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ABSTRACT
This paper proposes the design of an interval observer-based approach for linear
dynamic systems affected by both time-invariant and time-varying uncertainties.
First, different interval observer schemes are compared and analyzed when dealing
with the different type of uncertainties. Then, an integrated interval observer is pro-
posed in order to overcome the drawbacks of using the set-based approach, i.e., the
non-preservation of the parameter uncertainty time dependency and the wrapping
effect. Furthermore, H∞ performance is considered in order to compute the observer
gain by using an LMI technique. Finally, a numerical example and a real case study
based on a two-tank system are employed for both illustrating and analyzing the
effectiveness of the proposed approach.
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1. Introduction

Increasing the performance of an automatic control system as well as its safety and
reliability has been important topics in the scientific community over the past years
(Blanke, Kinnaert, Lunze, Staroswiecki, & Schröder, 2006). In this regard, fault diag-
nosis of dynamic systems behavior plays a key role in the field of automatic control
engineering (Chen & Patton, 2012; Gertler, 1997). Generally speaking, there are two
major classifications of fault diagnosis methods: i) model-based methods, ii) data-
based methods. In the former class, tracking the system behavior is done based on
the mathematical model of the plant, e.g., observer-based approach, Kalman filter,
extended Kalman filter, input-output and state-space based methods, while the latter
class includes those methods that do not use the mathematical model for the same
purpose, e.g., neural networks, pattern recognition or fuzzy logic approaches (Puig,
Stancu, & Quevedo, 2005b; Zhang & Jiang, 2008).

Model-based approaches rely on the quality of the mathematical model describ-
ing the system behavior (Blanke et al., 2006; Puig, Montes de Oca, & Blesa, 2013).
However, a major problem with model-based approaches is related on how modelling
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uncertainties are considered (Alamo, Bravo, & Camacho, 2005; Nam, Trinh, & Pathi-
rana, 2016; Pourasghar, Puig, Ocampo-Martinez, & Zhang, 2017; Räıssi, Efimov, &
Zolghadri, 2012). The effect of uncertainties is the cause of the mismatch between
the model and the real behavior of the system (Puig et al., 2013). Robust methods
have recently been investigated using several approaches to explicitly consider such
uncertainties in the context of fault diagnosis (Efimov, Räıssi, & Zolghadri, 2013;
Karimi Pour, Puig, & Ocampo-Martinez, 2017; Puig et al., 2005b; Zhang & Jiang,
2008). In this regard, a considerable amount of literature has been reported regarding
different methods to model the effect of uncertainties, which can be categorized into
stochastic and deterministic paradigms. Representing the uncertainty as a random
variable is the main concept of stochastic approaches. One major drawback of these
approaches is that the knowledge about the statistical distribution of the uncertainty
should be available. On the other hand, the uncertainty in the deterministic approaches
is considered unknown but bounded using several families of geometrical structures,
e.g., interval boxes, polytopes, ellipsoids, and zonotopes, among others. Therefore,
only the bounds of the uncertainty are required, which can be obtained based on the
physical description of the considered system (Alamo et al., 2005; Combastel, 2015;
Kalman, 1960; Maybeck, 1982; Schweppe, 1968).

In order to bound the uncertainty effect in the system using interval observers con-
sidering an unknown-but-bounded deterministic framework, there exist two main ap-
proaches: the set-based interval observer approach (Combastel, 2015; Nam, Pathirana,
& Trinh, 2014) and the trajectory-based interval observer approach (Puig et al., 2005b).
In the set-based interval observer approaches, the set that bounds the outputs/states
is determined using the observer equations based on previous approximated sets and
using a one-step ahead prediction. On the other hand, for the trajectory-based inter-
val observer approach, a set of point-wise trajectories generated by selecting particular
values of the uncertainty is used (Combastel, 2015; Pourasghar et al., 2017; Puig et
al., 2005b; Räıssi et al., 2012). Based on the literature, each approach has its own
advantages and disadvantages. The set-based interval observer approach is affected by
some problems, e.g., wrapping effect, range evaluation of an interval function (in this
case, the state-space function) and the uncertain parameter time dependency (Puig
et al., 2005b). However, in the second case, the interval hull of the state estimation
is built following real trajectories generated by selecting particular values of the in-
terval parameter vector. Consequently, this approach overcomes the wrapping effect
and preserves the uncertain parameter time dependency, but in the case of the trajec-
tory function, the problem of the interval function range evaluation still remains. On
the other hand, set-based interval observer approaches present a lower computational
complexity than trajectory-based interval observer approaches and, consequently, they
seem to be more suitable for real-time applications (Kolev & Petrakieva, 2005; Le,
Alamo, Camacho, Stoica, & Dumur, 2012).

According to Puig, Saludes, & Quevedo (2003), it is possible to classify the ap-
proaches dealing with the time variance of the uncertain parameters into the time-
varying approach and the time-invariant approach. Then, two approaches about the
assumption of the time-variance of the uncertain parameters are possible:

• the time-varying approach, where uncertain parameters are unknown but
bounded in their uncertainty intervals and can vary at each time step since
one-step ahead recursion algorithms are used. This is the approach followed by
El Ghaoui & Calafiore (2000) and Puig, Cugueró, & Quevedo (2001), among
others.
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• the time-invariant approach, which assumes that uncertain parameters are un-
known but bounded in their uncertainty intervals and guarantee that they cannot
vary at each time step since a functional relation between parameters and states
is used instead of a one-step ahead recursion. This is the approach followed by
Horak (1988); Tibken (1993)n and Puig, Saludes, & Quevedo (1999), among
others.

Concerning the preservation of time dependency of uncertainty in the reported ap-
proaches from the literature, one possibility is to evolve the observer dynamics from
the initial state to the present state by driving a functional relationship between states
and parameters at every time instant (Puig et al., 2003) but with a high computa-
tional cost. To avoid such a complexity, the observer is usually designed to satisfy
the monotonicity condition (Efimov, Räıssi, & Zolghadri, 2013; Karimi Pour et al.,
2017) such that only propagating some trajectories is enough to bound the effect of
the uncertainty in the estimation provided by the observer.

When applying interval observers to fault detection, additionally to the problem
of generating the detection thresholds by uncertainty propagation, another important
problem is how to design the observer gain to be as robust as possible against the un-
avoidable effect of uncertainties. In this regard, there has been an increasing interest
in computing the observer gain in several manners to minimize the effect of uncer-
tainties. Thus, the observers can be designed by considering the robustness against
disturbances, noise or any other uncertainties using, as e.g., H∞ optimization, Linear
Matrix Inequalities (LMIs), among other strategies (Sadrnia, Chen, & Patton, 1996;
Zhong, Ding, Lam, & Wang, 2003).

In the case of set-based approach, a robust observer interval design were reported
by Wang, Zhou, Puig, Cembrano, & Wang (2017) and Wang, Wang, Puig, & Cem-
brano (2018) based on zonotopes for discrete-time uncertain systems. Moreover, in
the case of trajectory-based observer, the design of an interval observer is done for
discrete-time Linear Parameter-Varying (LPV) systems. However, in both cases, only
the time-varying uncertainty is considered. In recent years, there has been an increasing
interest in considering the time-invariant uncertainty (Pourasghar et al., 2017; Räıssi
et al., 2012). The interval observer design has grown in importance and becomes more
challenging in case the system is affected by both time-varying and time-invariant
uncertainties. Therefore, more research on this topic needs to be undertaken con-
sidering both type of uncertainties in set-based and trajectory-based interval observer
approaches. In this regard, the main contribution of this paper is focused on proposing
a robust interval observer approach considering both time-varying and time-invariant
uncertainties whose observer gain is computed by using LMI techniques to achieve H∞
performance, i.e., to be as robust as possible against the effect of uncertainty. Further-
more, the relationship between different interval observer approaches is discussed in
order to propose an integrated approach taking into account both time-varying and
time-invariant uncertainties. The effectiveness of the proposed approach is illustrated
through a numerical example and a two-tank real system.

The remainder of the paper is organized as follows. The problem statement is ad-
dressed in Section 2, while the set-based and proposed interval observer structures
and their robust design are discussed in Sections 3 and 4, respectively. The discussion
about the whole proposed approach and a comparative assessment are presented in
Section 5. Applications based on both a numerical example and a real two-tank system
are used in order to illustrate the effectiveness of the proposed approach in Section 6.
Finally, conclusions are drawn in Section 7. For completeness, some relevant definitions
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and properties are recalled in the Appendix.

Notation

Throughout this paper, Rn denotes the set of n-dimensional real numbers and ⊕
denotes the Minkowski sum. Matrices are written using capital letter, e.g., A, the
calligraphic notation is used for denoting sets, e.g., X , the transfer functions are high-
lighted using script font, e.g., H , ‖.‖s denotes the s-norm, absolute value is represented
by |.| and [x, x] is an interval with lower bound x ∈ Rn and upper bound x ∈ Rn.

