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Abstract—The rapid development and implementation of dis-
tributed control algorithms for DC microgrids has increased the
vulnerability of this type of system to false data injection attacks,
being one of the most prominent types of cyber attacks. This fact
has motivated the development of different false data detection
and impact mitigation strategies. A common approach for the
detection is based on implementing an observer that can achieve
a reliable estimation of the system states. However, approaches
available in the literature assume that the underlying microgrid
model is linear, which is generally not the case, specially when the
DC microgrid supplies non-linear constant power loads (CPLs).
Consequently, this work proposes a distributed non-linear ob-
server approach that can robustly detect and reconstruct the
applied false data attack in the DC microgrid’s current sensors
and cyber-links, even in the presence of local unknown CPLs.
First, the system is transformed into an observable form. Second,
a high-order sliding-mode observer is implemented to estimate
the system states and CPL, even in the presence of false data.
Finally, the estimation is used to reconstruct the attack signal.
The robustness of the proposed strategy is validated through
numerical simulations and in an experimental prototype under
measurement noise, uncertainty and communication delays.

Index Terms—Cyber-attacks, DC microgrid, non-linear ob-
server, cyber-physical systems, resilient controller.

I. INTRODUCTION

AS power grids are experiencing higher and higher penetra-
tion of renewable energy sources, it is required to develop

new power system architectures and control strategies [1]. A
great example is the recent proliferation of DC microgrids.
Indeed, many distributed generation units (DGUs), such as fuel
cells [2], photovoltaic panels and batteries [3], can be directly
integrated in a DC microgrid through DC/DC converters, which,
usually make DC microgrids more efficient and simple than
its AC counterparts [4].

A key aspect for the DC microgrid operation is to ensure
equal current sharing between the system agents as well as
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stable and precise DC voltage control [4]-[5]. Centralized
approaches to achieve such DGU coordination have scalability
issues, that renders such strategies infeasible for large scale
microgrids. As a consequence, the general interest has drifted
to the distributed framework, which relaxes the scalability
issues and offers additional advantages such as resiliency
against single point of failure and high bandwidth [6]. A
popular approach to obtain such coordination is to implement
a hierarchical control scheme in which a primary controller
in the converter ensures the local stability of the DGU,
while secondary controllers, implemented in the distributed
cyber-layer, achieve equal current sharing and average voltage
restoration [7]. In this context, the microgrid coordination
requires the introduction of a communication network, that
allows to transfer information between DGUs.

The integration between cyber-layer and physical-layer
through a communication network increases the control preci-
sion, efficiency and reliability of the DC microgrid. Nonethe-
less, it also introduces a risk of malicious or unintentional
cyber-attacks, which can compromise the proper operation of
microgrid parts or of the whole microgrid. For this reason, it is
of prime interest to develop techniques to detect and mitigate
adversarial attacks from a control viewpoint [8].

Cyber-attacks can be classified in several categories: False
data injection attacks (FDIAs) [9], denial of service [10] and
replay attacks [11]. This work will focus on the first one,
as it is the most frequent cyber-attack type [12]. This type
of attack is based on injecting malicious measurements in
compromised sensors/cyber-links in order to tamper the closed-
loop performance of the system.

The most common approach in the detection of FDIAs
in power systems is based on deploying an estimator and a
detector in each agent of the system. The estimator achieves
a secure estimation, i.e. the accuracy is independent of the
attack signal value, of the agent’s states based on a real-
time model of the microgrid; and, in parallel, the detector
compares the estimation with the actual readings and computes
the presence of an attack. Liu and others [13] deployed a
weighted least squares algorithm as an estimator of the power
system state variables and implemented a sparse optimization
as a detector, which computes the presence of an attack under
the assumption that only a few sensors have been compromised.
Chaojun and others [14] implemented a similar method, but
using a Kullback–Leibler distance in the detector. Manandhar
and others [15] implemented an estimator through a Kalman
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filter and a Euclidean distance metric as the detector. Zhao and
others [16] used a short-term state forecasting as the estimator.
Nevertheless, the mentioned results were implemented in a
centralized framework. As a consequence, they are not scalable,
require continuous communication from the DGUs to the
centralized computer and can not easily incorporate new DGUs
without modifying the whole estimation scheme. For this
reason, the research interest in observer-based attack detection
strategies has drifted to the distributed estimation framework.
Li and others [17] proposed a distributed detector based on the
generalized likelihood ratio. Nishino and Ishii [18] relaxed the
centralized limitation by implementing a distributed observer
as the estimator. Nonetheless, the design and implementation
of the observer in each DGU requires the knowledge of the
full DC microgrid, which complicates the incorporation of new
DGUs in the system. A distributed estimation strategy was
achieved by combining a bank of unknown input observers
with a bank of linear Luenberger observers [19].

Once an attack has been detected, the immediate objective is
to mitigate its effect on the microgrid. Relative to the topic, an
event-driven strategy has been recently employed to mitigate
FDIA and generalized FDIA [20], man-in-the-middle attacks
[21] for homogeneous agents and for heterogeneous agents in
[22].

It should be remarked that, although the fault detection
problem and the cyber-attack detection problem present some
differences [23], the FDIA detection strategy can be inspired
from the fault detection and isolation literature, in which
distributed approaches have been recently proposed [24]–[26].

A major limitation of available estimator-based detection
methods is the assumption that the underlying model is linear,
which, in some situations, may not be satisfied. The load side
converter is often controlled to deliver constant power to the
load. In such situations, the voltage dynamics behave non-
linearly [27]. In those cases, small variations of the voltage
may induce large variations of the stationary operating point
which renders linear approximations infeasible. Moreover, a
common scenario is that the constant power load (CPL) is
unknown, which complicates the dynamics linearization that
is required in some non-linear observers such as the extended
Kalman filter.

The aim of this work is to fill this gap and propose a
distributed non-linear observer that can be used to reconstruct
FDIA in microgrids with CPLs, which makes the system model
non-linear. The reconstruction of an attack signal is a more
restrictive process than just the detection and isolation of the
cyber-attack, and it offers significant advantages. The isolation
of the compromised agent offers limited options in terms of
reducing the attack consequences on the system. In general,
the only available option is to disconnect the attacked agent
from the system. Alternatively, the reconstructed attack signal
value can be used to clean the compromised sensor/cyber-link,
which mitigates the effect of the cyber-attack on the system
and increases the resilience of the DC microgrid operating
with non-linear loads.

