral equipment),
the controller saved around 2% of energy and reduced maximum consump-
tion by up to 11%, and the adaptive mechanism converged to models with
a fit rate greater than 82% over time. These results indicate that the pro-
posed approach obtains better improvements by increasing the number of
peripheral equipment to be managed and suitable robustness for industrial
cases. Depending on the particular case, results may vary, but the findings
here suggest that there is room for savings in terms of energy consumed, con-
tracted capacity and penalties for high consumption. Taking into account
that these improvements have been achieved without modifying or investing
in new hardware.

With the meaningful results obtained, and in order to increase the ro-
bustness of the proposed approach, a delay estimator will be integrated into
the adaptive mechanism, thus, high variations in input-output delay will be
allowed. Furthermore, a modeling strategy should be developed to consider
the typical input-output nonlinearities found in the power consumption of in-
dustrial machines. As well as, the proposed control system will be validated
into the real industrial environment.

Acknowledgment

This work has been supported by the Doctorats Industrials program from
the Catalan Gobernment (2019 DI 4). Authors would like to thank the
companies of the Inzu Group, Etxe-tar, and Ikergune, for the support related
to high-productivity systems.

References

[1] Mike Schulze, Henrik Nehler, Mikael Ottosson, and Patrik Thollander.
Energy management in industry–a systematic review of previous findings
and an integrative conceptual framework. Journal of Cleaner Produc-
tion, 112:3692–3708, 2016.

[2] IEA. Electricity information 2019: Overview. url-
http://www.iea.org/statistics/, 2019.

23



[3] Atabani Abdelaziz, Rahman Saidur, and Saad Mekhilef. A review on
energy saving strategies in industrial sector. Renewable and sustainable
energy reviews, 15(1):150–168, 2011.

[4] Dasheng Lee and Chin-Chi Cheng. Energy savings by energy manage-
ment systems: A review. Renewable and Sustainable Energy Reviews,
56:760–777, 2016.

[5] John W Sutherland, David A Dornfeld, and Barbara S Linke. Energy
Efficient Manufacturing: Theory and Applications. John Wiley & Sons,
2018.

[6] Yoon, Hae-Sung and Kim, Eun-Seob and Kim, Min-Soo and Lee, Jang-
Yeob and Lee, Gyu-Bong and Ahn, Sung-Hoon. Towards greener ma-
chine tools–A review on energy saving strategies and technologies. Re-
newable and Sustainable Energy Reviews, 48:870–891, 2015.

[7] Anna Carina Roemer and Steffen Strassburger. A review of literature
on simulation-based optimization of the energy efficiency in production.
In 2016 Winter Simulation Conference (WSC), pages 1416–1427. IEEE,
2016.

[8] Markus Rager. Energieorientierte Produktionsplanung: Analyse,
Konzeption und Umsetzung. Springer-Verlag, 2008.

[9] Jan Schlechtendahl, Philipp Eberspaecher, and Alexander Verl. Energy
control system for energy-efficient control of machine tools. Production
Engineering, 11(1):85–91, 2017.

[10] Jan-Peter Seevers, J Johst, Tim Weiß, Henning Meschede, and Jens
Hesselbach. Automatic time series segmentation as the basis for un-
supervised, non-intrusive load monitoring of machine tools. Procedia
CIRP, 81:695–700, 2019.

[11] Seung-Jun Shin, Jungyub Woo, Sudarsan Rachuri, and Wonchul Seo.
An energy-efficient process planning system using machine-monitoring
data: A data analytics approach. Computer-Aided Design, 110:92–109,
2019.

24



[12] Jenny L Diaz and Carlos Ocampo-Martinez. Energy efficiency in
discrete-manufacturing systems: insights, trends, and control strategies.
Journal of Manufacturing Systems, 52:131–145, 2019.

[13] Alperen Can, Gregor Thiele, Jörg Krüger, Jessica Fisch, and Carsten
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