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Abstract— In this paper, alternative adaptive observers
are developed for nonlinear systems to achieve state ob-
servation and parameter estimation of nonlinear systems
simultaneously. The proposed observers are derived from
the perspective of adaptive parameter estimation method,
which leads to the reduced-order observers to deal with
partially unknown system states and unknown parameters.
To be specific, the nonlinear parametric function of unknown
states to be identified is first transformed into a cascade
form, which is linearly independent of unknown constant
parameters. This transformation is achieved by finding an
unmeasurable injective mapping function. Then, the functions
related to measurable states are injected into a set of low-
pass filters to derive the relationship between the mapping
function and unknown parameters. In this line, the observer
design problem is transformed into an equivalent parame-
ter estimation problem. Consequently, we further exploit a
recently proposed parameter estimation method that differs
from the classical gradient descent algorithm to estimate the
mapping function and unknown constant parameters. Finally,
the unknown system states can be reconstructed by inverting
this mapping function. A simulation example of DC-DC Ćuk
converter illustrates the effectiveness of proposed method.

I. INTRODUCTION
Designing state observers for nonlinear systems has

been attracting significant attention. In this topic, var-
ious nonlinear observers have been reported by numer-
ous researchers during past decades. For instance, the
extended Kalman filter [1] can be designed based on
linearisation method around a reference trajectory, which
guarantees a local convergence only. Other nonlinear
observers were mainly developed by finding a coordinate
transformation to force the system nonlinearities into
an output injection form, which can be then addressed
by linear observer design approaches, such as Kalman
filter and high gain observer [2], [3]. However, those
approaches require some stringent assumptions, i.e.,
uniform observability. On the other hand, the extension
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of linear Luenberger observer has also been studied for
nonlinear systems, whose main merit is to include a copy
of nonlinearities together with a linear correction term.
In [4], the Luenberger observer is extended by solving
some linear partial differential equations assuming the
existence of a nonlinear mapping. Moreover, Karagiannis
et al. [5] presented an observer design by rendering
attractive and invariant manifolds in the extended state
space.

With respect to the observer design for simultaneously
observing immeasurable states and estimating unknown
parameters for nonlinear systems, most existing observer
design methods were studied by assuming that the
unknown parameters should be in a linear form [6]. In
fact, there are few works devoted to nonlinear parametric
systems. In [7], the unknown parameters in the system
were considered as nonlinear disturbances such that
the estimator was proposed by inverting this nonlinear
function, and a high-gain observer was used to identify
the system states. Most recently, Ortega et al. [8] pro-
posed a new parameter estimation-based observer design
framework, where the nonlinear system is reformulated
in a cascaded structure and then the unknown system
states are reconstructed by estimating the unknown
initial constants. Similarly, Pyrkin et al. [9] proposed
adaptive state observers by using the dynamic regressor
extension and mixing method, which can identify the
unknown parameters and states separately under a weak
persistent excitation condition. However, it is noted that
the adaptive laws used in [8], [9] are derived based on
gradient descent algorithm such that the convergence
rate may be sluggish and affected by the observer
dynamics. Hence, designing fast convergent observers
for both state observation and parameter estimation for
nonlinear systems remains as a challenging work, which
deserves further investigation.

In this paper, we propose novel parameter estimation-
based observers for nonlinear systems with both partial
unknown states and unknown parameters, which was
partially inspired by the recent work [8], [9]. Recently
finite-time parameter estimation have been also devel-
oped [10], [11]. To be specific, the proposed observer
is valid under two assumptions which are also used in
[9]. The system can be transformed into a particular
cascaded structure via an injective mapping function.
Based on this transformation, the observer design prob-
lem is translated into a parameter estimation problem.
Moreover, the mapping function is considered as an un-
known time-varying parameter, making the subsequent



observer designs differ to the observer proposed in [8]. In
this case, the mapping function and unknown parameters
are simultaneously estimated by exploiting the adaptive
laws, such that the unknown states are reconstructed
by inverting the mapping function. Moreover, to over-
come the over-parameterization issue stemming from
the system transformation, a set of low-pass filters are
applied to the system, which also relax the required
persistence excitation condition as [8]. Hence, the main
contribution of this paper is to introduce an alternative
methodology for observer designs for nonlinear systems
with both unknown system states and parameters, which
achieves enhanced finite-time convergence of parameter
estimation compared with [8], [9]. Finally, a practical
converter model is used for simulation to illustrate the
effectiveness of proposed method.