The specific contributions of this work are as follows:
• A non-linear observer-based strategy that achieves a secure

state-estimation for DC microgrid models with unknown

Fig. 1. Electrical scheme of the DGU and power line k. Used symbols are
described in Table I.

TABLE I
SYMBOLS USED IN FIG. 1

States
Iti DGU current
Vi Load voltage
Ik Power Line current

Parameters
Lti Filter inductance
Ci Shunt capacitor
Ri Local load impedance
Rk Power line resistance
Lk Power line inductance

Inputs
ui Input voltage
Pi Local power load

CPLs.
• An attack detector is proposed that uses the secure

estimation to detect and reconstruct a FDIA signal for the
current sensor.

• The proposed reconstruction scheme is validated through
numerical simulations and experimental validation, where
sensor noise, uncertainty and communication delays are
taken into account.

The remaining of this paper is organized as follows. Sec-
tion II introduces the considered DC microgrid model and
formulates the estimation problem. Section III introduces the
state and parameter estimation algorithm that is used for the
attack reconstruction. In Section IV, the proposed approach is
validated in a set of numerical simulations. In Section V, the
approach is validated in a real experimental setup. In Section
VI, some conclusions are drawn.

II. COOPERATIVE DC MICROGRID MODEL AND PROBLEM
FORMULATION

The considered microgrid is formed by a set of DGUs, which
are connected through a set of resistive power lines. Each DGU
is modelled as a DC voltage source, which is connected to
a DC/DC converter. The DGU is assumed to supply a local
DC load, which is modelled as a constant impedance plus a
CPL. The local load is connected to the same point of common
coupling that interfaces the DGU with the power lines [28]. A
general schematic of the considered DGU is depicted in Fig.
1.

Under the standard assumption that the converter operates
in continuous conduction mode, the average model of the ith



3

DGU is given by:

Ltiİti = −Vi + ui

CiV̇i = Iti −
∑
k∈Ei

Ik,i −
1

Ri
Vi − Pi

1

Vi
(1)

Lk İk = (Vi − Vj)−RkIk ∀k ∈ Ei,

where the input voltage ui depicts the average output voltage
of the converter and Ei is the set of incident power lines.

It is assumed that the generated current, Iti, and the load
voltage, Vi, are being measured, but the line current, Ik, is
unmeasured. Thus, the measured output vector in the ith DGU
is going to be defined as yi = [y1,i, y2,i]

ᵀ = [Iti, Vi]
ᵀ.

The whole DC microgrid is modelled through an undirected
communication graph G = {V ,E }, which is assumed to be
connected and without self-loops. The set of nodes, V , depicts
the DGUs and the edges (or cyber-links), E , represents the
resistive lines that connect the DGUs [28]. The topology of
the graph is depicted by the corresponding node-edge incident
matrix B ∈ Rn×m, where n is the number of DGUs and m
the number of resistive power lines. The entries of the matrix
B are specified as:

Bij =


+1, if i is the positive end of the line j
−1, if j is the negative end of the line j
0, otherwise.

(2)

Finally, it is assumed that the whole microgrid is controlled
following the droop control philosophy and a secondary con-
troller to compensate the error introduced by droop controller.
Droop control is a common strategy used to obtain equal
current sharing and voltage control in DC microgrids without
communication, thereby adding a voltage offset and degrading
the system performance. The idea is to equilibrate the current
by imposing a voltage offset that is compensated by secondary
controllers [29]. Each DGU control strategy is supplemented
by the information from other DGUs to establish distributed
secondary control. Each vertex sends and receives the signals
ψi = [ψ1,i, ψ2,i]

ᵀ = [v̂dc,i, Iti]
ᵀ. The factor v̂dc,i depicts

the average voltage estimate in the ith DGU [30], which is
estimated through a secondary voltage observer [5]. Specifically,
two voltage off-set terms for the ith DGU are computed using

∆V1i = H1(s)(Vdc,ref −
∑
k∈Ei

(v̂dc,k − v̂dc,i))

∆V2i = H2(s)(Idc,ref −
∑
k∈Ei

(Itk − Iti)) (3)

where Vdc,ref and Idc,ref are global voltage and current
reference quantities for all the microgrid’s DGU, respectively,
and H1(s) and H2(s) are proportional integral (PI) controllers.

The correction terms (3) are used as an off-set in the local
voltage reference that has to be tracked by the ith DGU.
Specifically,

Vdc,ref,i = Vdc,ref + ∆V1i + ∆V2i. (4)

In this work, it is assumed that each DGU has two PI
controllers, Gv(s) and Gi(s), connected in cascade that ensure
the tracking of the local voltage reference, Vdc,ref,i. Therefore,

the input voltage, ui, ensures the tracking of a current reference
signal, Iref,i (generated by the first PI in the cascade, Gv(s)),
through a PI controller of the form [30]:

ui = KpI

(
y1,i − Iref,i

)
+KiI

∫ (
y1,i − Iref,i

)
. (5)

A scheme of the primary and secondary control can be seen
in Fig. 2.

Using the presented consensus algorithm, the DC microgrid
objectives shall converge to [6]:

lim
x→∞

φV = Vdc,ref , lim
x→∞

φI = 0 ∀i = 1, ..., n. (6)

The functions φV and φI are defined as:

φV = Vi +

∫ t

0

∑
k∈Ei

(v̂dc,k − v̂dc,i) (7)

φI =
∑
k∈Ei

(Itk − Iti) (8)

where v̂dc,i depicts the average voltage estimate in the ith
DGU, which is estimated through a secondary voltage observer
[5] and Iti is the measured DGU output current.

This paper focuses on the detection, isolation and recon-
struction of a false data injection attack that can affect the
generated current sensor, the cyber-link that transmits the
generated current between vertices, or both. Specifically, an
attack on the ith agent can be modelled as:

Sensor attack : yi = [Iti + xai , Vi]
ᵀ (9)

Cyber link attack : ψi = [v̂dc,i, Iti + xai ]ᵀ (10)

where xai depicts the FDIA signal.
This work assumes that a sensor FDIA and a cyber link in

the ith DGU can be conducted separately by compromising
the controller or the local communication server, respectively.

It is assumed that the signal xai is a deception attack [30],
i.e. the immediate objectives of the microgrid’s (6) are satisfied,
but may have a long term effect on the system. The design
of this type of attack in cooperative DC microgrids has been
addressed in previous works [30], [31]. In case of an attack that
is not deceptive, the DC microgrid will be driven to an average
voltage different from the established global reference value.
As each DGU knows the reference value, a simple comparison
can be used to detect if the microgrid is being attacked by an
external agent [30].

