
machines

Article

Position and Singularity Analysis of a Class of Planar Parallel
Manipulators with a Reconfigurable End-Effector †

Tommaso Marchi 1 , Giovanni Mottola 1 , Josep M. Porta 2 , Federico Thomas 2 and Marco Carricato 1,*

����������
�������

Citation: Marchi, T.; Mottola, G.;

Porta, J.M.; Thomas, F.; Carricato, M.

Position and Singularity Analysis of a

Class of Planar Parallel Manipulators

with a Reconfigurable End-Effector.

Machines 2021, 9, 7. https://doi.org/

10.3390/machines9010007

Received: 5 December 2020

Accepted: 6 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy;
tommaso.marchi4@studio.unibo.it (T.M.); giovanni.mottola3@unibo.it (G.M.)

2 Institut de Robòtica i Informàtica Industrial (IRI), CSIC-UPC, Carrer Llorens i Artigas 4–6, 08028 Barcelona,
Spain; porta@iri.upc.edu (J.M.P.); f.thomas@csic.es (F.T.)

* Correspondence: marco.carricato@unibo.it; Tel.: +39-051-2093443
† This paper is an extended version of our paper “Position Analysis of a Class of n-RRR Planar Parallel Robots”

presented at “3rd International Conference of IFToMM Italy (IFIT 2020)”, Naples, Italy, 9–11 September 2020.

Abstract: Parallel robots with configurable platforms are a class of robots in which the end-effector
has an inner mobility, so that its overall shape can be reconfigured: in most cases, the end-effector is
thus a closed-loop kinematic chain composed of rigid links. These robots have a greater flexibility in
their motion and control with respect to rigid-platform parallel architectures, but their kinematics is
more challenging to analyze. In our work, we consider n-RRR planar configurable robots, in which
the end-effector is a chain composed of n links and revolute joints, and is controlled by n rotary
actuators located on the base of the mechanism. In particular, we study the geometrical design
of such robots and their direct and inverse kinematics for n = 4, n = 5 and n = 6; we employ
the bilateration method, which can simplify the kinematic analysis and allows us to generalize the
approach and the results obtained for the 3-RRR mechanism to n-RRR robots (with n > 3). Then, we
study the singularity configurations of these robot architectures. Finally, we present the results from
experimental tests that have been performed on a 5–RRR robot prototype.

Keywords: parallel manipulators; reconfigurability; direct kinematics; singularities

1. Introduction

A parallel robot with configurable platform (PRCP) is a special parallel mechanism
in which the end-effector (EE) has internal Degrees-of-Freedom (DoFs). In most previous
works, this is achieved by designing the EE as a closed-loop kinematic chain that can be
reconfigured during the motion according to users’ needs. In this work, we will focus on
planar PRCPs having only revolute joints (in the rest of this work, R denotes a revolute
joint and R an actuated revolute joint; RR. . . R denotes a chain of revolute joints connected
by rigid links, where the number of letters indicates the number of joints).

One of the first examples of PRCPs was in [1], where the authors studied a planar
4-DoF gripper and optimized its design according to suitable kinematic indexes. Later, this
concept was extended to 3-DoF spatial mechanisms having translational [2] or spherical [3]
motion. In [4], the concept of PRCPs was extended to a larger class of architectures and
a general screw-theoretic framework was presented to compute the mobility of these
mechanisms. In [5], a 4-DoF PRCP, designed for multi-finger gripping (with two contact
points), was studied in terms of its kinematics and singularity analysis. Several robots
with a foldable platform were designed by Dahmouche et al., having either 4- [6], 7- [7]
or 8-DoFs motion [8]; this way, the EE was provided with cutting [6] or grasping [7,8]
functionality. For these robots, screw-theoretical analyses of the wrenches that can be
applied to the environment by the EE were presented in [8,9]. In [10], it was shown that a
kinematotropic linkage can also be used as the EE of a PRCP. More recently, a systematic
design approach was presented in [11] for the development of PRCPs with 4- to 6-DoFs
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having one internal DoF in the EE; also, a general synthesis method for PRCPs (some of
which have closed-loop EEs) was presented in [12].