II. PROBLEM FORMULATION
Considering the following nonlinear system

ẋ1 = f1(x1,x2,u,θ)
ẋ2 = f2(x1,x2,u)

y = x2

(1)

where x1 ∈Rnx1×1 and x2 ∈Rnx2×1 are the system states;
y ∈Rny×1 denotes the system outputs which are measur-
able; u ∈ Rm×1 represents the control inputs; θ ∈ Rp×1

is the unknown constant parameters, and x1 are the
unknown states, which need to be reconstructed by using
the measurable and bounded x2,y,u.

Clearly, only partial system states x1 are unknown,
hence a reduced-order observer is enough. In order to
design the observer based on the parameter estimation
framework, the following assumptions are claimed as
follows:

Assumption 1: [9] There exists a mapping function
g(x1,x2) ∈ Rp×1 such that the following equation is
satisfied:
dg(x1,x2)

dt
=

∂g(x1,x2)

∂x1
f1(x1,x2,u,θ)+

∂g(x1,x2)

∂x2
f2(x1,x2,u)

= P(u,x2)θ +Q(u,x2)
(2)

where the matrix P(u,x2)∈Rp×p and the vector Q(u,x2)∈
Rp×1 are measurable and bounded.

Assumption 2: The function α1(t) = g(x1,x2) is left
invertible, which can be used to reconstruct states x1,
that is

x1 = gL(α1,x2) (3)
where gL is the left invertible function of g(x1,x2)
regarding to x1.

The problem in this paper is to design a parameter
estimation-based observer to simultaneously reconstruct
the unknown system states x1 and estimate parameters
θ . The algorithm will take the following form:{

˙̂α = h(α̂,u,x2)

x̂1 = gL(α̂1,x2)
(4)

where α̂ =
[
α̂1 θ̂

]T ∈ R2p×1. The goals to be achieved
are

lim
t→∞

∥α̂1(t)−α1(t)∥ ≤ c,

lim
t→∞

∥x̂1(t)− x1(t)∥ ≤ c,

lim
t→∞

∥θ̂ −θ∥= 0,

where c is a small compact set around zero.
Remark 1: In order to transform the observer problem

into the parameter estimation framework, the mapping
function g(x1,x2) is used to achieve partial-state co-
ordinate transformation with left invertible property.
Moreover, the mapping function as stated in Assumption
1 has been used in [8], [9], [12], where some examples are
provided to find such feasible mapping functions. Hence,
the imposed assumptions and the subsequent derived
observer can be used for generic practical systems.

III. Adaptive Parameter Estimation-based Observer
A. Reformulating Observer Design into Parameter Esti-
mation

In this section, we will present an adaptive parameter
estimation-based observer for reconstructing states and
estimating parameters. Specifically, the state function of
x2 in (1) is first reformulated into a linearly parametric
system, which includes unmeasurable varying mapping
function α1(t) and parameters θ . During this transforma-
tion, the observer problem is translated into a parameter
estimation problem, which will be solved by suggestion
new adaptive laws to estimate the time-varying function
α1(t) and constant parameters θ , such that the unknown
states x1 are reconstructed by inverting this mapping
function.

Based on Assumption 2, we rewrite (1) in the following
form, which includes a mapping function α1(t).

ẋ2 = f2(gL(α1,x2),x2,u) (5)

Remark 2: In system (5), the mapping function α1(t)
can be considered as an unknown time-varying pa-
rameter such that system (5) is transformed into a
parameter estimation problem. In practice, system (5)
might be a non-linearly parametric system with respect
to unknown parameters α1. However, most of existing
adaptive parameter estimation approaches are invalid
for linearly parameterized systems only. Most recently, a
new adaptive parameter estimation framework [11], [13]
was proposed for non-linearly parametric systems, which
can reformulate the system into a linearly parametric
form via the Taylor series expansion. Inspired by this
idea, system (5) can be reformulated as:

ẋ2 = M(u,x2, α̂1)α1(t)+N(u,x2, α̂1)+D(α̃1) (6)

where the estimation error is defined as α̃1(t) = α1(t)−
α̂1(t); D(α̃1) is the high-order terms of Taylor series
expansion, which is considered as a bounded residual
error since the estimation error will converge to a small
compact set. The regressor matrix M(u,x2, α̂1) ∈ Rnx2×p



and vector N(u,x2, α̂1) ∈ Rnx2×1 are known nonlinear
functions, which are expressed as

M(u,x2, α̂1) =


∂ f 1

2
∂α1

1

∣∣∣
α1=α̂1

· · · ∂ f 1
2

∂α p
1

∣∣∣
α1=α̂1

... . . . ...
∂ f

nx2
2

∂α1
1

∣∣∣∣
α1=α̂1

· · · ∂ f
nx2
2

∂α p
1

∣∣∣∣
α1=α̂1


N(u,x2, α̂1) = f2(gL(α̂1,x2),x2,u)−M(u,x2, α̂1)α̂1

where p and nx2 are the dimension of mapping function
α1 and function f2, respectively.

In the following, we establish the implicit relationship
between the unknown constant parameter θ with the
linearly parametric system (6) in order to achieve simul-
taneously time-varying parameters α1(t) and constant
parameters θ estimation. For this purpose, we first define
a set of filtered variables x2 f j, M f j, N f j and D f j of x2,
M, N and D, that is

κ j ẋ2 f j + x2 f j = x2, x2 f i(0) = 0
κ jṀ f j +M f j = M, M f j(0) = 0
κ jṄ f j +N f j = N, N f j(0) = 0
κ jḊ f j +D f j = D, D f j(0) = 0

(7)

where κ j > 0 is a filter coefficient with j = 1,2, ...,z; and
z denotes the number of the required low-pass filter.

Then we apply low-pass filters on the linear parametric
system (6) that yields

s
κ js+1

{x2(t)}=
1

κ js+1
{M(t) ·α1(t)}+

1
κ js+1

{N(t)}

+
1

κ js+1
{D(t)}

where s is the Laplace transform variable.
In order to further linearise the term of (1/(κ js +

1){M(t) ·α1(t)}), the Swapping Lemma [14] is applied
on this term. Then, the following equation including the
unknown parameter θ can be obtained based on the
defined low-pass filters in (7) and Assumption 1 of (2).

ẋ2 f j =
x2 − x2 f j

κ j
=M f j ·α1(t)−

κ j

κ js+1
{M f j · α̇1}

+N f j +D f j ++ε j

=
[
M f j − κ j

κ js+1{M f j ·P}
][α1(t)

θ

]
−

κ j

κ js+1
{M f jQ}+N f j +D f j + ε j

(8)

where ε j is the exponentially decaying term from the
filtered initial value of state x2, which can be neglected.

Furthermore, we get

Yf (t) = G f (t)α(t)+Ff (t)+D f (t) (9)

where α(t) =
[
α1(t) θ

]T ∈ R2p×1 is defined
as time-varying unknown parameters. Yf =[

x2−x2 f 1
κ1

, · · · ,
x2−x2 f z

κz

]T
∈ Rznx2×1 are filtered

measurable states; the regressor matrix G f (u,y)∈Rzny×2p

and vector Ff (u,y)∈Rzny×1 are measurable and bounded
(i.e., ∥G f ∥≤ η for a constant η > 0), which are expressed
as follows:

G f (t) =


M f 1 − κ1

κ1s+1{M f 1 ·P}
M f 2 − κ2

κ2s+1{M f 2 ·P}
...

...
M f z − κz

κzs+1{M f z ·P}



Ff (t) =


− κ1

κ1s+1{M f 1Q}+N f 1

− κ2
κ2s+1{M f 2Q}+N f 2

...
− κz

κzs+1{M f zQ}+N f z


Clearly, the derivative of mapping function g(t) defined

in Assumption 1 is related to output y, input u and
constant parameter θ which are bounded. Therefore, the
derivative of α(t) is also bounded such that ∥α̇(t)∥ ≤ ν
for a constant ν > 0. Moreover, the filtered disturbances
D f =

[
D f 1, · · · ,D f z

]T ∈Rzny×1 are also bounded (i.e.,
∥D f ∥ ≤ ρ for a constant ρ > 0).

From (9), the observer design problem for system
(1) has been transformed into a parameter estimation
problem for system (9), which aims to estimate the time-
varying parameter α(t) by using available input u and
states x2 and will be solved later by suggesting a new
adaptive law.