This work assumes that the voltage sensor is free of FDIAs.
In the considered system, a stealth attack is not possible
by manipulating voltage sensors due to the presence of a
distributed observer [31]. The attack needs to be conducted
on the average voltage estimate, which is not a measurable
quantity.

The main objective is to design an algorithm that can
reconstruct the attack signal xai , i.e., the algorithm has to
generate an estimation x̂ai such that ‖xai − x̂ai ‖ → 0 in finite
time. It is also worth noting that this objective is more restrictive
than achieving an isolation of the attack, which only requires
to find the compromised sensor or cyber-link, but does not
necessarily acquire any information of the attack signal. The
main advantage of reconstructing the attack signal is that the
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effect of the attack over the considered system can be mitigated.
Specifically, assume that a sensor attack is reconstructed, i.e.
xai = x̂ai . Then, the attacked sensor (or cyber-link) can be
cleaned using:

ycleanedi = [y1,i − x̂ai , y2,i]ᵀ = [Iti, Vi]
ᵀ, (11)

which completely eliminates the effect of the attack in the DC
microgrid.

The idea is to design an observer that, irrespective of the
presence of an attack, can estimate the actual value of the
generated current, Iti, such that ‖Îti − Iti‖ → 0 in finite time,
where Îti depicts the current estimation. If it is achieved, the
attack can be reconstructed in finite time by comparing the
estimation with the measured value of the current. Specifically,
a sensor attack signal can be reconstructed by computing the
following:

x̂ai = y1,i − Îti = Iti + xai − Îti (12)

and a cyber-link attack can be reconstructed as:

x̂ai = ψ2,i − Îti = Iti + xai − Îti. (13)

By direct inspection of (12) (13), it can be seen that ‖Îti −
Iti‖ → 0 implies ‖xai − x̂ai ‖ → 0. Therefore, the problem of
reconstructing the attack signal has been transformed to an
observer design problem.

Notice that this approach is invariant to the reliability of the
current sensor. Therefore, the presence of an attack can always
be reconstructed by means of (12) and (13).

In order to ease the scalability of the algorithm, it is of
prime interest to design a distributed observer algorithm. This
means that the observer of the ith DGU has to generate an
estimation of Iti based only on the signals measured in the
ith DGU, yi, and the signals transmitted through the incident
cyber-links, ψi.

The presence of CPLs introduces a non-linear term in the
DGU model (1). As pointed out in the introduction, linear
approximations of the model are not adequate for the considered
problem. For this reason, it is of prime importance to work
with the non-linear dynamics and design a non-linear observer.

In relation to the non-linear observer design, it is crucial to
select the adequate measured signal that is going to be used
for state estimation. An intuitive choice is to use the measured
voltage, Vi. Furthermore, it is important to select the adequate
observer technique. In the current state of the art, there is no
generic methodology for observer design in non-linear systems.
In general, each observer strategy assumes certain structures
in the system equations. Thus, before selecting any observer
technique, it is important to study which signals are required
for the estimation of Iti. Consider the following:

Lemma II.1. The DGU output current, Iti, can be recon-
structed asymptotically using the CPL, Pi, the voltage, Vi, its
derivative, V̇i, and the line currents, Ik,i, through the following
expression:

Îti = Ci
˙̂
Vi +

∑
k∈Ei

Îk,i +
1

Ri
V̂i + P̂i

1

V̂i
. (14)

Proof. Expression (14) is obtained by isolating Iti from the
second equation in (1).

Therefore, the generated current estimation can be achieved
through the estimations ˙̂

Vi and Îk,i. Assuming that one
generates an estimation, ˙̂

Vi and Îk,i such that ‖ ˙̂
Vi − V̇i‖ → 0

and ‖Îk,i − Ik,i‖ → 0. Then, ‖Îti − Iti‖ → 0, where Îti is
computed through (14) using the estimations ˙̂

Vi and Îk,i.
As it will be shown in the next section, it is possible to

design an observer algorithm that achieves ‖ ˙̂
Vi− V̇i‖ → 0 and

‖Îk,i − Ik,i‖ → 0, even in the presence of model uncertainty.
Nevertheless, there is another concern to be addressed. A
common issue in DC microgrids is that the CPL, Pi, may be
unknown [27], which prevents the computation of (14). In order
to overcome this limitation, the proposed observer algorithm
will also estimate the unknown CPL.

Notice that the reconstruction of the attack signal (12) (13)
can also be employed to detect the presence of an attack, which
may be later used to activate secondary security protocols.
Specifically, define the following residual for the detection of
a sensor attack in the ith DGU:

rs,i = y1,i − Îti; (15)

and a residual for a cyber link attack:

rcl,i = ψ2,i − Îti. (16)

The presence of an attack can be detected by evaluating the
following inequalities:

Sensor attack : rs,i > r̄i (17)
Cyber link attack : rcl,i > r̄i (18)

where r̄i is a positive constant parameter designed appropriately
to avoid false alarms induced by the voltage sensor noise. The
design of r̄i is related to the accuracy of the estimation scheme
under measurement noise, which will be discussed in Section
III.

III. PROPOSED NON-LINEAR OBSERVER

Following the reasoning in the previous section, the objective
here is to design an observer algorithm that can estimate, V̇ ,
Ik,i for k ∈ Ei and Pi, of the ith DGU.

The first step in the observer design is to define a coordinate
change that transforms the system into a form that accepts an
observer. It is convenient to have the coordinate transformation
independent of the input, ui. As the DC-DC converter is
controlled using the measured generated current (5), the
signal ui is sensitive to the sensor FDIA. Therefore, an
input-dependant coordinate transformation will be sensitive
to the attack signal, which introduces an inherent bias in the
estimation.