2. Problem statement

2.1. Main problem formulation

This paper considers that the uncertain system is represented by a discrete-time linear
time-invariant model in state-space form as follows:

xk+1 = [A0 + ∆A(θ)]xk +Buk + Eωωk, (1a)

yk = Cxk + Eυυk, (1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx are the input, the output and the state vectors,
respectively. Moreover, A0 ∈ Rnx×nx , B ∈ Rnx×nu and C ∈ Rny×nx are the state-space
matrices. Both state disturbance and process noise vectors are considered as time-
varying uncertainties and defined by ω ∈ Rnω and υ ∈ Rnυ , respectively. Moreover,
Eω and Eυ are the associated distribution matrices with appropriate dimensions while
k ∈ N indicates the discrete time. Furthermore, it is assumed that the vector of time-
invariant uncertain parameters θ belongs to an admissible set Θ, i.e.,

Θ =
{
θ ∈ Rnθ : θi ≤ θi ≤ θi ∀i = 1, . . . , nθ

}
, (2)

where nθ denotes the number of uncertain parameters. Moreover, the matrix A0 con-
tains the nominal values of the parameters while ∆A(θ) represents the related uncer-
tainty.

Assumption 2.1. It is assumed that, for all θ ∈ Θ,

∆A < ∆A(θ) < ∆A, (3)

where ∆A ∈ Rnx×nx and ∆A ∈ Rnx×nx are constant and known matrices that contain
the minimum and maximum values of ∆A(θ), respectively. �

Additionally, the additive uncertainties, i.e., time-varying measurement disturbance
ω and process noise υ, are assumed unknown but bounded, i.e.,

W = {ωk ∈ Rnω : |ωk − cω| ≤ ω̄, cω ∈ Rnω , ω̄ ∈ Rnω} , (4a)

V = {υk ∈ Rnυ : |υk − cυ| ≤ ῡ, cυ ∈ Rnυ , ῡ ∈ Rnυ} , (4b)

where cω, ω̄, cυ and ῡ are vectors of constant entries.
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Remark 2.1. Note that the inequalities in Assumption 2.1 and (4) are considered
component-wise. �

2.2. General observer structure

Monitoring the system behavior with the dynamical model (1) can be done by design-
ing a Luenberger observer of the form

x̂k+1 = A0x̂k +Buk + L(yk − ŷk), (5a)

ŷk = Cx̂k, (5b)

where x̂ ∈ Rnx and ŷ ∈ Rny are the state estimation and the output prediction,
respectively. Furthermore, L ∈ Rnx×ny denotes the observer gain that should be chosen
such that (A0−LC) was a Schur matrix. Moreover, the pair (A0, C) is assumed to be
detectable.

To take into account the effects of time-varying uncertainties, i.e., ω and υ, and time-
invariant uncertainties, i.e., ∆A(θ), over the output/state estimation provided by (5),
two different strategies are described next: one based on bounding the uncertainty
effect in the observer estimation and the other based on designing the observer gain
L to minimize such effect.

3. Set-based observer

3.1. Set-based observer structure

In the set-based observer approach, the underlying observer structure is determined
using the algorithm proposed by Montes de Oca, Puig, & Blesa (2012). Generally
speaking, in this approach, the set of states at time instant k + 1 is approximated by
using propagation algorithms from the set of states at time k (for more information see
Puig, Stancu, & Quevedo (2005a) and Combastel (2015)). Moreover, the gain matrix
L can be further tuned with respect to the state estimation purpose, i.e., to increase
the robustness of the state estimation.

As mentioned before, the effect of uncertainty can be expressed using a zonotopic-
set representation, i.e., a particular type of polytope, reducing the set operations to
simple matrix calculations. In this regard, the zonotopic representation of ω and υ in
(4) can be written as

W = 〈cω, Rω〉 , (6a)

V = 〈cυ, Rυ〉 , (6b)

where cω and cυ denote the centers of the sets W and V, respectively, with their
generator matrices Rω ∈ Rnω×nω and Rυ ∈ Rnυ×nυ . Then, monitoring the dynamical
system with a mathematical model as in (1) can be done by designing a Luenberger
observer of the form (5) and following Proposition 3.1.

Assumption 3.1. The time-varying additive uncertainties represented in (6) are as-
sumed to be bounded by a unit hypercube expressed as the centered zonotopes, i.e.,
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∀ k ≥ 0, ωk ∈ [−1, 1]nω = 〈0, Inω〉, υk ∈ [−1, 1]nυ = 〈0, Inυ〉 where Inω and Inυ
denote identity matrices of suitable dimensions. �

Assumption 3.2. The initial state x0 belongs to the zonotopic set X0 = 〈c0, R0〉,
where c0 ∈ Rnx denotes the center and R0 ∈ Rnx×rR0 is non-empty matrix containing
the generators matrix of the initial zonotope X0. �

Proposition 3.1. (Zonotopic-observer structure) Considering the observer scheme
(5) and the uncertainties modelled as in Assumptions 2.1, 3.1 and 3.2, the center c
and the segment matrix R of the zonotope that bounds the state estimation provided
by the observer (5) can be recursively defined as

ck+1 = mid(A∗(θ))ck +Buk + Lyk, (7a)

Rk+1 =

[
�(A∗(θ)Řk)

diam(A∗(θ))

2
ck Eω −LEυ

]
, (7b)

where A∗(θ) = [A0 + ∆A(θ)] − LC, Řk =↓q {Rk} (see Property 2 in the Appendix),
mid denotes the center and diam is the diameter of the interval. Moreover, the state
inclusion property x̂k ∈ 〈ck, Rk〉 holds for all k ≥ 0 (see Properties 3 and 4 in the
Appendix) make use of a zonotope inclusion � (Z) operator.

Proof. By including in the observer scheme (5) the uncertainties modelled as in
Assumptions 2.1, 3.1 and 3.2, i.e.,

x̂k+1 = A∗(θ)x̂k +Buk + Eωωk + L(yk − ŷk), (8a)

ŷk = Cx̂k + Evvk, (8b)

and assuming that x̂k ∈ 〈ck, Rk〉, ωk ∈ 〈0, Inω〉 and υk ∈ 〈0, Inυ〉, where the inclusion
property is preserved by using the reduction operator, which means x̂k ∈

〈
ck, Řk

〉
,

then the the center c and the segment matrix R of the zonotopic representation of the
interval observer can be written using (5) as follows:

ck+1 = (A∗(θ))ck +Buk + Lyk, (9a)

Rk+1 =
[
(A∗(θ))Řk Eω −LEυ

]
. (9b)

Thus, based on Definition 2 and Properties 1 and 4 in the Appendix, ck+1 and Rk+1

in (9) can be derived as in (7). �
Both time-varying and time-invariant uncertainties are considered unknown but

bounded in their uncertainty intervals and can vary arbitrarily at each time instant
within the interval obtained using the zonotopic observer approach and Definition 5
in the Appendix.

3.2. Robust set-based observer design

In order to reduce the effect of uncertainties on the state estimation and achieving the
accurate estimation, the well-known H∞ technique is used in this paper (Ding, 2008).

In this regard, considering Lemma 2, and according to Chen & Patton (2012), the
uncertain parameter in (1a) can be approximated only based on uncertain term. Then,
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(1a) can be written as

xk+1 = A0xk +Buk + Eωωk + Eθθk, (10)

with

∆A(θ)xk ≈ Eθθk, (11)

where θk ∈ Rnθ is a disturbance, namely, an unknown but constant vector. Moreover,
Eθ is the associated non-empty distribution matrix of suitable dimensions that shows
the direction of the uncertainty. It is worth mentioning that based on (79) in Lemma 2
the effect of the state is embedded in θk.

Keeping these considerations in mind, the zonotopic observer structure in Proposi-
tion 3.1 can be rewritten by using Assumption 3.3 and Proposition 3.2.

Assumption 3.3. The time-invariant additive uncertainties represented in (11) are
assumed to be bounded by a unit hypercube expressed as centered zonotope, i.e.,
∀ k ≥ 0, θk ∈ [−1, 1]nθ = 〈0, Inθ〉, where Inθ denotes the identity matrix. �

Proposition 3.2. Considering the observer (5) and Assumptions 2.1, 3.1 and 3.2,
the center c and the shape matrix R of the zonotope bounding the observer estimation
can be recursively defined as

ck+1 = (A0 − LC)ck +Buk + Lyk, (12a)

Rk+1 =
[
(A0 − LC)Řk Eω −LEυ Eθ

]
. (12b)

Proof. Assume xk ∈
〈
ck, Rk

〉
, ωk ∈

〈
0, Inω

〉
, υk ∈

〈
0, Inυ

〉
and θ ∈

〈
0, Inθ

〉
for

all k ≥ 0, where the inclusion property is preserved and (5) can be written using the
reduction operator as

xk+1 ∈
〈
ck+1, Rk+1

〉
=
〈
(A0 − LC)ck, (A0 − LC)Řk

〉
⊕
〈
Buk, 0

〉
⊕
〈
Lyk, 0

〉
⊕
〈
0, Ew

〉
⊕
〈
0, −LEυ

〉
⊕
〈
0, Eθ

〉
.

(13)

Thus, based on Definition 2 and Property 1, the center ck+1 and the shape matrix
Rk+1 in (13) can be expressed as in (12). �

Now, the dynamics of estimation error using observer (5) and system uncertainty
modelling (10) are introduced in Proposition 3.3.

