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Abstract— Wearable sensing technology is proving useful
for promoting health and fitness for the general public and
athletes, yet few devices are tailored to people with movement
impairments. For devices targeting home-based rehabilitation,
it is crucial to have robust and non-obtrusive sensors capable of
measuring activity for long periods of time outside of a labora-
tory environment. Studies focusing on continuous monitoring
of arm activity during daily life over weeks or months only
use IMU sensors or accelerometers at the wrist, and do not
capture multi-segment kinematics. In this paper we present
the development of the ArmTracker, a fully portable, non-
obtrusive and wearable IMU-based motion capture system that
can measure arm and torso kinematics for long-periods of time
during daily life. We also present the results of a preliminary
evaluation of the prototype, carried out with an unimpaired
subject and a subject with Becker muscular dystrophy (BMD).
Both subjects were asked to wear the ArmTracker device during
daily life for 7 hours. We carried out an exploratory graphical
analysis with the measured data using three types of movement
quality metrics: 1) Range of Motion, 2) Functional Workspace
Distribution and, 3) Accelerometry. Results provided an insight-
ful view on the motor function capabilities and limitations of
the two subjects. Arm activity of the subject with BMD showed
low variability in terms of joint angles and hand positions over
the workspace with a clear preference of using his hands in
front and below shoulder height. Arm movements of the BMD
subject were also slower compared with the unimpaired subject
and with a slight preference for using the dominant arm. We
plan to extend this study with a larger sample of subjects, and
with measurements over several days and weeks to capture
representative data on arm activity.

I. INTRODUCTION

Neuromuscular impairments due to stroke, muscular dys-
trophy, Parkinson or spinal cord injury, generally result in
serious long-term disabilities that hinder the performance of
basic activities of daily living (ADL). These disabilities of-
ten perpetuate further with secondary physical deterioration
caused by the sedentary life style, induced by the disorder,
that sets up a vicious cycle of disuse [1], [2], [3]. As a result,
quality of life is not only reduced for these patients, but also
for their family members and caregivers.
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Fig. 1: Prototype of the ArmTracker. This wearable system consists
of five IMUs that are integrated on the torso, upper arms and
forearms of a lycra shirt. The sensors are wired to a microcontroller
with and SD card, and powered by a portable power bank.

The use of wearable sensors such as Inertial Measurement
Units (IMU, i.e. combination of accelerometers, gyroscopes
and magnetometers) is increasingly popular to analyse move-
ment and track physical activity due to their size, cost, and
ease of use [4]. Wearable sensing technology is proving
useful for promoting health and fitness for the general public
and athletes: recent systematic reviews indicate that even a
simple daily pedometer feedback can be effective to increase
walking activity and thereby improve body mass index and
blood pressure [5]. A plethora of wrist-worn sensors and
phone apps for activity monitoring is nowadays marketed
and has become a common gear for people exercising for
physical fitness. Unfortunately, almost none of these products
are tailored to people with movement impairments, and thus
they have limited usefulness for them.

While wearable sensors still have a low clinical impact,
they potentially have a wide range of clinically relevant ap-
plications, including early disorder detection [6], monitoring
of disease progression, assessment of treatment efficacy, and
safety monitoring (e.g. fall detection) [7]. Focusing on home-
based rehabilitation applications, it is crucial to have robust
and non-obtrusive sensors capable of measuring activity for
long periods of time outside of a laboratory environment.
We found that studies focusing on continuous monitoring of
arm activity during daily life over weeks or months only
use IMU sensors or accelerometers at the wrist, and do not
capture multi-segment arm kinematics [8], [9].

The ArmTracker project aims at developing and evaluat-
ing a low-cost, comfortable, user-friendly, wearable sensing
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Fig. 2: Flow chart of the data processing and analysis methods
used with the ArmTracker system.

system that can gather continuous information on arm kine-
matics for long periods of time. This information will be used
to optimize the amount of arm use during daily life, facil-
itate subject-specific rehabilitation programs, and ultimately
overcome secondary physical deterioration. While the Xsens
MVN [10] is a high performance IMU-based motion capture
system that is commercially available; we considered that it
was not suitable for this particular application. The main
reasons being that it is not a fully portable system since it
requires a wireless data receiving station, and has a rather
high cost.