Lemma III.1. Define mi as the number of incident edges in
the ith vertex. Then, the following input-independent map

ξ1,i
ξ2,i
η1,i

...
ηm,i

 =


Vi
V̇i
I1,i

...
Imi,i

 (19)
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Fig. 2. General scheme of the primary control, secondary control and the proposed FDIA mitigation strategy. Sublayer I of secondary control depicts the
computation of the off-set ∆V1i in (3). Sublayer II of secondary control depicts the computation of the off-set ∆V2i in (3). Primary control depicts the two PI
in cascade that tracks the local voltage reference, Vdc,ref,i. The reconstruction algorithm block depicts the attack estimation strategy presented in this work.

defines a diffeomorphism that transforms the system (1) into
the following triangular form

ξ̇1,i = ξ2,i

ξ̇2,i = φi(ξi, ui, Pi,ηi) (20)

η̇j,i =
1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηj,i for j = 1, ...,mi

where ξi = [ξ1,i, ξ2,i]
ᵀ,ηi = [I1,i, . . . Imi,i]

ᵀ and

φi(ξi, ui, Pi,ηi) =
1

Ci

(
1

Lti

(
− ξ1,i + ui

)
− 1

Ri
ξ2,i

−
∑
k∈Ei

( 1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηk,i
)

+ Pi
ξ2,i
ξ21,i

)
. (21)

The triangular structure (20) is a well-known form that
has been deeply studied in the literature. Moreover, there are
multiple observer strategies that can be implemented in such
non-linear structure, e.g. [32]. Nevertheless, such techniques
can only achieve an estimation of ξ1,i and ξ2,i, while the mi

states, ηi, remain in the unobservable space of the system.
For this reason, this work proposes dividing the observer into
two parts. The first one will estimate the unobservable states
η in open-loop. The second one will estimate the states ξ1,i
and ξ2,i and the unknown parameter Pi through a high-order
differentiator.

A. Estimation of η

The dynamics of η (last equation of (20)) represent the zero
dynamics of system (20),i.e. the states, η, are not observable
from the output, y = ξ1,i [33]. As a consequence, it is not
directly possible to estimate its value through a tunable observer.
However, as the DC microgrid is assumed to have an average
voltage control, the η dynamics are stable (i.e. the η dynamics
are not observable but detectable). Therefore, it is possible to
estimate its value through open-loop integration.

Lemma III.2. Assume that there is an estimation of ξ1,i and
ξ1,j depicted as ξ̂1,i and ξ̂1,j , such that ‖ξ1,i− ξ̂1,i‖ = ‖ξ1,j −
ξ̂1,j‖ = 0. Then, the state ηj,i can be estimated by integrating
the following expression:

˙̂ηj,i =
1

Lk
(ξ̂1,i − ξ̂1,j)−

Rk
Lk

η̂j,i (22)

for any initial condition η̂1,i(0).

Proof. Consider the estimation error eη , ηj,i− η̂j,i. The error
dynamics are depicted by:

ėη =
1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηj,i −
1

Lk
(ξ̂1,i − ξ̂1,j) +

Rk
Lk

η̂j,i

= −Rk
Lk

eη (23)

which converges to zero, independently of the initial value
eη(0).

Remark III.1. Notice that the computation of (22) requires
the communication of ξ̂1,j between observers. This transfer of
information may be the entrance of other attacks. Thus, further
work related to detecting attacks in ξ̂1,j is required.

Remark III.2. As ηj,i is estimated in open-loop, the accuracy
of the estimation is sensitive to uncertainty in the parameters
Rk and Lk. Moreover, the convergence rate of the estimation
is not tunable. Nonetheless, for autonomous or islanded DC
microgrids, it is reasonable to expect that the voltages between
DGUs converge to the same value. Thus, it is expected that
‖ξ1,i − ξ1,j‖ → 0, which leads to an accurate estimation
of the power lines even in the presence of uncertainty. The
convergence rate of the power-lines estimator depends on the
converter’s parameters, which are usually designed to be fast.
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B. Estimation of ξ1,i, ξ2,i and Pi

The first two equations of (20) form a well-known tri-
angular structure which accepts multiple observer strategies.
Nevertheless, the implemented strategy has to also reconstruct
the unknown CPL, Pi. In order to achieve the unknown
parameter estimation, the idea is to design an observer that
can robustly estimate the states ξ1,i, ξ2,i and the function
φ(ξi, ui, Pi,ηi) of (21). Then, the constant parameter Pi can be
solved through equation (21). Such estimation can be achieved
by implementing an extended observer [34], i.e. the first two
equations of (20) are going to be extended through a virtual
state σ as follows:

ξ̇1,i = ξ2,i

ξ̇2,i = σ (24)

σ̇ =
∂φi(ξi, ui, Pi,ηi)

∂ξi
ξ̇i +

∂φi(ξi, ui, Pi,ηi)

∂ηi
η̇i

+
∂φi(ξi, ui, Pi,ηi)

∂u
u̇i.

In particular, the function φ(ξi, ui, Pi,ηi) is taken as an
extra state that has to be estimated through the observer. Notice
that system (24) is still a triangular structure, thus, it still
accepts multiple non-linear observer strategies. This work will
implement a high-order sliding-mode observer [32], mainly
due to is insensitivity to uncertainty in the last equation of
(24) and its finite time convergence, which allows to mitigate
a false data attack in a finite time. Specifically, the observer
takes the following structure:

˙̂
ξ1,i = ξ̂2,i − λ0|ξ̂1,i − y2,i|(2/3)sign(ξ̂1,i − y2,i)
˙̂
ξ2,i = σ̂ − λ1|ξ̂2,i − ˙̂

ξ1,i|(1/2)sign(ξ̂2,i − ˙̂
ξ1,i) (25)

˙̂σ = −λ2sign(σ̂ − ˙̂
ξ2,i)

where λ0, λ1 and λ2 are parameters to be tuned and sign(·)
is the sign function which is computed as:

sign(x) =


x

‖x‖
if x 6= 0

0 if x = 0
(26)

Theorem III.1. Consider the extended system (24), the high-
order sliding-mode observer (25), the generated current esti-
mation (14) and the open-loop estimator (22). Furthermore,
tune the observer design parameters as [35]:

λ0 = 3.4478M1/3, λ1 = 5.6477M2/3, λ2 = 1.1M (27)

where M is the upper bound of the voltage third derivative σ̇,
such that ‖σ̇‖ ≤M .

Then, the observer estimation converges in finite-time, i.e.
there is a positive finite time T such that, for all time t > T ,
‖ξ1,i−ξ̂1,i‖ = 0, ‖ξ2,i−ξ̂2,i‖ = 0 and ‖φ(ξi, ui, Pi,ηi)−σ̂‖ =

0. Moreover, assume that there is no generated current sensor
attack, i.e. y1,i = Iti and consider the estimation function:

P̂i =

(
ξ̂2,i

ξ̂21,i
+
KpI

Lti

1

ξ̂1,i

)−1[
Ciσ̂ +

1

Lti
ξ̂1,i

+
∑
k∈Ei

( 1

Lk
(ξ̂1,i − ξ̂1,j) +

Rk
Lk

η̂k,i
)
− 1

Ri
ξ̂2,i

− KpI

Lti

(
Ciξ̂2,i +

∑
k∈Ei

η̂k,i +
1

Ri
ξ̂1,i − Iref,i

)
− KiI

Lti

∫ (
y1,i − Iref,i

)]
. (28)

Then, if ‖ξ1,i − ξ̂1,i‖ → 0, ‖ξ2,i − ξ̂2,i‖ → 0 and
‖φ(η, ui, Pi,η)− σ̂‖ → 0, the norm ‖Pi− P̂i‖ also converges
to zero.