A number of architectures with an EE having an internal DoF were explored by Pierrot
et al., who studied several 4-DoFs spatial PRCPs based on the Delta robot, the first of which
was the H4 robot presented in [13]. Later, a control system for the robot was introduced
in [14], while in [15], the authors designed a robot prototype; the dynamic model of H4
was presented by Choi et al. in [16]. Other robot architectures derived from the H4, with
an articulated EE having internal DoFs, are I4 [17] and Par4 [18,19]; an architecture for a
robot conceptually similar to Par4, having 4 DoFs and without parasitic motions, was also
presented in [20]. A general approach for the type synthesis of similar mechanisms was
later presented in [21]. Another Delta-inspired PRCP was presented in [22]: the robot has a
six-bar closed-loop EE and is capable of performing Schönflies motions.

Lambert et al. [23] studied “PentaG”, a 5-DoFs spatial robot with two EEs able to
grasp objects and perform Schönflies motion; its architecture was later generalized to a
7-DoFs haptic interface with redundant actuation [24]. Two spatial, 3-DoF PRCPs with a
similar concept were presented in [25]. In [26], Lambert and Herder presented a literature
review on PRCPs and proposed general results on the singularity and mobility analysis of
this class of robots; later, in [27], a general method was presented to derive the complete
Jacobians of PRCPs through screw theory. An extension of the configurable-EE concept to
cable-driven systems was also presented in [28].

PRCPs’ predicted applications are where extra DoFs beyond those needed to position
and orient the EE are required to interact with the environment: for instance, PRCPs can be
employed when the robot has to grasp objects [1–3,6–8]. An alternative solution would
be mounting a gripper on the EE of a conventional parallel robot, but the gripper and its
motor increase the moving inertia of the EE, which reduces the dynamic performance of the
robot. PRCPs, instead, have all the motors located on the robot base and their configurable
EE can provide an integrated grasping functionality.

PRCPs were also applied in the design of haptic interfaces where the operator can
interact with the robot through several contact points on the EE: this design can lead to a
smoother experience of the virtual environment with respect to standard haptic systems [5].
Other proposed applications for PRCPs are for robot surgery such as laparoscopy [6] and
for rehabilitation systems [29].

The design and control of parallel robots require solving their Direct and Inverse
Kinematic Problem (DKP and IKP, respectively), the former of which can be especially
complex, and the more so for robots with many DoFs such as PRCPs [4]. Generally, authors
aim at developing analytical approaches: these, albeit slower than numerical methods,
provide insight into the number of possible solutions for the DKP and IKP. For planar
mechanisms, the usual method is to write loop-closure equations, which can be reduced
to a system of polynomial equations (e.g., by using the tangent half-angle substitution).
This system of equations can then be reduced to a single characteristic polynomial in one
variable, through algebraic manipulation. For example, this method is applied in [30] to a
3-RRR, 3-DoF planar robot; later, these results were extended to 3-DoF planar robots with
three general, independent, actuated kinematic chains [31].

An alternative method that is suited to solve the DKP for planar mechanisms is
bilateration: here, the goal is to obtain the coordinates of points in the plane from their
relative distances (similarly, one speaks of trilateration when considering sets of points
in three dimensions). Since this approach is entirely distance-based, it is independent
from the choice of the reference frame and does not require variable eliminations nor
tangent-half-angle substitutions (unlike conventional analytical methods), which generally
lead to numerical instabilities; also, it can be written in a compact form where all quantities
have the same unit of length. While the concept of bilateration is old [32,33], its application
to robotics is relatively recent. A general review of these methods is in [34,35]. In [36,37],
the authors show how to apply bilateration for solving the DKP of planar mechanisms
with rigid EE and revolute joints, similar to the ones considered in this work. Bilateration
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was also applied in several other sectors; we mention the localization of mobile robots [38]
and cable-based robot measuring systems [39]. For a review of the state of the art on
Euclidean-distance geometry problems and algorithms, we refer the reader to [40].

In the analysis of parallel robots, another necessary step is to identify singular con-
figurations, where the EE has DoFs that cannot be controlled [41]: it is well known that
singularities may disrupt the correct operation of robot mechanisms, thus their identi-
fication is fundamental for robot control. Early work on the topic is by Gosselin and
Angeles [42], who proposed a general classification of the singularities based on the Jaco-
bian matrices of the direct and inverse kinematics. Later, other works on the classification of
parallel singularities [43,44] showed the necessity of taking into account also the kinematics
of passive joints. In [45], the author proposed an application of Invariant Theory for the
purpose of singularity analysis and found conditions for singularity based on Grassmann–
Cayley algebra. Regarding the singularities of PRCPs, the first study was in [46] for the
H4 and I4 families of architectures; later, in [47] the authors found the full set of singular
configurations for the H4 from the Jacobian matrix. An analysis of the singularities for the
H4 robot through screw theory was presented in [48].