In this paper we present the development of the first
prototype of the ArmTracker (Fig. 1), a non-obtrusive, fully
portable, and wearable IMU-based motion capture system
that can measure arm and torso kinematics for long-periods
of time during daily life. We also present the results of a
preliminary evaluation of the prototype carried out with one
unimpaired subject and one subject with Becker muscular
dystrophy (BMD). Note that the prototype evaluation pre-
sented in this paper is a first exploratory graphical analysis
towards an in-depth longitudinal study.

II. MATERIALS AND METHODS

A. ArmTracker Prototype

The prototype of the ArmTracker system is composed
of five IMU sensors (BNO055, Bosch Sensortec GmbH), a
microcontroller (Teensy 3.6, PJRC.COM, LLC.) with a high-
speed SD card (SanDisk Extreme Pro, Western Digital Cor-
poration), and a portable power-bank battery. All the afore-
mentioned components are wired and integrated in a lycra
shirt with a front zipper. The IMU sensors are encapsulated in
a 3D printed plastic case and attached with velcro to the inner
layer of the lycra shirt at the forearms, upper arms and in
the back of the torso (Fig. 1). The lycra shirt also has elastic
straps to prevent the IMU sensors from moving. The system
is able to measure and store absolute orientation data (in
the form of quaternions) from all sensors, as well as triaxial
acceleration data from the IMUs on the torso and forearms, at

a frequency of 50 Hz for a maximum period of approximately
8 hours. The cost of the system is approximately 300 C and
has a total weight of approximately 200 g, which makes the
ArmTracker a low-cost, and lightweight system. The data
obtained with the ArmTracker are processed (i.e. sensor-to-
segment calibration) and used as input in a subject-specific
kinematic model to extract joint angles and joint positions
(Fig. 2). All the data processing was carried out with a self-
developed Matlab script (see Appendix). Measurements of
joint angles were used to analyze joint ranges of motion,
and the joint positions were used to analyze the functional
workspace of the user. In addition, the acceleration data was
used to compute actimetry metrics.

B. Sensor-to-Segment Calibration
We assume that an IMU sensor Si is placed on each

body segment BSi
. In order to obtain accurate orientation

measurements of the human segments it is crucial to compen-
sate the misalignment between the coordinate system of the
IMU sensors and the coordinate system of the human body
segments as defined in the kinematic model. The sensor-to-
segment calibration procedure starts by measuring the IMU
orientation expressed in the world frame (qwSi

) at time τ ,
when the subject is in a static and known pose such as
the N-pose (i.e. arms straight down) or T-pose (i.e. arms
straight to the side). Then, we find the rigid rotation q

BSi

Si
(τ)

between the known body segment orientation qwBSi
(τ) and

the measured orientation of the IMU qwSi
(τ) that will allow

us to calculate the orientation of the body segments qwBSi

from the IMU measurements qwSi
:

qSi

BSi
(τ) = qw∗

Si
(τ)⊗ qwBsi

(τ)

qwBSi
= qwSi

⊗ qSi

BSi
(τ),

(1)

where * indicates the complex conjugate of a quaternion,
and ⊗ indicates the quaternion multiplication operator. Note
that if the relative orientation between the IMU and the body
segment changes, this procedure needs to be repeated.

C. Kinematic Model
The orientations of the body segments qwBSi

were used as
input for a kinematic model to calculate joint angles and joint
positions of the elbow and wrist joints, using the subject-
specific length of the upper arm and forearm. The joints
were modelled as spherical joints with 3 degrees of freedom
(DOF). To build the kinematic model we first calculated the
relative orientations between adjacent body segments (BS1

,
BS2 ) using:

q
BS1

BS2
= qw∗

BS1
⊗ qwBS2

. (2)

Second, the quaternions expressing the relative rotation
between body segments were converted to rotation matrices
R(q

BS1

BS2
). Third, the resulting rotation matrices together with

the translation vectors that describe the vector from joint
1 to joint 2 (pJ1

J2
) were used to build an homogeneous

transformation matrix:

H
BS1

BS2
=

[
R(q

BS1

BS2
) pJ1

J2

0 1

]
. (3)
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Fig. 3: Results of comparing the Euler angles (roll, pitch, yaw)
obtained with the ArmTracker (black) and the Xsens (red) systems
during elbow flexion/extension and forearm pronation/supination.
The dashed gray line indicates the error between the two systems.
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Fig. 4: Results of comparing several N-Poses over time with respect
to the initial N-Pose. The bar plot shows the position deviation for
the right elbow (RE), right hand (RH), left elbow (LE) and left
hand (LH).