Proof. Define the estimation errors e1,i = ξ1,i − ξ̂1,i, e2,i =
ξ2,i − ξ̂2,i and e3,i = σ − σ̂. Then, the error dynamics satisfy
the following:

ė1 = e2 − λ0|e1|(2/3)sign(e1)

ė2 = e3 − λ1|e1|(1/2)sign(e1) (29)
ė3 = σ̇ − λ2sign(e1).

By assumption, the function σ̇ is Lipschitz and bounded as
|σ̇| ≤ M . Previous works [35] have already proven that
for an adequate choice of λ0, λ1 and λ2, the dynamics (29)
converge in finite-time to the origin. Furthermore, if the design
parameters are tuned following the Lyapunov methodology
introduced in [35], it is possible to find an explicit upper-
bound of the convergence time. Specifically, for a third-order
estimator, said methodology leads to the design parameters
depicted in (27).

Define the scaled errors,

z1 =
e1
M
, z2 =

e2
3.4478M

, z3 =
e3

5.6477M
, (30)

then, the convergence time, T , of the estimation error is
upper-bounded by a factor that depend on the initial conditions
of the estimation error [35]:

T (z0) ≤ 13.5135 · V (z0)0.2, (31)

where z0 are the initial conditions of the scaled errors (30) and
V is the following function:

V (z) =
3

5
|z1|5/3 − z1|z2|

2
4 sign(z2) +

2

5
|z2|

5
4

+
2

5
|z2|

5
2 − z2|z3|sign(z3) +

3

5
|z3|

5
3 + 0.2|x3|5. (32)

Thus, for all t > T (z0), ‖ξ1,i − ξ̂1,i‖ = 0, ‖ξ2,i − ξ̂2,i‖ = 0
and ‖φ(ξi, ui, Pi,ηi)− σ̂‖ = 0, independently of the value of
the voltage third derivative, σ̇.
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Therefore, after a finite time, the following holds:

σ̂ = φi(ξi, ui, Pi,ηi) =
1

Ci

(
1

Lti

(
− ξ1,i + ui

)
−
∑
k∈Ei

( 1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηk,i
)
− 1

Ri
ξ2,i + Pi

ξ2,i
ξ21,i

)
=

1

Ci

(
1

Lti

(
− ξ1,i +KpI

(
y1,i − Iref,i

)
+KiI

∫ (
y1,i − Iref,i

))
−
∑
k∈Ei

( 1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηk,i
)
− 1

Ri
ξ2,i + Pi

ξ2,i
ξ21,i

)
.

(33)

By substituting (33) in (28) and taking into account that
‖ξ1,i − ξ̂1,i‖ → 0, ‖ξ2,i − ξ̂2,i‖ → 0, ‖ηj,i − η̂j,i‖ → 0 and
Vi 6= 0, the following holds:

P̂i =

(
ξ̂2,i

ξ̂21,i
+
KpI

Lti

1

ξ̂1,i

)−1(
ξ2,i
ξ21,i

+
KpI

Lti

1

ξ1,i

)
Pi = Pi. (34)

Remark III.3. An improper parameter tuning may lead to
an unstable observer, i.e. the estimation error will diverge to
infinity. There are alternative parameter tuning methodologies,
however, in general, it is difficult to compute an explicit time
of convergence in such alternative parameter tuning.

Remark III.4. During a sensor attack, the CPL estimation
reduces to:

P̂i = Pi +

(
ξ̂2,i

ξ̂21,i
+
KpI

Lti

1

ξ̂1,i

)−1(
KpI

Lti
xai

)
Pi. (35)

Therefore, the presence of a sensor attack introduces a bias
in the constant load estimation. Nonetheless, this bias has no
significant effect in the mitigation strategy. This fact will be
seen in the experimental validation of Section V, where sensor
FDIAs are introduced in the system and the algorithm still
recovers pre-attack performances.

Nevertheless, as the observer algorithm converges in finite
time, it is reasonable to assume that the CPL estimation, P̂i
has already converged to the true value before a sensor attack
is introduced in the system. Thus, during a sensor attack, the
parameter estimation can be frozen to avoid the bias introduced
by the sensor attack. This approach has been validated in the
first case study of the numerical simulation of Section IV.

The expression (28) is computable, if the inequality 0 ≤
ξ̂1,i ≤ ∞ is satisfied. Most DGUs in DC microgrids operates
with bounded voltages and a properly tuned and initialized
observer will not reach such values. Thus, this condition is
generically satisfied. It should be remarked that, alternatively
to the approach in this work, the joint state and parameter
estimation problem is commonly solved through an adaptive
observer [36]. Nevertheless, classic adaptive observer schemes
can only ensure the convergence of the parameter estimation
to the actual value under a restrictive persistence of excitation
condition [37], which may not be satisfied in some DC
microgrid operating conditions.

Finding the positive constant M for similar sliding-mode
techniques usually involve extensive simulations. Nevertheless,
under the proper assumptions, this expensive computations can
be avoided in the concerned microgrid.

The microgrid’s cooperative secondary controller ensures the
objectives depicted in (6). Moreover, due to the convergence
properties of the local controllers and microgrid security
concerns, it is reasonable to assume that the load voltage
is bounded as Vmin,i < Vi < Vmax,i, the DGU load current is
lower bounded as Iti > Imin,i and the inputs are also bounded
as ui < umax,i.

Moreover, since the capacity of the system is planned based
on the converter’s capacity, using the generation-load matching
criteria it is possible to show that the CPL value is bounded as
Pi < Pmax,i. Taking into account these details, it is possible to
find an analytical expression of M . Specifically, the expression
is:

M =
−ξ2,i,min
CiLti

− 2
Pmax,i
Ci

ξ22,i,min
V 3
max

− σmax
CiRi

+
Pmax,i
Ci

σmax
V 2
min

, (36)

where

ξ2,i,min = Imin,i −
√
Pmax,iRi

Ri
− Pmax,i√

Pmax,iRi
(37)

σmax =
1

Ci

(
1

Lti

[
− 1

Ri
ξ2,i,max + umax,i

]
+
Pmax
Ci

ξ2,i,max
V 2
min,i

)
. (38)

In relation to the design of the threshold values in the
detection algorithm (17) and (18). Assume that the voltage
sensor in the ith DGU is corrupted by an additive noise signal,
ni, upper-bounded by a positive constant εi as |ni| < ε. Then,
the higher-order sliding-mode observer ensures an unbiased
observation error accuracy of the order of 1.1M2/3εi [35].
Therefore, the threshold functions (17) (18) will avoid false
alarms induced by the noise, if r̄i > κ1.1M2/3εi, where κ > 1.