Proposition 3.3. Given that the observation error in the set-based observer approach
is defined as

ek = xk − x̂k, (14)

then, considering the dynamical model (1) and the observer structure (5), the dynamics
of observation error can be obtained as

ek+1 = (A0 − LC)ek + Eddk, (15)
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where

Ed =
[
Eθ Eω −LEυ

]
, (16)

dk =
[
θk ωk υk

]>
. (17)

Proof. Based on Lemma 2 in Appendix, (1a) can be rewritten as in (10). Therefore,
considering the state estimation error as in (14), the dynamics of the observation error
can be obtained using (1), (10), (5) and (14), yielding to (15). �

Considering the transfer function Ged(z) from uncertainties to the state estimation
error, where z denotes the z-transform, the H∞ norm of Ged(z) is known as the max-
imum singular value of Ged(z). Then, according to Ding (2008), Theorem 3.4 can be
used to compute the observer gain minimizing the effect of the uncertainty and leading
to a robust observer.

Theorem 3.4. Given a scalar γ > 0, the state estimation error dynamics in (15) are
stable and satisfy the following H∞ performance index:

‖Ged(z)‖∞ < γ, (18)

if there exists a symmetric positive definite matrix P ∈ Rnx×nx , i.e., P > 0, and a
matrix M ∈ Rnx×ny such that


−P PA0 −MC PEθ PEω −MEυ 0
∗ −P 0 0 0 I
∗ ∗ γI 0 0 0
∗ ∗ ∗ γI 0 0
∗ ∗ ∗ ∗ γI 0
∗ ∗ ∗ ∗ ∗ γI

 < 0. (19)

In the case that the LMI (19) can be solved, the gain of the observer can be computed
as

L = P−1M. (20)

Proof. Considering the Proposition 3.3, the transfer function Ged(z) can be obtained
as

Ged(z) = (zI − (A0 − LC))−1Ed. (21)

Then, according to Ding (2008), it can be written that (A0−LC) is a stable matrix
and

∥∥(zI − (A0 − LC))−1Ed
∥∥ < γ. Furthermore, there exists a symmetric positive

definite P such that


−P P (A0 − LC) PEd 0

(A0 − LC)>P −P 0 I

Ed
>P 0 γI 0
0 I 0 γI

 < 0. (22)
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Now, by substituting (16) into (22) and using the Schur complement, (22) can be
rewritten as 

−P P (A0 − LC) PEθ PEω −PLEυ 0
∗ −P 0 0 0 I
∗ ∗ γI 0 0 0
∗ ∗ ∗ γI 0 0
∗ ∗ ∗ ∗ γI 0
∗ ∗ ∗ ∗ ∗ γI

 < 0. (23)

Now, by introducing the new variable M = PL, the LMI in (19) can be obtained. �

3.3. Guaranteed state estimation using an optimization-based method

Based on Definition 4 in the Appendix, the size of the zonotope in (12), measured
by W-radius of a zonotope, e.g., S = 〈c,R〉 with R ∈ Bns where B = [−1, 1] is a
hypercube with proper dimension, is defined as ιw, and it is computed using

ιw,k+1 = max
s̊k+1∈B(ns̊+nx+2ny)

‖Rk+1s̊k+1‖22,W

= max
s̊k+1∈B(ns̊+nx+2ny)

s̊>k+1R
>
k+1WRk+1s̊k+1,

(24)

where s̊ ∈ Bns̊ is a unitary box and W is a weighting matrix.
Then, the gain of the observer can be obtained by minimizing the size of the state-

bounding zonotope as in Theorem 3.5. Acá vuelven a aparecer las “s” con bolitas.
¿Son necesarias?

Theorem 3.5. Consider that the state-bounding zonotope X̂ in Proposition 3.2 is
parametrized by means of the observer gain, i.e., X̂k+1(L) = 〈ck+1(L), Rk+1(L)〉.
Then, considering ρ ∈ (0, 1) and ε > 0, the minimization criterion of the size of

the zonotope X̂ , i.e.,

ιw,k+1 ≤ ριw,k + ε (25)

holds if there exist matrices W ∈ Rnx×nx, W = W> > 0, Y ∈ Rnx×ny , and diagonal
matrices Γ ∈ Rnx×nx, Υ ∈ Rny×ny , and Ω ∈ Rnx×nx such that

ρW ∗ ∗ ∗ ∗
0 Γ ∗ ∗ ∗
0 0 Υ ∗ ∗
0 0 0 Ω ∗

WA0 − Y C WEω −Y Eυ WEθ W

 > 0, (26a)

Γ > 0, Υ > 0, Ω > 0, (26b)

tr(Γ ) + tr(Υ ) + tr(Ω) < ε (26c)

are satisfied.
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Proof. Considering (24) and (25), it follows that

max
s̊k+1∈B(ns̊+nω+2nυ)

‖Rk+1s̊k+1‖22,W − max
s̊k∈Bns̊

ρ ‖Rks̊k‖22,W − ε ≤ 0. (27)

Then, considering that for any sk ∈ Bns̊ ,

max
s̊k∈Bns̊

‖Rks̊k‖22,W ≥ ‖Rksk‖
2
2,W , (28)

the sufficient condition

‖Rk+1sk+1‖22,W − ρ ‖Rksk‖
2
2,W − ε < 0 (29)

holds.
Furthermore, recalling the shape matrix of the state-bounding zonotope in (12) and

setting Y = WL, and also denoting

Rk+1 =
[
WA0 − Y C WEω −Y Eυ WEθ

]
, (30)

then, (29) can be rewritten as

Π>R>k+1W
−1Rk+1Π − ρs>k R>kWRksk − ε < 0, (31)

where Π =


Rksk
α1

α2

α3

. Thus, for any diagonal positive semi-definite matrices Γ , Υ and

Ω, then, it can be written for any α1 ∈ Bnx , α2 ∈ Bny and α3 ∈ Bny that

α>1 Γα1 =

nx∑
i=1

α2
1Γi ≤ tr(Γ ), (32a)

α>2 Υα2 =

ny∑
i=1

α2
2Υi ≤ tr(Υ ), (32b)

α>3 Ωα3 =

ny∑
i=1

α2
3Ωi ≤ tr(Ω), (32c)

where Γi, Υi and Ωi are the diagonal elements of Γ , Υ and Ω, respectively. Therefore,
using (32), it can be obtained that

tr(Γ )− α>1 Γα1 ≥ 0, ∀α1 ∈ Bnx , (33a)

tr(Υ )− α>2 Υα2 ≥ 0, ∀α2 ∈ Bny , (33b)

tr(Ω)− α>3 Ωα3 ≥ 0, ∀α3 ∈ Bny . (33c)
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Thus, a sufficient condition of (31) can be obtained by adding (33) to (31) as

Π>R>k+1W
−1Rk+1Π − ρs>k R>kWRksk + tr(Γ )− α>1 Γα1 + tr(Υ )

− α>2 Υα2 + tr(Ω)− α>3 Ωα3 − ε < 0.
(34)

Moreover, (34) can be rearranged as

(Π>R>k+1W
−1Rk+1Π − ρs>k R>kWRksk − α>1 Γα1 − α>2 Υα2 − α>3 Ωα3)+

(tr(Γ ) + tr(Υ ) + tr(Ω)− ε) < 0.

If (26c) holds, the satisfaction of (34) can be guaranteed when

(Π>R>k+1W
−1Rk+1Π − ρs>k R>kWRksk − α>1 Γα1 − α>2 Υα2 − α>3 Ωα3) < 0,

that can be reformulated as

Π>

R>kW−1Rk −


ρW 0 0 0
0 Γ 0 0
0 0 Υ 0
0 0 0 Ω


Π < 0. (35)

Moreover, from (35), the sufficient condition
ρW 0 0 0
0 Γ 0 0
0 0 Υ 0
0 0 0 Ω

−R>kW−1Rk > 0 (36)

is obtained. Now, using the Schur complement and considering (30), the LMI in (26a)
is then obtained. �

Algorithm 1 summarizes the state estimation methodology using the set-based in-
terval observer approach.

Algorithm 1 State estimation using set-based observer approach

1: k ←− 0
2: X0 = 〈c0, R0〉
3: while 1 do
4: Obtain and store input-output data {uk, yk}
5: Compute the observer gain using Theorems 3.4 and 3.5
6: Compute

〈
ck+1, Rk+1

〉
using (12)

7: k ← k + 1
8: end while

In order to overcome the problems associated to the set-based interval observer
approach, e.g., wrapping effect and range evaluation of an interval function, already
discussed in Section 1, the state estimation can be computed using the trajectory-
based interval observer approach that relies on the computation of the approximated
state set using point-wise trajectories. A discussion of such approach will be the main
topic of the next section.
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4. Interval observer approach

4.1. Interval observer structure
RAE-1
R1-1As mentioned before, in the case of trajectory-based interval observer approach,

the value of parameter uncertainty is unknown but bounded within an interval and
its invariance can be guaranteed at each time instant. In this approach, the interval
of the states can be estimated at each iteration by using specific state trajectories
corresponding to particular values of uncertainties ∆A(θ).