Remark 3: The term − k j
k js+1{M f i j ·P} in the regressor

for system (9) may reduce the level of system excitation
and introduce an over-parameterized phenomena. To
remedy this issue, a set of low-pass filters are applied
by assigning different values of filter coefficient k j, which
can extend the regressor and provide more dynamic in-
formation into the system to ease parameter estimation.
This operation could help to retain the following required
persistent excitation condition as shown in [9].
B. Adaptive Estimation of Time-varying Parameters

As explained in the above analysis, α(t) in (9) is a
time-varying parameter vector. However, most existing
adaptive parameter estimation approaches proposed for
constant parameters cannot achieve satisfactory perfor-
mance. Hence, the second contribution of this paper is
to introduce a new adaptive law to online estimate the
time-varying parameters.

To design the adaptive law for time-varying param-
eters, the auxiliary matrix K(t) and vector W (t) are
defined as{

K̇(t) =−ℓK(t)+GT
f (t)G f (t), K(0) = 0

Ẇ (t) =−ℓW (t)+GT
f (t)

(
Yf −Ff −G f α̂

)
−K ˙̂α, W (0) = 0

(10)
where ℓ > 0 is a forgetting factor.

Then, we define an auxiliary vector n(t) in order to
obtain instant information of parameter estimation error
as

n(t) = GT
f G f α̂ −GT

f
(
Yf −Ff

)
(11)



Lemma 1: From the auxiliary matrix K(t) and vector
W (t), the following equations containing the parameter
estimation error α̃ can be verified:

W (t) = K(t)α̃(t)−d(t) (12)
n(t) =−GT

f (t)G f (t)α̃(t)−GT
f (t)D f (t) (13)

where the estimation error is α̃(t) = α(t)− α̂(t); the
vector d(t) = −

∫ t
0 e−ℓ(t−τ)(GT

f (τ)D f (τ)−K(τ)α̇(τ))dτ is
bounded and ∥d∥ ≤ γ for a constant γ > 0.

Proof: From (9), we get

G f α̃ +D f = Yf −Ff −G f α̂ (14)

Integrating the first equation of (10) yields

K(t) =
∫ t

0
e−ℓ(t−τ)GT

f (τ)G f (τ)dτ (15)

Then the term eℓt is used to multiply on second
equation of (10), then, we get

eℓtẆ + ℓeℓtW =eℓtGT
f G f α̃ + eℓtGT

f D f − eℓtKα̇ + eℓtK ˙̃α
=eℓtGT

f G f α̃ + eℓt(GT
f D f −Kα̇)

+

(∫ t

0
eℓτ GT

f (τ)G f (τ)dτ
)

˙̃α.

(16)
Considering the integration by parts, equation (15) is
reformulated into

d(eℓtW )

dt
=

d
dt

{(∫ t

0
eℓτ GT

f (τ)G f (τ)dτ
)

α̃
}

+ eℓt(GT
f D f −Kα̇)

(17)

Integrating (16) yields

W (t) =
(∫ t

0
e−ℓ(t−τ)GT

f (τ)G f (τ)dτ
)

α̃

+
∫ t

0
e−ℓ(t−τ)(GT

f (τ)D f (τ)−K(τ)α̇(τ))dτ.
(18)

From (18), equation (12) is true. Similarly, equation (13)
can be verified by substituting (14) into (11).

For estimating the unknown parameters α in (9), the
adaptive law to online update α̂(t) and the reconstruc-
tion of unknown states for system (1) are given as

˙̂α(t) = Γ(W (t)−β1n(t))

x̂1 = gL(α̂1,x2)
(19)

where β1 > 0 is a tuning coefficient; Γ > 0 denotes a
learning gain.

Remark 4: The estimation error α̃(t) is included in
the auxiliary matrix W (t) and vector n(t) as shown in
Lemma 1. It is also clear that if the auxiliary vector
n(t) passes through a low-pass filter, it reduces to the
matrix W (t) with the bounded vector d(t). Hence, W (t)
can be considered as an average of the term GT

f (t)G f (t),
such that the robustness against noise can be improved.
However, this average may reduce the tracking ability
for fast varying parameters. In order to solve this issue,
the auxiliary vector n(t) is used to introduce the instant

estimation error to enhance the ability to reconstruct
time-varying parameters.