C. Stabilization properties of the observer

The introduction of current FDIAs may destabilize the DC
microgrid. It is well known that CPLs have a destabilizing
effect on DC microgrids and local DGU controllers have to
be designed to ensure the stability of the system around the
considered operating point [27]. As the DGUs of the concerned
microgrid are controlled through linear PI controllers, the
stability can only be ensured in a region of attraction around the
equilibrium point where the PI has been tuned [38]. Specifically,
for a DGU modelled as in (1) and a cascaded PI as the
DGU’s primary control, there is a region Di ⊂ R2 such that
if Iti, Vi ∈ Di, then, the DGU’s voltage and output current
converge to the desired references. Otherwise, the system
becomes unstable [38]. The region of attraction of cooperative
DC microgrids with linear controllers can be computed through
a series of sum of square optimizations [38].

Suppose that at time t0 the ith DGU’s states are inside the
region of attraction and the system is subjected to a cyber
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attack. During the attack, the system response involves large
variations of the state variables which may lead to an escape
of the region of attraction and, consequently, may lead to an
unstable system. This fact confirms that the interaction between
FDIAs and CPLs can destabilize the plant.

In such cases, it is important to study if the proposed
mitigation strategy can avoid the destabilization of the ith
DGU during a FDIA. Suppose that the DGU is subjected to a
destabilizing FDIA at time t0 that would make the DGU escape
its region of attraction at time t1 > t0. After a time T (z0)
computed through (31), the proposed strategy mitigates the
attack and the system switches-back to the pre-FDIA operation.
Then, if T (z0) < t1, the FDIA is mitigated and the DGU’s
states are still inside the region of attraction, thus, stability is
preserved. Otherwise, if T (z0) ≥ t1, the FDIA is eliminated
but the the DGU’s states are outside the region of attraction,
consequently, the system remains unstable.

Therefore, the effectiveness of the proposed method under
destabilizing FDIAs is limited by the time of convergence of
the observer (31) and the capacity of the attacker of reducing
the time of escaping the region of attraction, t1.

IV. NUMERICAL SIMULATIONS

The proposed observer strategy has been validated in a pair
of numerical simulations. The simulations have been designed
to test the performance of the reconstruction scheme in non-
trivial situations. The first simulation considers a case in which
all the agents of the system are being compromised by a FDIA.
The second case considers a situation with a significant amount
of communication and sensor high-frequency noise and model
uncertainty.

A. Simulation 1: Simultaneous attack on all agents

The first simulation considers a DC microgrid composed by
4 DGUs with unknown CPL interconnected as depicted in Fig.
3. The value of the model parameters are summarized in Table
II.

TABLE II
MODEL PARAMETER VALUES USED IN SIMULATION 1

Symbol Value Symbol Value
Lti 1 [H] R14 1.3 [Ω]
Ci 0.05 [F ] R23 2.3 [Ω]
Ri 96 [Ω] R34 2.1 [Ω]
R12 1.8 [Ω] Lk 50 [µH]

The whole microgrid is controlled using the distributed
control strategy presented in [30], which ensures equal current
sharing and average voltage control. Specifically, the control
has been designed to ensure the convergence of the average
voltage to 315V . During the simulation there is a set of FDIA
attacks that compromise all the agents of the microgrid and
changes the behaviour of the system. At time t = 4s, there is a
FDIA that injects a constant value of 8A in the cyber-link that
connects the DGU 1 with its neighbours. At time t = 4.5s,
there is a second FDIA that injects a constant value of 6A in
the cyber-link that connects the DGU 4 with its neighbours.
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Fig. 3. Topology of the considered DC microgrid with 4 DGUs. Blue arrows
represent the cyber-layer and black lines depict the physical circuit.

II

IIII

IVIV

IIIIII

t = 4 s t = 4.5 s

t = 5 s t = 5 s

Fig. 4. Current and voltage evolution under FDIAs. At t = 4s there is a
FDIA in the DGU 1 cyber-links. At t = 4.5s there is a FDIA in the DGU 4
cyber-links. At t = 5s there is a FDIA in the DGU 2 cyber-links and a FDIA
in the generated current sensor of DGU 3.

Finally, at time t = 5s there is a simultaneous attack in the
cyber-link of the DGU 2 and the current sensor of the DGU 3.
In both cases, a constant value of 3A is injected. Notice that for
t > 5s there are 4 FDIA attacks that compromises all the agents
of the system. As it can be seen in Fig. 4, during the attacks,
the system behaviour is significantly affected. However, the
microgrid is not destabilized and the average voltage converges
to the reference value of 315V .

Each attack can be detected and reconstructed by implement-
ing the proposed sliding-mode observer in each DGU. After
that, the reconstructed attack can be used to "clean" the attacked
sensors and cyber-links as depicted in (11). Specifically, all
the observers have been implemented considering a factor
M = 100, which results in the following design parameters
λ0 = 16, λ1 = 121.7 and λ2 = 110 and ensures a convergence
time of less than 1.5 s.

In Fig. 5 we can see the unknown power load estimation
in the different observers. It can be observed that all the
estimations converges asymptotically to the true value with a
settling time (98%) of around 1.2 second. Thus, even in the
case of having no prior information of the CPL (i.e. P̂i has
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Fig. 5. Evolution of the local power load estimation and true local power
load (green). All the DGUs present the same local power load, equal to Pi.

Cyber-attacks

FDIA 1

FDIA 2
FDIA 3,4

Fig. 6. Evolution of the attack estimation error in all DC microgrid DGUs.
At t = 4s there is a FDIA in the DGU 1 cyber-links (FDIA 1). At t = 4.5s
there is a FDIA in the DGU 4 cyber-links (FDIA 2). At t = 5s there is a
FDIA in the DGU 2 cyber-links and a FDIA in the generated current sensor
of DGU 3 (FDIA 3 and 4).

been initialized at 0), the proposed scheme can estimate its
true value. Notice that the parameter estimation is invariant to
the presence of cyber-link attacks.