The concatenation of the resulting homogeneous transfor-
mation matrices was used to obtain the positions of the wrist
and elbow joints relative to the torso segment.

D. System Validation

To validate the accuracy of the ArmTracker, we compared
our prototype to a commercially available IMU-based motion
capture system (i.e. Xsens MVN [10]). We carried out several
measurements of shoulder and elbow single joint movements
wearing both systems at the same time to measure the devi-
ation in position and orientation between the data obtained
from both systems. In order to compare the orientation
difference we calculated the joint Euler angles.

In addition, we also tested the system stability when
measuring and storing data. In the first test, the ArmTracker
system was let still for 12.5 hours and we calculated the drift
of sensors by comparing samples from the beginning and
end of the capture time. In the second test, the unimpaired
subject was asked to wear the ArmTracker system for 4.5
hours during his daily life and periodically repeat the static
N-pose. These data were used to calculate the deviations in
joint positions for each of the N-poses in order to assess the
reliability of the data during captures.

E. Movement Quality Metrics

Three types of metrics were computed to analyze the
quality of the upper limb movements: 1) Range of Motion,
2) Functional Workspace Distribution, and 3) Accelerometry.
These metrics where calculated with data recorded from an
unimpaired subject (male, 24 years old, dominant arm: right),
and a subject with BMD (male, 25 years old, Brooke scale
2, dominant arm: left). Both subjects were asked to wear
the ArmTracker device during daily life for 7 hours (i.e.
approximately from 10 a.m. to 5 p.m.).

1) Range of motion: Shoulder elevation and elbow flex-
ion/extension angles were obtained calculating the angles
between the longitudinal vectors of the upper arm (u) and
torso (v), and between the upper arm (u) and the forearm (v),
respectively. We used the cosine rule to extract the angles of
interest as in [11]:

α = arccos

(
u · v
||u|| ||v||

)
. (4)

2) Functional Workspace Distribution: The position of
the hand over time was used to assess the functional
workspace distribution. Isolated areas of hand activity were
filtered by calculating the centroid of all hand positions, and
removing the 10% of the points that were further out from the
centroid. The workspace was divided in 8 different regions
using the shoulder height and the shoulder-elbow distance as
reference points. We quantified, the percentage of time that
the hand of the user remained inside each specific region.

3) Accelerometry: Finally, the recorded wrist acceleration
data were used to extract accelerometry metrics. We calcu-
lated unilateral activity, bilateral magnitude, and magnitude
ratio following the methodology proposed in [12], [13]. For
each data window of one second (i.e. every 50 samples) we
computed the average acceleration for each arm. Afterwards,
these values were transformed into counts, defining 1 count
as 0.0163 m/s2. From the count values, unilateral activity
was extracted inspecting the count values for each arm. If
the activity count of one window for one of the two arms
was 0, that window was classified as unilateral activity. The
bilateral magnitude was extracted as the sum of the counts
for each window for both arms. Lastly, from the unilateral
arm activity measures, we computed the magnitude ratio
dividing the unilateral activity values of the dominant arm
of the participants by the activity counts of the contralateral
arm, and calculated the natural logarithm of that value.
The magnitude ratio expresses the dominance of each arm.
Negative values of the magnitude ratio imply higher activity
for the dominant arm of the subject, while positive values
of the magnitude ratio indicate higher activity for the non
dominant arm, and 0 implies that both arms had the same
contribution.