According to Puig et al. (2003), the loss of the time dependency of the parametric
uncertainty in the set-based interval observer approach and the problem of wrapping
effect can be avoided by deriving a function based on the relationship between the
states and parameters from the initial state to the current state by considering the
observer dynamics including uncertainties (8) as

x̂k = (A∗(θ))kx0 +

k−1∑
j=0

(A∗(θ))k−1−j B∗ u∗j , (37)

where

B∗ =
[
B L Eω −LEυ

]
, u∗ =

[
uk yk ωk υk

]>
.

Then, considering θ ∈ Θ, both upper and lower bounds of the state estimation of
the dynamical model (1), i.e., X̂ (k) = [x̂(k), x̂(k)], can be obtained by solving the
following optimization problems:

x̂k = max
θ∈Θ, ωj∈W, υj∈V

[
(A∗(θ))kx̂0 +

k−1∑
j=0

(A∗(θ))k−1−j B∗ u∗j

]
, (38a)

x̂k = min
θ∈Θ, ωj∈W, υj∈V

[
(A∗(θ))kx̂0 +

k−1∑
j=0

(A∗(θ))k−1−j B∗ u∗j

]
, (38b)

both subject to

x0 ∈ �X0, (38c)

where x̂k and x̂k denote the lower and upper bounds of the interval approximation,
respectively.
Remark 4.1. It is worth mentioning that both upper and lower bounds of the interval
approximation of x̂k should be obtained separately for each component. �

Numerical methods can be used to solve the optimization problems in (38) for com-
puting x̂ and x̂ 1. However, the computational burden is high. Alternatively, when
designing the observer to result in a monotonic system as in Efimov, Räıssi, Perru-
quetti, & Zolghadri (2013), the solution of (38) is achieved using the extreme values
of uncertainties. This means that just considering two different observers, one per
each extreme value for estimating the upper and lower bounds, is enough for reduc-

1This approach is deeply investigated in Puig et al. (2003).
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ing the computational load. These proposed observer design can be done by following
Proposition 4.1.

Proposition 4.1. Considering an observer that satisfies the monotonicity property,
the time-invariant uncertainty θ ∈ Θ, Lemma 1 and Assumption 2.1, the numerical
solution of (38) is achieved using the structure of the interval observer approach with
the purpose of estimating the state as

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + ξk, (39a)

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + ξk, (39b)

with

Ed =
[
Eω −LEυ

]
, dk =

[
ωk υk

]>
, (40a)

Ed =
[
Eω −LEυ

]
, dk =

[
ωk υk

]>
, (40b)

ξk = ∆A+ x+
k −∆A+x−k −∆A−x+

k + ∆A− x−k , (40c)

ξk = ∆A+ x+
k −∆A+x−k −∆A−x+

k + ∆A− x−k , (40d)

∆A+ = max
{

0, ∆A
}
, ∆A− = ∆A+ −∆A, (40e)

∆A+ = max {0, ∆A} , ∆A− = ∆A+ −∆A, (40f)

x+ = max {0, x} , x− = x+ − x, (40g)

x+ = max {0, x} , x− = x+ − x, (40h)

where L ∈ Rnx×ny and L ∈ Rnx×ny are the gains of upper and lower observers, respec-
tively.

Proof. Considering the satisfaction of monotonicity property for the observer, (37)
can be unfolded as

x̂k = (A∗(θ))kx0 +

k−1∑
j=0

(A∗(θ))k−1−j
(
Buk,j + Lyk,j + Eωωk,j − LEυυk,j

)
. (41)

It can be seen from (41) that the estimation depends on θ, ω and υ. Moreover, as it
is proposed by Puig et al. (2003), concerning the trajectory-based approach used to

compute a estimation of the system state region, the observer state region X̂k will be
bounded at any time instant k by its interval hull �X̂k+1 = [x̂k, x̂k] where

x̂k = max
θ∈Θ, ωj∈W, υj∈V

[
(A∗(θ))kx0

+

k−1∑
j=0

(A∗(θ))k−1−j
(
Buk,j + Lyk,j + Eωωk,j − LEυυk,j

)]
,

(42a)

x̂k = min
θ∈Θ, ωj∈W, υj∈V

[
(A∗(θ))kx0

+

k−1∑
j=0

(A∗(θ))k−1−j
(
Buk,j + Lyk,j + Eωωk,j − LEυυk,j

)]
,

(42b)
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both subject to

x0 ∈ �X0, (42c)

and assuming time-invariant uncertain parameters (this method is known as a time-
invariant approach). Considering the idea of this approach, at the same time that time
invariance is preserved, the wrapping effect is avoided due to the fact that uncertainty
is not propagated from step to step but from the initial state. This approach yields
the accurate time-invariant worst-case observation without any conservatism, assum-
ing that the previous optimization problems could be solved with infinite precision and
the global optimum could be determined. However, in practice it only could be solved
with a given precision. On the other hand, one of the main drawbacks of this approach,
besides its high computational complexity, is that the objective function is a polyno-
mial with degree increasing by one at each iteration. As a result, the amount of needed
computation increases with time being impossible to operate over a large time inter-
val. Moreover, according to Cugueró, Puig, Saludes, & Escobet (2002), the wrapping
effect affects to those interval models which are not monotonic since there are some
elements of their model state-space matrix which are negative. Thus, when modelling a
non-monotonic interval system using the interval observation approach, an monotonic
interval observer (5) could be obtained designing the observer gain matrix L. There-
fore, its state-space matrix A0 becomes monotonic in spite of the non-monotonicity
of system state-space matrix having in mind that based on Chen & Patton (2012),
the time-invariant uncertainty θ ∈ Θ and using Lemma 1 and Assumption 2.1, the
following inequality is stated:

ξk ≤ ∆A(θ)xk ≤ ξk. (43)

Moreover, considering the functions for upper and lower bounds based on the relation-
ship between the state and parameters from initial state to the current state, the effect
of initial state can be neglected in (42). Thus, when designing the observer to result in
a monotonic system, the solution of (42) is achieved using the extreme values of the
bounded uncertainties that can be formulated as in (39). Then, (39) can guarantee the
iterative solution of the optimization problem in (42), the numerical solution of (38)
considering Lemma 1. In this regard, the loss of the time dependency of the parametric
uncertainty in the set-based interval observer approach and the problem of wrapping
effect can also be avoided. �

Remark 4.2. In fact, the main goal of using Lemma 1 is to guarantee that x ≤
x ≤ x. But, since bounded uncertainties are considered for the case of time-varying
uncertainties, it is already guaranteed that Eddk < Eddk < Eddk, where Ed and Ed
are the constant monotonic matrices, and dk and dk are the extreme values of the
time-varying bounded uncertainties. �

Consequently, the estimation of the lower and upper bounds of the output measure-
ment y can be computed as

yk = C+xk − C−xk, (44a)

yk = C+xk − C−xk, (44b)

where C+ = max {0, C} and C− = C+ − C.
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RAE-1

4.2. Robust interval observer design

There are two issues that should be taken into account when designing the robust
observer in the case of the proposed interval observer approach. First, the convergence
of the observer should be guaranteed, which will be done based on the H∞ technique.
Second, the monotonicity of the observer in spite of non-monotonicity of the system
state matrix should also be satisfied (see Property 5 in the Appendix). In this regard,
both the Lyapunov stability condition and the following condition should be fulfilled
together:

(A0 − LC), (A0 − LC) > 0, or, (A0 − LC), (A0 − LC) ∈ Rnx×nx+ . (45)

The dynamics of state estimation error can be obtained by following Proposition 4.2,
which are required for using the H∞ technique.
Proposition 4.2. Given that the upper and lower bounds of the state estimation error
for the proposed interval observer approach are respectively defined as

ek+1 = xk+1 − xk+1, (46a)

ek+1 = xk+1 − xk+1, (46b)

then, based on (1) and (39), and also considering Lemma 2, the upper and lower
bounds dynamics of the state estimation error can be obtained as

ek+1 = (A0 − LC) ek + Eededk , (47a)

ek+1 = (A0 − LC) ek + Eed edk , (47b)

where

Eed =
[
Ed Eθ

]
, edk =

[
dk eθ

]>
, (48a)

Eed =
[
Ed Eθ

]
, edk =

[
dk eθ

]>
, (48b)

where eθ and eθ show the effect of the time-invariant uncertain parameter θ on the
upper- and lower-bound dynamics of the state estimation error, respectively, i.e.,

eθ = θ − θ,
eθ = θ − θ.

Proof. By substituting (1) and (39) in (46a), it can be written that

ek+1 =(A0 − LC)xk − (A0 − LC)xk + LEυυk + Eωωk

− LEυυk + ξk −∆A(θ)xk − Eωωk.
(49)
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Then, (49) can be rearranged as

ek+1 =

(
(A0 − LC) (xk − xk)

)
+

(
Eω (ωk − ωk)

)

−

(
LEυ (υk − υk)

)
+

(
ξk −∆A(θk)xk

)
.

(50)

Based on (43) and introducing the following parameters:

eωk = ωk − ωk, eυk = υk − υk, eξk = ξk −∆A(θk)xk,

then (50) can be rewritten as

ek+1 =

(
(A0 − LC) ek

)
+

(
Eωeωk

)
−

(
LEυeυk

)
+

(
eξk

)
.