In Fig. 6, it is depicted the reconstruction error of the cyber-
link attack in DGU 1, DGU 2 and DGU 4 and the sensor attack
in DGU 3. In all the cases, it can be observed that all the
estimation errors converge to zero in a time of approximately 1
second, indicating that the system is free of attacks. Moreover,
the estimation error remains at zero as the attacks are being
introduced in the system. Therefore, the proposed strategy
is capable of accurately reconstructing the attack signal in
all the DGUs, even in the presence of a simultaneous attack.
Moreover, this result exemplifies the invariance of the attack
reconstruction in the ith DGU to the presence of attacks in
the rest of the microgrid.

Finally, the reconstructed attacks have been used to mitigate
the effect of the attack in the system (as presented in (11)). In
Fig. 7, it is depicted the evolution of the generated currents
and load voltages, after the attack mitigation. It can be noticed
that, the reconstruction and mitigation of the FDIAs have
immediately eliminated the effect of the attacks on the system,
which behaves very similar before and after the presence of
attacks.

This simulation validates the proposed reconstruction and

FDIA 

Initiated

FDIA 

Initiated

FDIA 

Mitigated

FDIA 

Mitigated

Fig. 7. Current and voltage evolution under FDIAs and observer reconstruction
and mitigation. At t = 4s there is a FDIA in the DGU 1 cyber-links. At
t = 4.5s there is a FDIA in the DGU 4 cyber-links. At t = 5s there is a
FDIA in the DGU 2 cyber-links and a FDIA in the generated current sensor
of DGU 3.

mitigation strategy. Moreover, it exemplifies the scalability of
the scheme. The observer parameter tuning and estimation
accuracy in the ith DGU is independent to the topology
of the DC microgrid and the presence of attacks in other
DGUs. Moreover, the observer implementation only requires
communicating the observer with the neighbour DGUs in order
to communicate ξ̂1,j for j = 1, ...,mi between observers.
As a consequence, new DGUs can be incorporated in the
microgrid and the proposed reconstruction scheme can still be
implemented with minor changes.

B. Simulation 2: Attack reconstruction in presence of sensor
noise and model uncertainty

In practice, the model of the microgrid will be imperfect and
the system sensors will present a certain amount of noise. The
presence of these elements prevent the exact attack detection
and reconstruction presented in the past simulation. For this
reason, it is important to test the performance of the proposed
strategy in a more realistic scenario. In this second simulation
it is considered the cooperative DC microgrid studied in the
past subsection with the topology presented in Fig. 3. However,
it is considered a unique attack in the cyber-links that connect
the DGU 1 with its neighbours. The attack consists of a step
signal of value 8A at time t = 4s. As it can be seen in Fig.
8, this type of attack significantly affects the evolution of the
microgrid’s DGU currents and voltages, but does not prevent
the convergence of the average voltage.
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II
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IVIV
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t = 4 s

Fig. 8. Current and voltage evolution under FDIA. At t = 4s there is a FDIA
in the DGU 1 cyber-links.

The objective is to implement the proposed observer ap-
proach in order reconstruct and clean the attacked signal.
However, in this case, it is considered that the DGU 1 model
is not perfectly known. Specifically, it is assumed that there is
uncertainty in the model parameters. In Table III it is depicted
the true value of the DGU 1 parameters and the model values
that have been used in the observer. The other DGUs parameters
are the ones depicted in Table II

TABLE III
TRUE DGU 1 PARAMETERS AND MODEL PARAMETER VALUES USED IN THE

OBSERVER

Symbol True Value Model value
Lti 1 [H] 0.8 [H]
Ci 0.05 [F ] 0.055 [F ]
Ri 96 [Ω] 90 [Ω]
Rk1 1.8 [Ω] 1.2 [Ω]
Rk2 1.3 [Ω] 1.7 [Ω]
Lk1 50 · 10−6 [H] 43 · 10−6 [H]
Lk2 50 · 10−6 [H] 53 · 10−6 [H]
Pi 500 [W ] − [W ]

Moreover, the sensors of the DGU 1 are corrupted with
a significant amount of high-frequency noise. The voltage
sensor, V1, and the voltage signals transmitted from the DGU
2 and DGU3 are affected by random high-frequency noise with
variance 0.109. The current sensor, It1, is corrupted with high-
frequency noise with variance 0.0114. In Fig. 9 it is depicted
the measured voltage and current, respectively, corrupted with
the presented noise.

The design parameters of the sliding-mode observer have
been tuned as λ0 = 16, λ1 = 121.7 and λ2 = 110, which
ensures the convergence of the state estimation. Nonetheless,
the estimation accuracy of the proposed high-order sliding-
mode observer is sensitive to measurement noise. For this
reason, the CPL estimation, P̂i, and the attack signal estimation,
x̂a1 , have been filtered through a low-pass filter. Most spectral
components of the concerned high-frequency noise are around
the 1 kHz frequency, the signals have been filtered through a
IIR filter with cut-off frequency at 1 kHz.

Fig. 9. Evolution of the measured voltage and measured current in the DGU
1. The voltage signal is affected by high-frequency white noise of variance
0.109. The current signal is affected by high-frequency white noise of variance
0.0114.

FDIA

Initiated

Fig. 10. Evolution of the attack reconstruction (blue) and the true attack
signal (orange) in the DGU 1.

As it can be seen in Fig. 10, the presence of measurement
noise does not prevent the stability of the attack signal
estimation, but, naturally, the estimation converges to a bounded
error around the true attack signal value. This error can be
decreased by increasing the time constant of the implemented
low-pass filters. However, the presence of a low-pass filter (and
increasing its time constant) reduces the convergence rate of
the observer which deteriorates the transient performance of the
attack signal estimation. This fact can be seen by comparing
the signal estimation at time t = 4s in Fig. 6, where the attack
estimation converges immediately to the true value, and Fig.
10, where the attack estimation requires some time to converge.

Finally, the estimated attack signal, x̂a1 , has been used to
clean the attacked cyber-link signal. As it can be observed in
Fig. 11, even in the presence of significant model uncertainty
and sensor noise, the reconstruction and mitigation of the
attacked signal is capable of recovering the performance of the
attack-free case. In this case, as stated before, the mitigation is
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Fig. 11. Current and load voltage evolution under a FDIA in DGU 1 and
observer reconstruction and mitigation. At t = 4s there is a FDIA in the DGU
1 cyber-links.
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Fig. 12. Experimental setup of a cooperative DC microgrid comprising of 2
agents controlled by dSPACE MicroLabBox DS1202 supplying power to the
programmable CPL.

not immediate, due to the presence of low-pass filters, which
induces some delay in the attack estimation.