Definition 1: The regressor matrix G(t) satisfies the
persistent excitation (PE) condition, if there are con-
stants τ > 0 and η > 0 such that∫ t+T

t
GT(u(τ),y(τ))G(u(τ),y(τ))dτ ≥ ηI,∀t ≥ 0 (20)

Lemma 2: With the PE condition given in Definition
1, the auxiliary matrix K(t) is positive definite such that
the minimum eigenvalue of K(t) is λmin{K(t)}> ζ > 0.

Proof: The detailed proof can be obtained similar to
that given in [15]. Thus, the proof will not be provided.

Theorem 1: For system (1) with Assumption 1 to
Assumption 2, the adaptive estimator and observer (19)
with the auxiliary variable (10) are considered. If the
condition in Definition 1 holds, then the estimation
error α̃(t) will converge to a small compact set, and
the observed error for states x1 also converges to a small
compact set.

Proof: In order to analyse the convergence, the
Lyapunov function candidate is chosen as follows:

V1 =
1
2

α̃T(t)Γ−1α̃(t) (21)

By using (12), (13) and (19), the derivative of (21)
can be calculated based on the fact ˙̃α(t) = α̇(t)− ˙̂α(t) as

V̇1 =α̃TΓ−1 ˙̃α = α̃TΓ−1α̇ − α̃TΓ−1 ˙̂α
=α̃TΓ−1α̇ − α̃TKα̃ + α̃Td −β1α̃TGT

f G f α̃
−β1α̃TGT

f D f

(22)

From the Young’s inequality, we have

V̇1 ≤−(ζ − 3
2m

)∥α̃∥2 +
mγ2

2
+

mβ 2
1 η2ρ2

2
+

mν2

2λ 2
min{Γ}

≤ −ω1V1 +ψ
(23)

where constants ω1 = (2mζ −3)/(mλmax{Γ−1}) and ψ =
m(γ2 + β 2

1 η2ρ2)/2 + mν2/(2λ 2
min{Γ}) are positive con-

stants when we set m > 3/2ζ . Then we integrate (23)
such that V1(t) ≤ e−ω1tV1(0)+ψ/ω1. Consequently, the
ultimate convergence set of estimation error α̃(t) is given
as

∥α̃∥ ≤

√
2V1

λmin{Γ−1}
≤

√
2ω1e−ω1tV (0)+2ψ

ω1λmin{Γ−1}

≤

√
ω1e−ω1tλmax{Γ−1}∥α̃(0)∥2 +2ψ

ω1λmin{Γ−1}
.

(24)

Hence, the parameter estimation error α̃ will converge
to a small set around zero as shown in (24). Based on
(19), the observed states x̂1 are derived based on the
estimated parameters α1. Thus, the observed errors also
converge to a small compact set.

Remark 5: From (24), the excitation level, the varying
rate of time-varying parameters, and the learning gain



Fig. 1. Minimum eigenvalue of matrix K(t) under three different
filters.

Fig. 2. The estimated state i1 by the estimator (19).

can affect the size of ultimate error set for the parameter
estimation error α̃(t). In order to enhance the conver-
gence speed, the learning gain need to be chosen as a
larger constant.

Remark 6: The proposed estimator (19) is convergent
under the PE condition indicated in Lemma 2. This con-
dition is widely used in the literatures for the parameter
estimation [14]. However, the online validation of the
standard PE condition still remains as an open problem.
From Lemma 2, a feasible method to test this condition is
presented through calculating the minimum eigenvalue
of matrix K(t). Moreover, it is also useful to tune the
number of low-pass filters to enhance the performance
for parameter estimation.

Remark 7: The mapping function g(t) and the un-
known constant θ are considered as unknown time-
varying parameters to be estimated simultaneously in
this paper. Thus, the proposed method in this paper
is different to the existing parameter estimation-based
observer design in [8], where the derivative of mapping
function g(t) is assumed to be measurable and its
integration constant is to be estimated.