Moreover, considering Lemma 2, the term eξk can be approximately computed as

eξk ≈ Eθeθ. (51)

Hence, considering (51), the upper bound dynamics of the state estimation error
can be derived as

ek+1 =

(
(A0 − LC) ek

)
+

(
Eωeωk

)
−

(
LEυeυk

)
+

(
Eθeθ

)
. (52)

Therefore, the upper bound dynamics of the state estimation error in (47a) can be
obtained by substitution of the terms in (48a) and (40a) into (52). Following the same
procedure, (47b) can be obtained for the lower bound dynamics of the state estimation
error. �

Now, by defining the transfer function Ged(z) for the upper and lower state estima-

tion error dynamics as Ged(z) and Ged(z), the maximum singular value (H∞ norm) of

transfer functions Ged(z) and Ged(z) are denoted by
∥∥∥Ged(z)∥∥∥

∞
and

∥∥∥Ged(z)∥∥∥
∞

, respec-

tively. Then, Theorem 4.3 can be used design two robust observers for the estimation
of the upper and lower bounds of state-bounding observer considering the effect of
uncertainties. Thus, both convergence and monotonicity properties of the observer are
considered to design such observers.

Theorem 4.3. Taking into account the satisfaction of the monotonicity property and
given a scalar γ > 0, upper and lower state estimation error dynamics in (47) are
stable and satisfy the following H∞ performance indices:∥∥∥Ged(z)∥∥∥

∞
< γ,

∥∥∥Ged(z)∥∥∥
∞
< γ, (53)

if there exists a symmetric positive definite matrix P ∈ Rnx×nx and a matrix M ∈
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Rnx×ny such that
−P PA0 −MC PEθ PEω −MEυ 0
∗ −P 0 0 0 I
∗ ∗ γI 0 0 0
∗ ∗ ∗ γI 0 0
∗ ∗ ∗ ∗ γI 0
∗ ∗ ∗ ∗ ∗ γI

 < 0, (54a)

PA0 −MC ≥ 0. (54b)

Analogously, for the lower observer, if there exists a symmetric positive definite matrix
P ∈ Rnx×nx and a matrix M ∈ Rnx×ny such that

−P PA0 −MC PEθ PEω −MEυ 0
∗ −P 0 0 0 I
∗ ∗ γI 0 0 0
∗ ∗ ∗ γI 0 0
∗ ∗ ∗ ∗ γI 0
∗ ∗ ∗ ∗ ∗ γI

 < 0, (55a)

PA0 −MC ≥ 0, (55b)

thus, solving the LMIs in (54) and (55), the gain of upper observer L and lower
observer L can be respectively obtained as

L = P
−1
M, (56a)

L = P−1M. (56b)

Proof. The proof follows following the same procedure as it the one used to proof
Theorem 3.4. They only differ from the second LMI for upper and lower observers to
satisfy the monotonicity property, i.e., A0 − LC > 0. �

Algorithm 2 summarizes the state estimation using the proposed interval observer
approach.

Algorithm 2 State estimation using the proposed interval observer approach

1: k ←− 0
2: [x0, x0] = [xk, xk]
3: while 1 do
4: Obtain and store input-output data {uk, yk}
5: Compute the observer gain using Theorem 4.3
6: Compute xk+1 and xk+1 using (39)
7: k ← k + 1
8: end while

5. Integrated approach
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5.1. Comparative assessment

Using the results presented in Sections 3 and 4, the state-bounding observer can be
designed by using both (12) and (39), which corresponds, respectively, to the set-
based and proposed interval observer approaches. According to Section 3.2, in the
set-based interval observer approach, the satisfaction of the LMI in Theorem 3.4 is
required in order to guarantee the robustness of the interval observation. Moreover,
the size of the obtained state-bounding zonotope can be minimized using the LMI (19)
in Theorem 3.5. On the other hand, according to Section 4.2, both robustness and
monotonicity property of the proposed interval observer approach can be guaranteed
through the satisfaction of the LMIs (54) and (55) in Theorem 4.3 for computing the
gains of the upper and lower observers.

In an attempt to make both approaches comparable, the interval hull2 introduced
in Definition 5 in the Appendix is used for the case of set-based interval observer
approach. In this regard, the interval hull of the state-bounding zonotopic set in (12)
can be written as

xk,sup,i = ck,i + ‖Rk,i‖1 , (57a)

xk,inf,i = ck,i − ‖Rk,i‖1 , (57b)

where xk,sup ∈ Rnx and xk,inf ∈ Rnx are the maximum and the minimum values of the
X , respectively. Moreover, ‖Rk,i‖1 stands for row sum where Rk,i is the i-th row of
Rk. In Figure 1, there is a schematic diagram of the interval hull for a two-dimensional
zonotope.

x1

x2

x1,supx1,inf

x2,sup

x2,inf

c1

c2

Figure 1. Schematic diagram of the interval hull of a two-dimensional zonotope.

Therefore, considering (57) instead of (12) leads to compute the extreme values of
the trajectories of the state-bounding set in the set-based interval observer approach.
Since the main structure of the proposed interval observer approach relies on comput-
ing the extreme values of the state estimation, using the concept of interval hull for
the set-based interval observer approach allows to compare the results of the set-based
and proposed interval observer approaches.

By looking at both approaches with the purpose of further analysis, Proposition 5.1
can be used in order to compare the nominal values of the state estimation that can

2An interval hull of a set is defined as the smallest centered interval vector that contains the set.
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be obtained using each approach.

Proposition 5.1. Considering an interval observer with symmetric uncertainty sat-
isfying the monotonicity property, the mean value of computed upper and lower bounds
of the state estimation using (39) with L = L = L, the mean value in the case of the
proposed interval observer approach plays the same role as the center of the zonotope
in the set-based observer approach, i.e.,

ck,i =
xk,i + xk,i

2
, (58)

where the index i refers to the rows of the vector.

Proof. Let consider a interval observer designed to satisfy the monotonic property
observer and assuming L = L = L. Moreover, assuming that the extreme values of
uncertainties (for the upper and lower observers) are equal, i.e., dk = dk and ξk = ξk,
the mean value of xk+1 and xk+1 can be obtained using (39) as(

xk+1,i + xk+1,i

2

)
=(A0 − LC)

(
xk,i + xk,i

2

)
+Buk,i + Lyk,i

+ Ed

(
dk,i + dk,i

2

)
+

(
ξk,i + ξk,i

2

)
.

(59)

Now, by considering Assumption 3.1, the mean value of upper and lower bounds of
the state estimation using (39) can be written as(

xk+1,i + xk+1,i

2

)
= (A0 − LC)

(
xk,i + xk,i

2

)
+Buk,i + Lyk,i. (60)

Then, comparing the right-hand side of (60) and (12a), it can be seen that the center
of the state-bounding observer using the set-based interval observer approach and the
mean values of both xk and xk plays the same role. �

Remark 5.1. It is worth mentioning that the equality in (58) is satisfied when the
observer is monotonic with symmetric uncertainty. Otherwise, there exists over ap-
proximation and the condition in (58) is not longer satisfied. �

On the other hand, the width between the upper and lower bounds3 that are com-
puted using both set-based and proposed approaches for the state estimation is related
in Proposition 5.2.

Proposition 5.2. Given the interval hull in Definition 5, the relationship between
the shape matrix considering the set-based interval observer approach and the extreme
values of the interval observation provided by the proposed interval observer approach
can be written as

xk,sup,i = ck,i + ‖Rk,i‖1 = xk,i, (61a)

xk,inf,i = ck,i − ‖Rk,i‖1 = xk,i. (61b)

3This part shows the effect of the uncertainties since the deterministic approach is used.
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Proof. Based on Definition 5, the interval hull of the state bounding observer can
be obtained as (57). Then, having in mind that the interval computed from the upper
and lower observers in the proposed interval observer approach plays the same role as
the interval hull computed using the set-based interval observer approach, it can be
written that

xk,sup,i = xk,i, (62a)

xk,inf,i = xk,i. (62b)

Then, considering (57), (61) can be obtained from (62). �

5.2. Integrated scheme

By considering the relationship between both interval observer approaches, an inte-
grated scheme combining them is proposed for interval observation. This integrated
approach can be obtained using Propositions 5.1 and 5.2 as it is proposed in Theo-
rem 5.3.

Theorem 5.3. Given Propositions 5.1 and 5.2, the nominal value of the state-
bounding observer xnom in the case of the proposed interval observer approach is equal
to the center of the zonotope in the case of set-based interval observer approach. Then,
it can be written that

xk+1,nom = (A0 − LC)xk,nom +Buk + Lyk. (63)

Moreover, having in mind the same idea as Proposition 4.1, given the interval hull
in Definition 5 and considering (61), the effect of both considered time-varying and
time-invariant uncertainties (by using Lemma 2) can be bounded as

xk+1,sup = (A0 − LC)xk,sup +Buk + Lyk + Eddk + ξk, (64a)

xk+1,inf = (A0 − LC)xk,inf +Buk + Lyk + Eddk + ξk, (64b)

where the gain L = P−1M should be computed using the same LMI in (19) to satisfy
the H∞ performance together with the new LMI

PA0 −MC ≥ 0, (65)

to satisfy the monotonicity property of (A0 − LC).

Proof. Given Proposition 5.1 and assuming that L = L = L, the nominal value
of the state estimation can be obtained using the computed center in (60) as (63).
Moreover, using Proposition 5.2, the effect of the uncertainties can be alternatively
computed as (64).