III. RESULTS

A. System Validation

The joint positions obtained with the ArmTracker and the
Xsens MVN systems showed maximum position deviations
of 43.5 mm and 41.8 mm for the right elbow and wrist joints,
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Fig. 5: Density plots for each anatomical plane showing the functional workspace distribution of the right and left wrist joint for the
subject with BMD (middle) and the unimpaired subject (top). At the bottom, the circular bar plots show the percentage of time that the
wrist joint was in each region.
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Fig. 6: Histograms of arm elevation (top) and elbow flex-
ion/extension (botton) angles for the dominant arms of the subject
with BMD (orange) and the unimpaired subject (blue).

respectively. The other joint positions presented errors in the
range of 12.88 to 25.99 mm for the left elbow, and 8.15
to 34.9 mm for the left wrist. Regarding the comparison of
joint angles, maximum RMSE values of 5.59, 9.97 and 5.17
deg. were found for shoulder abduction, shoulder flexion and

shoulder internal/external rotations, respectively. As for the
forearm orientation, we found maximum RMSE values of
9.68 and 8.44 deg. or elbow flexion/extension and forearm
pronation/supination movements (Fig. 3). Static stability tests
performed during a 12 h measurement showed a maximum
mean error of 0.0091 of the quaternion values (which can
range from -1 to 1), and a 0.3% of data loss. Dynamic
stability tests performed during a 4 h measurement showed a
maximum joint position error of 81.7 mm between N-poses
for the left hand position estimates (Fig. 4).

B. Exploratory Graphical Analysis

Next we show the results of the exploratory graphical
analysis carried out on the three types of movement quality
metrics with the 7 h of data recorded from the unimpaired
and the BMD subjects. The purpose of this analysis was to
visually identify arm movement differences between the two
subjects and not the implementation of statistical models.

1) Range of Motion: We found that arm elevation move-
ments of the subject with BMD presented a narrow distribu-
tion centered at 50 deg, whereas the healthy subject showed
a more spread distribution, presenting three peaks at 25, 40
and 70 deg. (Fig. 6). The arm elevation range of motion was
larger for the unimpaired subject. Elbow flexion/extension
angles of the subject with BMD presented a distribution
centered at 60 deg. with smaller peaks at 10 and 100 deg. On
the other hand, the healthy subject presented high peaks at
10, 40, 60 and 130 deg. The elbow flexion/extension range
of motion was similar for both subjects.

2) Functional Workspace Distribution: The subject with
BMD presented a smaller workspace volume compared to
the unimpaired participant (BMD: 0.09 m3, unimpaired: 0.2
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Fig. 8: Bilateral Magnitude (expressed in counts per unit time) as
function of Magnitude Ratio for the subject with BMD (top) and
the unimpaired participant (bottom). Bilateral magnitude expresses
the activity level of both arms and magnitude ratio indicates if the
activity is done by the non-dominant (positive values) or dominant
(negative values) arm. This representation method was proposed by
[13].

m3). Specifically, we can see from the data shown in the
transverse plane that the unimpaired subject explored both
proximal and distal regions (even reaching posterior areas),
while the subject with BMD only explored distal regions. The
activity of the subject with BMD was concentrated slightly

below the shoulder height for 90% of the time (see sagittal
plane in Fig. 5) and spread between the lateral (70%) and
medial (25%) regions (see coronal and transverse planes in
Fig. 5). The unimpaired subject presented a more diverse
workspace with three main visited areas that were vertically
scattered at three heights: over the shoulder, mid torso, and
waist height (see sagittal plane in Fig. 5). Note that the
fact that the workspace is more diverse brings down the
percentages of time spent in each region. The most visited
regions are below the shoulder medial (50%), followed
by over the shoulder medial (26%) regions. A noticeable
differences between subjects was their use of medial and
lateral regions: while the subject with BMD spent 70% of
the time on the lateral regions, the unimpaired participant
spent most of the time on the medial regions.