In this work, we consider planar PRCPs, where the EE is an n-R closed-loop and
n RRR chains connect the EE to the base. The paper is organized as follows. We begin
with a general introduction to bilateration in Section 2; this method is then applied in
Section 3 to the solution of the DKP and the IKP for the PRCPs at hand. Furthermore, we
show how to derive the singularity configurations for the inverse and direct kinematics in
Section 4. In Section 5, we show the results both from a numerical simulation and a series of
experimental tests on a prototype. The tests will also show the behavior of the mechanism
close to a singularity configuration. Finally, in Section 6 we discuss our conclusions and
suggest possible developments for our work.

The goal of our work is both to apply the bilateration method to the kinematic analysis
of a general class of planar manipulators, highlighting its advantages in terms of ease of
analysis, and to lay foundational work in the development of a particular 5-DoF PRCP
by solving its kinematics and identifying its singular configurations. The PRCP at hand,
shown in Section 5, is at present merely a prototype, but it could be usefully developed into
a flexible robotic platform capable of grasping, moving and orienting objects in the plane.

This manuscript develops a previous work first presented in [49], by proving several
conjectures therein contained (Section 3.2) and by adding the analysis of the singular
configurations for the class of the considered PRCPs (Section 4); the behavior of the robot
around a singular configuration is also presented in the multimedia attachment (Section 5).

2. Bilateration

Bilateration is a method to find the coordinates of a point Pk, given its distances from
two other points Pi and Pj; the positions pi = Pi −O, pj = Pj −O with respect to the fixed
coordinate frame (O, x, y) are assumed to be known.

For convenience, we define the squared distance si,j = ‖pi − pj‖2 between any
two points Pi and Pj. The Cayley–Menger bideterminant [34] of two sets of n points{

Pi1 , . . . , Pin
}

and
¶

Pj1 , . . . , Pjn

©
is then defined as the scalar number

D
Ä

Pi1 , . . . , Pin ; Pj1 , . . . , Pjn

ä
= 2
Å
−1

2

ãn

∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 si1,j1 . . . si1,jn
...

...
. . .

...
1 sin ,j1 . . . sin ,jn

∣∣∣∣∣∣∣∣∣ (1)
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For conciseness, we abbreviate the bideterminant D
(
Pi1 , . . . , Pin ; Pi1 , . . . , Pin

)
of a set{

Pi1 , . . . , Pin
}

with respect to itself as D
(
Pi1 , . . . , Pin

)
. We can now define the transformation

matrix of three points Pi, Pj and Pk as

Zi,j,k =
1

D(Pi, Pj)

ñ
D(Pi, Pj; Pi, Pk) −2V(Pi, Pj, Pk)
2V(Pi, Pj, Pk) D(Pi, Pj; Pi, Pk)

ô
(2)

In Equation (2), V(Pi, Pj, Pk) = ± 1
2

»
D(Pi, Pj, Pk) is the signed area of triangle4PiPjPk,

thus

• if points Pi, Pj and Pk are ordered in counterclockwise sense (see Figure 1a), the area
is positive;

• if points Pi, Pj and Pk are ordered in clockwise sense (see Figure 1b), the area is
negative.

Defining pij = Pj − Pi and pik = Pk − Pi, one can prove [32] that

pik = Zi,j,kpij (3)

and thus Pk is found from Pi, Pj and the distances between the three points. In the following,
we will use the shorthand notation

Ä
Pi, Pj

ä
→ Pk to indicate the procedure of finding

point Pk from Pi and Pj, by using the known point distances and Equation (3). Notably,
Equations (1)–(3) are independent of the choice of the coordinate frame. Since there are two
possible orderings of the points (clockwise or counterclockwise, see Figure 1), bilateration
generally provides two possible solutions.

pij

pik

Pi Pj

Pk

O x

y

(a)

pij

pik

Pi Pj

Pk

(b)

Figure 1. Two possible solutions for bilateration with three points Pi, Pj and Pk on a plane ((a): solution
with points in counterclockwise order, (b): solution in clockwise order).