Moreover, the proof of the mentioned LMIs in (19) and (65) to compute the observer
gain can be obtained following the same manner as Theorems 3.4 and 4.3 to satisfy
both H∞ performance and monotonicity property, respectively. �

Theorem 5.3 shows that both approaches can be merged, generating a new approach
where the center and segments of the state-bounding observer are propagated indepen-
dently (as in zonotopic approach), but obtaining explicit formulas that do not require
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the use of zonotopes. However, since the observer structure in the set-based interval
observer approach is reformulated using the interval hull of the state-bounding zono-
tope for computing the upper and lower bounds as in the proposed interval observer
approach, the integrated scheme will only avoid the wrapping effect and preserve the
parameter uncertainty time invariance if the observer gain is designed such that the re-
sulting observer matrix satisfies the monotonicity property. Otherwise, the integrated
scheme will not work satisfactorily leading to an unstable interval observer due to the
wrapping effect (Puig et al., 2005a). Moreover, the robustness of the observer can be
guaranteed considering the H∞ performance when computing the observer gain using
Theorem 3.5.

Corollary 5.4. Using Theorem 5.3, the set-based and proposed interval observer ap-
proaches can produce the same results when the observer is monotonic.

Proof. Given a system dynamic (10) and using the structure of the proposed interval
observer approach in Section 4, the extreme values of upper and lower bounds are
computed as

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + Eθθk, (66a)

xk+1 = (A0 − LC)xk +Buk + Lyk + Ed dk + Eθθk. (66b)

On the other hand, the main concept of using the set-based interval observer approach
to compute the state-bounding observer is to generate both upper and lower bounds us-
ing some propagation algorithms (such as the algorithm mentioned in Proposition 3.1)
to compute the set Xk+1 from Xk. Then, it can be written that

xk+1 ∈
〈
ck+1, Rk+1

〉
=
〈
(A0 − LC)ck, (A0 − LC)Řk

〉
⊕
〈
Buk, 0

〉
⊕
〈
Lyk, 0

〉
⊕
〈
0, Ew

〉
⊕
〈
0, −LEυ

〉
⊕
〈
0, Eθ

〉
.

(67)

Now, given the relationship obtained in Theorem 5.3, (67) can be reformulated using
the concept of the interval hull to compute the same result as in (66). �

Algorithm 3 summarizes the state estimation using the proposed integrated interval
observer approach.

Algorithm 3 State estimation using integrated interval observer approach

1: k ←− 0
2: [x0, x0] = [xk,inf , xk,sup]
3: while 1 do
4: Obtain and store input-output data {uk, yk}
5: Compute the observer gain by solving the LMIs in (19) and (65)
6: Compute xk+1,inf and xk+1,sup using Theorem 5.3
7: k ← k + 1
8: end while

6. Case study

Two examples are used for illustrating the effectiveness of the approaches proposed in
the previous sections: a numerical example and a real application example (the well-
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known two-tanks system benchmark). Generally speaking, these application examples
are selected to show their performance: i) when the system is non-monotonic, i.e.,
at least one element of system matrix A is negative, ii) when the observer is non-
monotonic, i.e., at least one element of observer matrix (A0 − LC) is negative. In
both cases, the proposed observer design is used to overcome the problems using both
set-based and proposed interval observer approaches.

6.1. Numerical example

The first example considered is based on the dynamical model (1) with

A =

[
0.8 + θ11 0.1 + θ12 0.3 + θ13
0 + θ21 0.8 + θ22 0.2 + θ23

0.01 + θ31 0 + θ32 0.8 + θ33

]
, B =

[
0
0
1

]
, C = [0 0 1] , (68)

where the time-invariant uncertain parameters are bounded by the interval θij ∈
[−0.01, 0.01], where the indices i and j refer to the ith line and jth column of ∆A(θ),
respectively. Moreover, the example includes time-varying uncertainty, i.e., the state
disturbance and the measurement noise, Eω and Eυ are used as in (1) with

Eω =

0.08 0 0
0 0.08 0
0 0 0.08

 , Eυ =
[
0.2
]
. (69)

The input signal u is given by u = sin(t) for t ∈ [0, 3π] with 200 time steps.
Considering the results presented in the previous sections, it is worth comparing

the proposed interval observer approach in Section 4 and set-based interval observer
approach for the case of a monotonic system. In this regard, matrix A is considered as
in (68). It can be seen that all the entries of A in (68) are positive values. Therefore,
the system is a monotonic system. Then, the set-based interval observer approach
gain is computed using Theorem 3.4 to satisfy the H∞ performance together with
Theorem 3.5 to minimize the size of the obtained zonotope at each time instant.

Then, it yields L =
[
0.2781 0.2855 0.7982

]>
. Furthermore, the gains of upper and

lower bounds of the proposed interval observer approach in Section 4 are computed

using (54) and (55), respectively. In this case, it yields L = L =
[
0.3 0.2 0.8

]>
.

Figure 2 shows the obtained results from the simulation of the monotonic system.

Remark 6.1. It is worth mentioning that the set-based approach allows to estimate
the state set one time instant ahead based on the set estimated in the previous time
instant. But, in order to put both approaches into the comparable framework, the
state sets are projected into the state space separately. �

As it can be seen from Figure 2, the behavior of the system can be correctly es-
timated using both set-based and proposed interval observer approaches. Moreover,
both mentioned approaches are producing the same results for the case of a monotonic
system.

The problem appears when the considered system is not monotonic. To illustrate
this situation, the scenario to be tested is the case when matrix A contains at least
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Figure 2. Set-based vs. proposed interval observer approach behavior considering monotonic system.

one negative element. To this aim, A is now considered as

A =

 0.8 + θ11 −0.1 + θ12 0.3 + θ13

0 + θ21 0.8 + θ22 0.2 + θ23

0.01 + θ31 0 + θ32 0.8 + θ33

 . (70)

Having a negative element in matrix A leads to test the case that the system is not
monotonic since the positivity condition is not satisfied. The first simulation is the
analysis of the behavior of the set-based and proposed interval observer approaches
when only the stability condition is considered for designing the observer through the
obtained LMI in (19) for the set-based interval observer approach, and (54a) and (55a)
for the trajectory-based interval observer approach considering the H∞ technique.
Figures 3 and 4 show the results obtained from the simulation of the non-monotonic
system considering set-based and proposed interval observer approaches, respectively.

In Figure 3, the zonotopic observer is implemented according to Proposition 3.1
and the observer gain is determined using the LMI in (19) for the case of set-based

interval observer approach. Then, it yields L =
[
−1.1376 −1.9167 −1.2604

]>
. It

can be observed from Figure 3 that, when the system is non-monotonic, the results
from the set-based interval observer approach are affected by the problem of wrapping
effect and this approach cannot compute the correct state estimation.

On the other hand, in Figure 4, the observer in (39) is used for implement-
ing the proposed interval observer approach and the observer gain is calculated
using LMIs in (54a) and (55a), respectively. In this case, it yields L = L =[
0.2754 1.0571 0.7724

]>
. The idea of considering only (54a) and (55a) in the case of

trajectory-based interval observer approach is to show the problem that appears when
the positivity condition is not satisfied for the observer in the case that the dynamics
of the system are not monotonic.

As it can be seen in Figure 4, considering only the convergence of the observer to
compute the observer gain for a non-monotonic system, the proposed interval observer
approach meets a problem to compute the interval for the estimation of the second
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Figure 3. Set-based interval observer approach considering a non-monotonic system.

state of the system x2 that, according matrix C, is not measured. The only purpose
of considering this case is to show the problems of non-satisfaction of the positivity
condition to design the observer gain in the proposed interval observer approach and
having the wrapping effect for the same case considering the set-based interval observer
approach.

Further analysis is done by implementing the proposed observer design in Section 5
to overcome the problems that are presented in Figures 3 and 4.

As it can be seen in Figure 5, the satisfaction of the positivity condition based on
the proposed LMIs in (54) and (55) allows the proposed interval observer approach
to estimate correctly the system behavior and to solve the problem of estimating the
behaviour of x2 (see Figure 4). Moreover, thanks to the obtained similarity between
the set-based and proposed interval observer approaches in the case of a monotonic
system according to the analysis of the numerical example and also considering the
mentioned points in Section 5, it can be seen that the interval hull of the state-bounding
zonotope computed using the set-based interval observer approach can be converted
to the proposed interval observer approach. Having this in mind, Propositions 5.1 and
5.2, and Theorem 5.3 are considered for converting the center and the shape matrix of
the state-bounding zonotope obtained from the set-based interval observer approach.
This point is also shown in Figure 5.

As it is mentioned in Section 5 and having the integrated observer structure, the
robust observer in Figure 5 is obtained by computing the observer gain considering
the H∞ performance and the monotonicity property. It means, in the new proposed
structure in Theorem 5.3, the observer gain is computed considering the LMIs in
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Figure 4. Proposed interval observer approach considering a non-monotonic system.