V. EXPERIMENTAL VALIDATION

The proposed detection and reconstruction strategy has been
validated in an experimental prototype of DC microgrid operat-
ing at a voltage reference Vdcref of 48 V with 2 buck converters
rated equally for 600 W, as shown in Fig. 12. Both converters
are tied radially to a programmable CPL via tie-line resistances.
Each converter is controlled by dSPACE MicroLabBox DS1202
(target), with control commands from the dSPACE ControlDesk
from the PC (host). The controller gains are consistent for each
converter. The details of the controller are presented in [30].
Using the local and neighbouring measurements, the proposed
observer is modelled for every converter (as shown in Fig. 13)
to mitigate false data injection attacks and meet the desired
control objectives of average voltage stability and equal current
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Fig. 13. Single line diagram of the experimental setup shown in Fig. 12.

sharing in DC microgrids. The experimental testbed parameters
are provided in Table IV.

TABLE IV
EXPERIMENTAL TESTBED PARAMETERS

Symbol True Value
Plant
Lsei 3 [mH]
Cdci 100 [µF ]
R1 0.8 [Ω]
R2 1.4 [Ω]

Controller
Vdcref 48 [V ]

KH1
P 1.92 [−]

KH1
I 15 [−]

KH2
P 4.5 [−]

KH2
I 0.08 [−]
g 0.64 [−]

The proposed reconstruction approach has been validated
in three different scenarios. In the first case study in Fig.
14(a), a simultaneous cyber-attack is conducted on current
measurements from both converters with the false data, given
by xa1 = 1.5 A and xa2 = 1 A. The proposed non-linear observer
has been implemented in each agent to reconstruct and mitigate
the effect of the cyber-attacks. As it can be observed, after
the simultaneous cyber-attack, the system restores back to
the pre-attack set points. This validates the scalability of the
proposed observer strategy in providing resiliency against false
data injection attacks in the presence of realistic sensor noise
and model uncertainty.

The proposed approach assumed that the unknown local
power load is constant. This is a reasonable assumption,
however, in practice, the load may vary from one constant
set-point to another in order to accommodate the microgrid to
demand shifts. Some adaptive observer schemes, may present
problems under set-point changes, specially, when the restrictive
persistence of excitation [37] condition is not satisfied. For this
reason, it is of interest to test the adaptability of the proposed
reconstruction scheme under local power load shifts. In the
first case study in Fig. 14(a), after the introduction of the
cyber-attack, the CPL of both agents has been increased. As it
can be observed, this fact modifies the current set-point of both
agents, but, it does not prevent the current consensus (equal
current sharing) that would induce the FDIA introduced to
the system. This result shows that the proposed reconstruction
scheme does not cause any additional problems under dynamic
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load change, which is coherent with the results presented in
this work. Under a local load change the constant power load
assumption does not hold, i.e. Ṗi 6= 0. This fact induces a

factor
∂φi(ξi, ui, Pi,ηi)

∂Pi
Ṗi in the last equation of (24). This

factor is not modelled, but is upper bounded. Therefore, the
factor σ̇ is also upper bounded and Theorem III.1 still holds
true. Therefore, the proposed observer scheme presents robust
stability to dynamic load changes. It should be remarked that
when Ṗi 6= 0, expression (34) reduces to

P̂i = Pi +
Ṗi
ξ1,i

. (39)

Thus, it introduces a bias in the load estimation. Nonetheless,
this bias disappears when the local power load converges to
the desired set-point, and an unbiased attack reconstruction is
achieved.

In the second case study in Fig. 14(b), a cyber-attack is
conducted on agent I with a false data injection, given by xa1 =
1.8 A. The aim of this second experiment is to test the resilience
of the observer scheme under varying communication delay.
Specifically, it has been tested the applicability of the strategy
under a maximum communication delay of 250 ms. Even
though the consensusability between agents is limited to large
communication delay, it can be seen that when a cyber-attack
is conducted under conditions which may lead to diverging
control inputs, the proposed observer strategy still recovers
pre-attack performance and is resilient against cyber-attacks in
the presence of other cyber disturbances and load changes.

In the third case study in Fig. 14(c), two time-varying cyber-
attacks are conducted on DGU II. The first is modelled as a
sinusoidal function Ia2 = 1.4(sin(0.4πt)) A; and the second
one as a ramp function Ia2 = 1.2t A. Amid attacks, a decrease
of the unknown CPL has been introduced. It can be observed in
Fig. 14 (c) that the mitigation strategy is capable of recovering
pre-attack performances in both events, which validates the
capabilities of the algorithm to mitigate attacks of time-varying
nature.

VI. CONCLUSIONS

This work has presented a non-linear observer-based detec-
tion and mitigation strategy for a false data attack in cooperative
DC microgrids with unknown CPLs. The proposed approach
is completely distributed, which eases its scalability to large
scale microgrids, and operates adequately under an arbitrary
number of compromised agents. Finally, through numerical and
experimental testing, the observer approach has been shown to
be robust to model uncertainty and/or communication delay;
and present adequate performance under significant sensor and
communication noise.

Nonetheless, the proposed strategy presents some limitations
that should be addressed in future works. The estimation of
the power line currents relies on an open-loop integration that
is not tunable. Although the estimation is in general fast, this
fact limits the convergence rate of the current estimation (14)
and, as a consequence, of the attack estimation.
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(b)
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Idc2 (5 A/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)
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Vdc2 (25 V/div)

Idc1 (5 A/div)

Idc2 (5 A/div)

Communication delay of 250 millisec

Cyber attack
Load increase

Load increase
Cyber attack

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Idc1 (5 A/div)

Idc2 (5 A/div)Load change
Ramp attack

Sinusoidal attack

(c)

II IIII II IIII

Attack mitigated 

II IIII II IIII

II IIII
II IIII

II IIII

II IIII

Attack mitigated 

Attack mitigated 

Attack mitigated 

Simultaneous time-varying cyber attack

Simultaneous cyber attack

Fig. 14. Experimental validation of the proposed controller under: (a)
Simultaneous cyber-attack on both agents and unknown CPL increase.The
attack has been mitigated in 400 ms. (b) cyber-attack on one agent under a
communication delay of 250 ms and unknown CPL increase. The attack has
been mitigated in 2 s. (c) Ramp and sinusoidal attack element on agent II
and unknown CPL decrease. First attack has been mitigated in 640 ms and
second attack mitigated in 560 ms.
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