IV. Simulations
In this section, the Ćuk converter defined in [8] is

used to illustrate the proposed parameter estimation-

based observer algorithms. The model of Ćuk converter
is represented as

di1
dt =− 1

L1
(1−u)v2 +

1
L1

E
dv4
dt = 1

C4
i3 − G

C4
v4

dv2
dt = 1

C2
(1−u)i1 + 1

C2
ui3

di3
dt =− 1

L3
uv2 − 1

L3
v4

(25)

where the converter variables are C2 = 22 µF, L3 =
10 mH, C4 = 22.9 µF, G = 0.0447 S and E = 12 V.
The unknown states are chosen as x = [i1 v4]

T and the
unknown constant parameter is set as θ = 1/L1, whose
theoretical value is 0.1 mH. The control input is given
as [8] by

u =
|Vd |

|Vd |+E
+δ

G|Vd |v2 +E(i3 − i1)
1+[G|Vd |v2 +E(i3 − i1)]2

where Vd is the reference voltage of v4 and the tuning
coefficient is given as

δ = δ0 ·min
{

|Vd |
|Vd |+E

,
E

|Vd |+E

}
, with 0 < δ0 < 2.

Following the proposed method, the mapping function
is first chosen as follows:

g(x,y) = x−
[

0
GL3
C4

y2

]
:= α1(t)

This function is left invertible and fulfills Assumption
1. Then we can derive that

x = α1(t)+
[

0
GL3
C4

y2

]
The following procedure aims at deriving the chosen

mapping function g(x,y) as

dg(x,y)
dt

=

[
−(1−u)y1 +E

0

]
︸ ︷︷ ︸

P(u,y)

θ +

[
0

1
C4

y2 +
G
C4

uy1

]
︸ ︷︷ ︸

Q(u,y)

Thus, the chosen mapping function satisfies the re-
quired form in (2). Then system (25) is formulated into
the form of (8) based on the proposed framework. Before
we apply the proposed estimator, we let the system pass
though three different filters with κ1 = 1, κ2 = 0.1 and
κ3 = 0.01, respectively, and the PE condition of system
is verified by calculating the minimum eigenvalue of
K(t) in Lemma 2. Fig. 1 shows the profiles of minimum
eigenvalue of K(t). It is illustrated that the PE condition
is improved by using different filters, as explained in
Remark 3.

Moreover, we will use the estimator in (19) with
auxiliary variables (10) to reconstruct the states (i1,v4)
and the constant parameter (1/L1). In order to show the
efficacy of adding the instant information of parameter
estimation error α̃ in (11), the comparison between two
cases (i.e, β = 0 and β = 0.05) is performed.

For simulation, the filter used for estimator (19) is set
as κ1 = 1, κ2 = 0.1, κ3 = 0.01. And the forgetting factor



Fig. 3. The estimated state V4 by the estimator (19).

Fig. 4. The estimated parameter 1/L1 by the estimator (19).

is set as ℓ = 104. The tunning coefficient is chosen as
β1 = 0.05. The learning gain for the estimator (19) is
chosen as Γ = 1 ·diag([2 2 500]). The initial value for
states are x(0) = [0 0]T and the initial value of constant
parameter is set as θ(0) = 60. The observer results are
shown from Fig. 2 to Fig. 4. It is clearly illustrated that
the estimator (19) can achieve accurate observation for
states and estimation of parameters. Since the estimator
(19) with β1 = 0.05 contained the instant estimation
errors α̃, the convergence rate at the transient stage is
faster than the estimator (19) with β1 = 0, as depicted in
Fig. 2 and Fig. 4. Furthermore, the estimator (19) with
β1 = 0.05 can remain a good performance along the time,
especially for the state v4 shown in Fig. 3. However, it is
shown that the convergence for the estimator (19) with
β1 = 0 is slow such that the state v4 and the parameter

V. Conclusion
In this paper, alternative adaptive parameter

estimation-based observers are developed for nonlinear
systems to identify unknown system states and esti-
mate unknown parameter simultaneously. Through an
injective mapping function, the nonlinear parametric
function of states to be identified is transformed into
a cascade form. Then, the function of measurable states

1/L1 cannot be estimated accurately in a short time.
is reformulated for exploiting the relation between the
unknown states and the constant parameters via several
low-pass filters. Moreover, a recently proposed parameter
estimation method is further tailored to achieve en-
hanced convergence for the induced time-varying param-
eters to estimate the mapping function and parameters.
Consequently, the unknown states are reconstructed by
inverting the estimated mapping function. Finally, sim-
ulation example of converter illustrates the effectiveness
of proposed method.
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