3. Kinematic Analysis

The schematic of a general n-RRR robot is shown in Figure 2a; two example cases are
reported for completeness in Appendix A. The centers of the n actuated R joints on the
fixed base are denoted as Ai, i ∈ {1, . . . , n}, and their position vectors are ai = Ai −O =[
xAi , yAi

]T with respect to the base coordinate frame (O, x, y); the actuated joint variables
are angles θi. The centers of the mobile R joints are denoted as Pi, i ∈ {1, . . . , 2n}, and their
coordinates are pi =

[
xPi , yPi

]T . In the following, all links and all joints are modeled as
perfectly rigid; the readers interested in joint-flexibility modeling are referred, for instance,
to [50]. The (constant) link lengths are defined as

ci = pi − ai, ci = ‖ci‖ i ∈ {1, . . . , n}

di = pn+i − pi =
î
dix, diy

óT
, di = ‖di‖ i ∈ {1, . . . , n}

li = pn+i+1 − pn+i =
î
lix, liy

óT
, li = ‖li‖ i ∈ {1, . . . , n− 1}

ln = pn+1 − p2n =
[
lnx, lny

]T , ln = ‖ln‖

(4)
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O x

y

c1

c2

cn−1

cn

d1 d2

dn−1

dn
l2

l1

ln−1

ln

ln−2

..
.

A1

A2

An−1
An

P1

P2

Pn−1

Pn

Pn+1

Pn+2

P2n−1
P2n

n− 4
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chains

θ1

θ2

θn−1

θn

ψ1
ψ2

(a)

O x

y

d1 d2

dn−1

dn
l2

l1

ln−1

ln

ln−2

..
.

P1

P2

Pn−1

Pn

Pn+1

Pn+2

P2n−1
P2n

n− 4
kinematic
chains

φ1

φ2

(b)
Figure 2. (a) schematic of the n-RRR robot; (b) the corresponding n-RR structure, obtained by fixing
the actuated angles θi. Angles ψi and φi are represented only for the first two RRR chains, for
simplicity.

From Grübler’s equation, it can be seen that the PRCP at hand has 3[(3n + 1)− 1]−
2(n + n + 2n) = n DoFs; the vector of actuated joint coordinates θ = [θ1, . . . , θn]T also has n
components, thus the robot is fully actuated. The EE pose can be defined by an n-dimensional
vector of independent variables; we choose vector π =

[
xPn+1 , yPn+1 , φ1, φ2, . . . , φn−2

]T, where
angles φi’s are those formed by the links of length li with the horizontal axis (see Figure 2b).
Variables xPn+1 and yPn+1 define the position of (a point of) the EE, whereas variables φi’s
define the EE shape.

3.1. Inverse Displacement Analysis

For the IKP, one seeks to find the input vector θ given the desired output pose π.
Solving the IKP is straightforward, as is usually the case for parallel manipulators. From
the coordinates of a point Pi on the EE, one can find the next point Pi+1 on the kinematic
chain as {

xPn+i+1 = xPn+i + li cos φi

yPn+i+1 = yPn+i + li sin φi
i ∈ {1, . . . , n− 2} (5)

Therefore, since xPn+1 , yPn+1 and φ1 are known from π, one can find the position of
point Pn+2. Similarly, one can find point Pn+3 from Pn+2 and φ2; repeatedly applying
Equation (5) one finds all points on the kinematic chain up to and including P2n−1. Finally,
we find point P2n from bilateration as (Pn+1, P2n−1)→ P2n (the distances between points
Pn+1, P2n−1 and P2n are all known). Since the actual configuration of the EE is known, we
can disregard the spurious solutions out of the two ones for P2n provided by Equations (2)
and (3).

At this point, since all Pi’s are known (for i ∈ {n + 1, . . . , 2n}), the IKP reduces to
the well-known problem of the assembly of n RRR dyads, each corresponding to an RRR
chain. From the lengths ci, di one finds the coordinates of Pi by using (Ai, Pn+i)→ Pi: then,
the actuated joint angle of each RRR chain is given by θi = atan 2

(
xPi , yPi

)
. Applying this

equation repeatedly, one may find all the n unknown θi in vector θ. Since bilateration
provides two positions for Pi, this shows that there are, in the general case, two real and
distinct solutions for each RRR chain from the base to the EE. It can be shown that this
holds if and only if |ci − di| ≤ ‖pn+i − ai‖ ≤ ci + di. Geometrically, this condition defines
an annulus comprised between the circles of radii |ci − di| and ci + di centered in Ai. If Pn+i
is on the boundary of the annulus, there is one solution for the bilateration between Ai,
Pn+i and Pi; if Pn+i is outside the annulus, there are no solutions. In conclusion, the IKP for
an n-RRR robot can thus have up to 2n solutions.
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3.2. Direct Displacement Analysis

The DKP is more complex than the IKP. In this case, the vector θ is known, and we
seek to derive the EE pose, defined by vector π. We will first present a method to analyze
a general n–RRR robot (see Figure 2a) by means of bilateration; then, as an example, we
will show an application to a 5-RRR robot.