3) Accelerometry: Unilateral arm activity of the subject
with BMD was considerably larger for the dominant arm
(71.1%) compared to the non-dominant arm (28.9%; Fig.
7). We also found that the majority of the counts were
concentrated at low activity levels (i.e. below 10). In contrast,
the unilateral arm activity of the unimpaired subject was
equally distributed for both dominant (50.1%) and non-
dominant arms (49.9%). In addition, the activity level of
the unimpaired subject reached higher levels (i.e. up to 20),
especially for the dominant arm, compared to the subject
with BMD. Regarding the bilateral activity metric (Fig. 8),
the healthy subject presented a higher bilateral magnitude,
indicating faster arm motions compared to the subject with
BMD. In terms of arm dominance, the unimpaired subject
showed that movements with high acceleration (high bilateral
magnitude) were done with both arms (magnitude ratio = 0)
or by the dominant arm (magnitude ratio < 0). For that same
subject, low acceleration movements (low bilateral magni-
tude) did not show a clear dominance (magnitude ratio = 0).
In contrast, the fast arm movements of the subject with BMD
did not present a clear dominance: activity was concentrated
at magnitude ratios close to 0. Yet, slow movements had a
clear tendency for the dominant arm (magnitude ratio < 0).

IV. DISCUSSION

Results of the system validation showed that the Arm-
Tracker system is capable of providing long-term, stable data,
so that consistent measurements can be obtained for long
periods of time. As for the robustness of the output, the
joint position deviations during the uncontrolled 4.5 hours
of measurement were found to be below 80 mm. However,
note that besides system inaccuracies caused by magnetic
interference [14] or relative movement between the IMU
sensors and the body segments [15], probably there was
also human error when repeating the N-poses. Errors due
to relative motion between the IMUs and the corresponding
segments can be reduced by repeating the calibration proce-
dure periodically. The results of the comparison test between
the ArmTracker and the Xsens MVN showed acceptable
deviations in position and orientation, specially taking into
account that the purpose of the system is to monitor arm
activity and not to perform high precision motion capture.



We were able to use the ArmTracker system to monitor the
arm activity during daily life for a long period of time (i.e. 7
h) with a subject with BMD and an unimpaired subject. At
the end of the measurements both subjects mentioned that
the system was comfortable and easy to use.

The movement quality metrics used for the exploratory
graphical analysis provided an insightful overview on the
motor function capabilities and limitations of the two sub-
jects. The subject with BMD showed low variability in
terms of joint angles (Fig. 6) and hand positions over the
workspace, with a clear preference of having his hands in
front and below the shoulder height (Fig. 5). This is probably
related to the fact that both subjects carried out office work
for most part of the monitoring period. Comparing the activ-
ity of both arms, we found very similar workspace areas for
the left and right sides (see Fig. 5), with a slight preference
for using more the dominant arm, specially during slow
movements (see Figs. 7 and 8). In general, the unimpaired
subject showed more variability in all metrics compared
to the subject with BMD. We found that the unimpaired
subject had three main postures that were noticeable when
analyzing the arm elevation and elbow flexion/extension
angles, as well as the functional workspace distribution plots.
In terms of accelerometry metrics we found, as expected,
that the unimpaired subject performed movements at higher
accelerations compared to the subject with BMD with a clear
preference for the dominant arm. It is worth noting that,
since the measurements carried out in this study were only
performed during one single day, the present results are not
sufficient to fully characterize the participants’ behaviour.

Future work will include carrying out a longitudinal study
of several days and weeks to obtain representative results on
arm movement quality, as well as increasing the number of
study participants to be able to implement statistical models
on the data obtained. Future work will also involve exploring
the possibility of integrating muscular activity measurements
(i.e. electromyography) to be able to estimate muscle fatigue.
Finally, we also plan to use the ArmTracker system in
combination with assistive technology, such as mobile arm
supports, to analyze their effectiveness and usability.

V. CONCLUSIONS

In this paper we presented the development of the Arm-
Tracker, a non-obtrusive and wearable IMU-based motion
capture system that can measure multi-segment kinematics.
Results of the system validation showed that the ArmTracker
system is capable of providing stable and accurate data
on upper body kinematics, so that consistent measurements
on arm activity outside of laboratory environments can be
obtained for long periods of time. The ArmTracker was
successfully used to measure the arm activity during daily
life for 7 h with one subject with BMD and one unimpaired
subject. The exploratory graphical analysis on range of
motion, functional workspace distribution, and accelerometry
metrics provided an insightful view on the motor function
capabilities and limitations of the two subjects.

APPENDIX

A detailed explanation and sample code of the kine-
matic model are available in: https://github.com/
jloboprat/IMU_Kinematic_Model
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