Theorem 3.4 and also the satisfaction of the LMI in (65), which guarantee the mono-

tonicity property of the observer. Then, it yields L =
[
0.2892 0.2950 0.8001

]>
. Note

that both time-varying and time-invariant uncertainties are considered in the simula-
tion, the monotonicity property not only can solve the non-inclusion problem of the
trajectory-based interval observer approach but also the wrapping effect in the set-
based interval observer can be solved. Furthermore, the same results are obtained from
both approaches for the case that the system is non-monotonic and the observers are
designed to satisfy the monotonicity property.

6.2. Two-tank system benchmark

A two-tank system is proposed as the second application example to illustrate the ap-
proach proposed in this paper. The considered tank process is based on Coupled Tanks
33−041, manufactured by Feedback Instruments company. The schematic diagram of
the system setup of the considered case study is shown in Figure 6.

As it can be seen from the schematic diagram, the system contains a pump and
two interconnected tanks. The main system input is the pump flow rate that is given
by the voltage of the Pump 1. The action of pump is to fill the tanks by extracting
the water from the basin. The input voltages to the pumps vary between 0 V to 5
V, where 0 V means the pump is off and 5 V means the pump is working with its
maximum power. Due to the gravity effect, Tank 1 is being affected by the outflow of
Tank 2 due to the topology of the system. Both upper and lower tanks are made by
Plexiglas tubes with a height of 25 cm and pipes with diameter 10 mm is utilized to
make all the connections between the tanks and the pump. The output of the process
is the water level in the lower tank that is obtained as a voltage from pressure sensor.
Moreover, two valves are employed in order to control the water flow to each tank.
As it can be seen from Figure 6, Valves 1 and 2 are used to control the inflow of the
tanks.

The mathematical model of the process can be determined based on the mass bal-
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Figure 5. Set-based vs. proposed interval observer approaches considering non-monotonic system and de-

signing the integrated monotonic observer.

ance relations and Bernoulli’s law as

dh1,t

dt
= − a1

A1

√
2gh1,t +

a2

A1

√
2gh2,t +

γ1Kp

A1
ut, (71a)

dh2,t

dt
= − a2

A2

√
2gh2,t +

(1− γ2)Kp

A2
ut, (71b)

where
• γi is the valve i ratio, with i = 1, 2;
• Kpvt is the flow through the pump;
• (1− γ2)Kpvt is the flow towards Tank 2 according to the valve position γ2;
• γ1Kpωt is the flow towards Tank 1 according to the valve position γ1;
• Kp is the pump constant;
• vt is the velocity of the water flow through the pump;
• Ai is the cross section of Tank i, with i = 1, 2;
• ai is the cross sectional area of the outlet pipes, with i = 1, 2;
• g is acceleration due to gravity; and
• hi is the level of the water in Tank i, with i = 1, 2.
Furthermore, in order to design the process in such a way to be applicable with test-

ing the proposed approach, the time-varying uncertainties, i,e., the state disturbance
ω and process noise υ are generated placing a Pump 2 as can be seen in Figure 7.

As it is shown in Figure 7, inflows of both tanks can also be affected by the additional
disturbance ω and noise υ that are generated by the uncertain position of Valves 3
and 4, respectively. Moreover, the time-invariant uncertainty θ is implemented as an
additional inflow using Pump 1. Hence, using the Euler discretization with a sampling
time of 1 s, a discrete-time linear model is obtained as in (1) with
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Figure 6. Schematic diagram of the tank system.

A =

[
0.9886 + θ11 0 + θ12
0.0114 + θ21 0.9903 + θ22

]
, B =

[
0.2261

0

]
,

C = [0 1] .

(72)

Moreover, the time-invariant uncertain parameters are bounded by the interval θij ∈
[−0.3B,+0.3B], and also, time-varying bounded disturbances influencing all the state-
space directions and the measurement noise are modeled, respectively, with Eω and
Eυ as

Eω =

[
0.006 0

0 0.006

]
, Eυ =

[
0.5
0.5

]
.

The input signal u is given as it is shown in Figure 8.
Two scenarios are considered in this section. Both are implemented using the same

type of uncertainties. They differ from the observer structure used: set-based vs. pro-
posed interval observer approaches as explained in previous sections. Furthermore, the
zonotopic observer structure is considered based on Proposition 3.1 and the observer
structure in (39) is used as a proposed interval observer approach structure.

As a first scenario, the computation of the observer gain is done using the
LMI in (19) for the case of set-based interval observer approach yielding to

L =
[
0.6647 0.6542

]>
. Additionally, a proposed interval observer approach gain

is calculated using LMIs in (54a) and (55a), respectively, leading to L = L =[
0.6542 0.6493

]>
. The main purpose of having this analysis is to check the behavior

of the state observation when only the stability condition is satisfied. Figure 9 shows
the behavior of the set-based and proposed interval observer approaches tracking the
height of the water in upper and lower tanks (obtained from the real system).
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Figure 7. Schematic diagram of the tank system affected by the state disturbance and process noise.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
3

3.2

3.4

3.6

3.8

4

Time step

u
1 [

V
]

Figure 8. Pump signal.

As it can be seen from Figure 9, there is no problem in lower tank level estimation
since it is measurable based on matrix C. But, using the trajectory-based interval ob-
server approach, the correct estimation of the unmeasured state h1 cannot be obtained.
A possible explanation for this might be that the observer is not monotonic since the
positivity condition is not considered for designing the observer gain. In order to solve
this problem, the positivity condition is guaranteed by considering the LMIs in (54b)
and (55b) for computing the observer gain together with (54a) and (55a) in trajectory-

based interval observer approach. Then, it yields L = L =
[
0.001 0.9803

]>
. Figure 10

shows the obtained results from the simulation.
As it can be seen from Figure 10, both set-based and proposed interval observer

approaches are computing the same state estimation. There exists a small difference
between the computed bounds. Looking at the simulation, the set-based interval ob-
server approach is a bit more conservative than the proposed interval observer ap-
proach since the interval hull of state-bounding zonotope is used instead of the exact
zonotope.
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Figure 9. Set-based vs. proposed interval observer approaches considering monotonic system and non-

monotonic observer.

Moreover, similar to analysis of the example in Section 6.1, the new observer struc-
ture in Theorem 5.3 is also tested for the real case study. Figure 11 shows the obtained
results from the simulation.

As it can be seen in Figure 11, set-based, proposed and the integrated interval
observer approaches are compared for the case study. Since the considered case study
is monotonic, i.e., all the elements of matrix A are positive, the obtained results from
the different observers are the same. It is worth mentioning that the observer gain in
the set-based interval observer approach is computed by considering the satisfaction

of the LMIs in Theorems 3.4 and 3.5 leading to L =
[
0.0100 0.9903

]>
. Considering

the proposed interval observer approach, the observer gain is designed using the LMIs

in (54) and (55). In this case, L = L =
[
0.001 0.9803

]>
. Furthermore, observer

gain in the proposed integrated observer structure is calculated using Theorem 3.4 to
satisfy the H∞ performance together with the LMI mentioned in (65) to satisfy the

monotonicity property of the observer yielding to L =
[
0.001 0.9803

]>
. The results

obtained in Figure 11 show that the monotonicity and the convergence of the observers
can be guaranteed for all different observers and they can compute almost the same
results.

Therefore, both application examples illustrate that having a monotonic observer,
almost the same results can be obtained by using the proposed LMIs to design the set-
based and proposed interval observer approaches and it is well suited to also address
the time-varying and time-invariant uncertainties. Furthermore, using the relationship
between the set-based and proposed interval observer approaches, the new interval ob-
server can be proposed based on the interval hull of the state-bounding zonotope where
both problems of the set-based interval observer approach, i.e., preserving time depen-
dency of the uncertain parameter and wrapping effect, are handled in non-monotonic
systems.
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Figure 10. Set-based vs. proposed interval observer approaches considering monotonic system and monotonic

observer.

7. Conclusion

This paper has proposed the design of an interval observer-based approach for discrete-
time linear systems with both time-invariant and time-varying uncertainties. First, the
time-varying approach, called set-based interval observer approach, is introduced. In
the set-based interval observer approach, H∞ performance and minimization of the
size of the obtained state-bounding zonotope are considered to derive the LMI for
computing the observer gain. Then, it is shown that in the set-based interval observer
approach, the time dependency of the parameter uncertainties cannot be preserved.
Furthermore, the wrapping effect problem appears when considering a non-monotonic
system for the case of set-based interval observer approach. So far, in order to solve the
issues of using the set-based interval observer approach, the time-invariant approach,
called trajectory-based interval observer approach, is used to propose a new interval
observer structure. The LMI technique is utilized in the proposed interval observer
approach to guarantee the computation of the observer gain in order to satisfy both
theH∞ performance and monotonicity property. As a novelty, based on the comparison
of the mentioned interval observation approaches, it is shown that, using the interval
hull of the state-bounding zonotope in set-based interval observer approach, both
approaches can be connected when satisfying the monotonicity property. Furthermore,
a method for designing the observer that can connect both type of interval observations
is proposed. It is shown that the proposed approach, which is based on the set-based
interval observer approach, has the same performance of the proposed interval observer
approach to preserve the time dependency without having the problem of wrapping
effect. The comparison of the set-based, proposed and the integrated interval observer
approaches has been conducted on two different case studies, i.e., a numerical example
and a real case study based on two-tank system. The obtained results from both case
studies are well suited to address the results in the theoretical part of the paper. As
a future research, the effectiveness of the proposed results will be investigated for
enhancing the sensitivity to faults, rather than only the robust state estimation.
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Figure 11. Set-based vs. proposed interval observer approaches considering monotonic system and designing

the integrated monotonic observer.

Appendix

Definition 1. (Zonotope) An m-order zonotope Z = 〈cz, Rz〉 ∈ Rn (m ≥ n) is
defined by a hypercube Bm = [−1, 1]m affine projection with the center cz ∈ Rn and
the shape matrix Rz ∈ Rn×m as

Z = 〈cz, Rz〉 = {cz +Rzz, z ∈ Bm} . (73)

�

Definition 2. (Minkowski sum) Considering two sets A and B, their Minkowski sum
is a set defined as A⊕B = {a+ b| a ∈ A, b ∈ B}. Furthermore, the Minkowski sum of
the zonotopes Z1 = 〈cz1

, Rz1
〉 and Z2 = 〈cz2

, Rz2
〉 is Z1⊕Z2 =

〈
cz1

+ cz2
,
[
Rz1

, Rz2

]〉
.

�

Definition 3. (FW -radius) Considering a weighting matrix W ∈ Rnx×nx , W = W> >
0, the weighted Frobenius radius of a given zonotope Z = 〈c, R〉 is defined using the
weighted Frobenius norm of R, i.e., ιF,w = ‖Z‖F,W = ‖R‖F,W . �

Definition 4. (W -radius) Considering a weighting matrix W ∈ Rnx×nx , W = W> >
0, the W -radius of a given zonotope Z = 〈c, R〉 with R ∈ Rnx×r is defined as ιw =
maxz∈Z ‖z − c‖22,W = maxb∈Br ‖Rb‖22,W where b is unitary box. �

Definition 5. (Interval hull) (Le, Stoica, Alamo, Camacho, & Dumur, 2013) The
interval hull of a given zonotope Z = 〈cz, Rz〉 is the smallest interval box that contains
Z and it is denoted by �Z that can be computed by

�Z = {z : |zi − czi | ≤ ‖Rzi‖1} , (74)

where Rzi is the i-th row of Rz, and czi and zi denote the i-th components of cz and
z, respectively. �
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Property 1. (Linear image) The linear image of a zonotope Z = 〈c,R〉 by a com-
patible matrix L is L� 〈c,R〉 = 〈Lc, LR〉. �

Property 2. (Reduction operator) A reduction operator denoted ↓q permits to reduce
the number of generators of a zonotope 〈c, R〉 to a fixed number q while preserving
the inclusion property 〈c, R〉 ⊂ 〈c, ↓q {R}〉. A simple yet efficient solution to compute
↓q {R} is given in (Combastel, 2003). It consists in sorting the columns of R on
decreasing Euclidean norm and enclosing the influence of the smaller columns only
into an easily computable interval hull, so that the resulting matrix ↓q {R} has no
more than q columns. �

Property 3. (Zonotope inclusion) (Alamo et al., 2005) Given a zonotope Z =
〈c, R〉 ⊂ Rn, with a vector c ∈ Rn denoting the center and an interval matrix4

R ∈ R2(n×m)(n ≤ m) denoting the shape of the zonotope, a zonotope inclusion indi-
cated by � (Z) is defined as � (Z) =

〈
c,
[
mid(R) S

]〉
, where S is a diagonal matrix

that satisfies Sii =
∑m

j=1

diam(Rij)

2
, i = 1, 2, · · · , n, with mid(.) and diam(.) are the

center and diameter of interval matrix, respectively. �

Property 4. (State zonotope inclusion) (Guerra, Puig, & Witczak, 2008) Given
Xk+1 = AXk ⊕ Buk, where A and B are interval matrices and uk is the input at
time instant k, considering Xk as a zonotope with the center cx,k and the shape ma-
trix Rx,k such Xk = 〈cx,k, Rx,k〉, the zonotopic state at the next time instant k + 1
defined as Xk+1 is bounded by a zonotope X ek+1 = 〈cx,k+1, Rx,k+1〉, with

cx,k+1 =mid(A) cx,k + mid(B) uk,

Rx,k+1 =

[
�(ARx,k)

diam(A)

2
cx,k

diam(B)

2
uk

]
,

where �(ARx,k) shows the shape matrix of the state-bounding zonotope. �

Property 5. (Monotonicity property) If the variation of the state function regarding
to all the states and parameters is positive, the discrete time system will satisfy the
monotonicity property. Moreover, those systems that are satisfied this property are
the monotonic systems.

Lemma 1. Based on Efimov, Räıssi, Perruquetti, & Zolghadri (2013), if A ≤ A ≤ A
for A, A, A ∈ Rnx×nx and x ≤ x ≤ x for x, x, x ∈ Rnx, then

A+ x+ −A+x− −A−x+ +A− x− ≤ Ax ≤ A+ x+ −A+x− −A−x+ +A− x−,

where A+ = max
{

0, A
}

, A− = A+ − A, A+ = max {0, A}, A− = A+ − A, x+ =

max {0, x}, x− = x+ − x, x+ = max {0, x} and x− = x+ − x.

�

Lemma 2. Given a system dynamic that is considered to be function of the parameter
vectors as

xk+1 = A(θ)xk +B(θ)uk, (75)

4An interval matrix is a matrix whose elements are interval numbers (Ganesan, 2007).
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where A and B are known, ∆A(θ) and ∆B(θ) are the uncertain terms with considering
the Assumption 2.1, i.e., ∆A < ∆A(θ) < ∆A and ∆B < ∆B(θ) < ∆B. Then it can
be written that

A(θ) = A+∆A(θ), (76a)

A(θ) = A+∆A(θ), (76b)

B(θ) = B +∆B(θ). (76c)

B(θ) = B +∆B(θ). (76d)

Moreover, by assuming that ∆A(θ) and ∆B(θ) satisfy the following match perturbation
condition: [

∆A(θ) ∆B(θ)
]

= EθΞ
[
Ga Gb

]
, (77a)[

∆A(θ) ∆B(θ)
]

= EθΞ
[
Ga Gb

]
, (77b)

where Ξ and Ξ are the block diagonal matrices which represents the parameter uncer-
tainties for the upper and lower bounds, and, Eθ is the associated distribution matrix
with appropriate dimensions. Furthermore, Ga and Gb are known matrices. In this
case, if the parameter vector is perturbed around the nominal value θ = θ0, the system
can be rewritten as

xk+1 = A(θ0)xk +B(θ0)uk + Eθθk, (78a)

xk+1 = A(θ0)xk +B(θ0)uk + Eθθk, (78b)

where

Eθ =

[
∂A

∂θ0
| ∂B

∂θ0

]
, (79a)

θk =
[
δθ1x

>
k | δθ1u

>
k | . . . | δθNx

>
k | δθNu

>
k

]
, (79b)

θk =
[
δθ1x

>
k | δθ1u

>
k | . . . | δθNx

>
k | δθNu

>
k

]
. (79c)

Proof. According to Chen & Patton (2012), the parameter perturbation can be
approximated as

∆A(θ) ≈
N∑
i=1

ai(θ)Ai, (80a)

∆A(θ) ≈
N∑
i=1

ai(θ)Ai, (80b)

∆B(θ) ≈
N∑
i=1

bi(θ)Bi, (80c)

∆B(θ) ≈
N∑
i=1

bi(θ)Bi, (80d)

where Ai and Bi are the constant matrices and ai and bi are unknown scalar vectors.
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Then, considering (76) and (80), the uncertain parameter can be approximated only
based on the disturbance term as

Eθθk = ∆A(θ)xk +∆B(θ)uk =
[
A1 . . . AN B1 . . . BN

]


a1(θ)xk
. . .

aN (θ)xk
b1(θ)uk
. . .

bN (θ)uk

 , (81a)

Eθθk = ∆A(θ)xk +∆B(θ)uk =
[
A1 . . . AN B1 . . . BN

]


a1(θ)xk
. . .

aN (θ)xk
b1(θ)uk
. . .

bN (θ)uk

 , (81b)

where θ shows the disturbance term. Moreover, by assuming (77), φk can be considered
as

θk = Ξk

[
Gaxk Gbuk

]
, (82a)

θk = Ξk

[
Gaxk Gbuk

]
. (82b)

Thus, if the system is considered to be function of the parameter vectors where the
parameter vector is perturbed around the nominal value θ = θ0 as the dynamical
model in (75), it can be written that

xk+1 = A(θ0)xk +B(θ0)uk +

N∑
i=1

{
∂A

∂θ0
δθixk +

∂B

∂θ0
δθiuk

}
, (83a)

xk+1 = A(θ0)xk +B(θ0)uk +

N∑
i=1

{
∂A

∂θ0
δθixk +

∂B

∂θ0
δθiuk

}
. (83b)

Therefore, considering (83), the dynamical model in (75) can be rewritten as it is
characterized in (78). �
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Efimov, D., Räıssi, T., Perruquetti, W., & Zolghadri, A. (2013). Estimation and control of
discrete-time LPV systems using interval observers. In IEEE 52nd Annual Conference on
Decision and Control (CDC), Italy (pp. 5036–5041).
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