From θ and the lengths ci of links AiPi, the position of points Pi, i ∈ {1, . . . , n} is
directly found as

pi = ai + ci

ï
cos(θi)
sin(θi)

ò
(6)

We can now simplify the mechanism analysis, by defining an equivalent rigid structure
(see Figure 2b) where all links AiPi are removed and points Pi are fixed on the ground link:
one can see that the structure obtained has indeed 3[(2n + 1)− 1]− 2(n + 2n) = 0 DoFs.
Solving the DKP is then equivalent to finding points Pi, i ∈ {n + 1, . . . , 2n} from the known
distances di and li; this problem appears suited to be analyzed by means of bilateration.

We start by choosing the unknown variable that we seek to find; at the end of the
analysis, we will obtain a single equation in this unknown. Since bilateration is a distance-
based method, we could choose the distance between any two points as the unknown,
except obviously the fixed distances between points connected by links. Without loss of
generality, we choose s2,n+1.

We then choose a bilateration sequence: this is the sequence of n bilateration stepsîÄ
Pi, Pj

ä
→ Pk,

Ä
Pj, Pk

ä
→ Pl , . . .

ó
for finding all points on the EE. The simplest choice for this

sequence is [(P1, P2)→ Pn+1, (P2, Pn+1)→ Pn+2, (P3, Pn+2)→ Pn+3, . . . , (Pn, P2n−1)→ P2n],
namely: from the coordinates of P1 and P2, we find the coordinates of Pn+1, then the
coordinates of Pn+2 from the points already found, and so on, where all coordinates are
written as functions of the unknown s2,n+1. See Figure 3a, where a 5-RR structure is taken
as an example. Since each bilateration step provides two solutions, in the DKP we will
retain only those which lead to a feasible solution for the complete mechanism.

1

2

3

45

P1

P2

P3P4
P5

P6
P7

P8
P9

P10

(a)

1

2

34

5

P1

P2

P3P4
P5

P6
P7

P8
P9

P10

(b)
Figure 3. (a) a bilateration approach for solving the Direct Kinematic Problem (DKP) of a 5-RR
structure; (b) a second possible approach. Each bilateration step is denoted in red.

Finally, we write the closure condition, which depends on the remaining link length
not used in the bilateration sequence; with the choices we have made so far, this becomes

sn+1,2n = ‖pn+1 − p2n‖2 = l2
n (7)

The final expression for sn+1,2n will be an algebraic function in the unknown s2,n+1,
containing a number of nested radicals. These can be removed through well-known alge-
braic techniques, such as those in MATLAB’s Symbolic Math Toolbox; however, the greater
the number of RR chains, the more cumbersome the expression for sn+1,2n becomes. No-
tably, as remarked in [36], removing the radicals “is actually the only costly step in the
whole process” and can be avoided if a numerical solution is sufficient. Finally, one obtains
a univariate polynomial in s2,n+1 that can be solved either through algebraic or numerical
methods: each real and positive root corresponds to a value of s2,n+1 that can be substituted
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in the expressions for points Pi, i ∈ {n + 1, . . . , 2n} to obtain a potential pose for the EE
(and thus a solution for the DKP).

As an example, the method seen above will be now applied to a 5–RRR PRCP. We
simplify the mechanism, obtaining a 5–RR structure (Figure 3a), by using Equation (6).
Then, we define the three parameters for the bilateration:

(a) unknown variable: s2,6
(b) bilateration sequence: [(P1, P2)→ P6, (P2, P6)→ P7, (P3, P7)→ P8, (P4, P8)→ P9, (P5, P9)

→ P10]
(c) closure condition: s6,10 = ‖p6 − p10‖2 = l2

5

The bilateration sequence is shown in Figure 3a.
We have developed a script in MATLAB to solve the DKP for a number of n-RRR

robot architectures (with n ≤ 6) by removing all radicals in the equation for the closure
condition by an iterative algorithm. In the following, we report our observations.

• The method lends itself easily to generalization for more complex architectures:
however, as one may expect, the computational complexity of solving the DKP grows
with the number of RRR chains. This is mostly due to the algebraic manipulations
required to remove all radicals in the closure equation; these operations are well
beyond human feasibility even for n = 4 and have thus required the use of a symbolic
analysis package.

• The time and resources needed to tackle the DKP are dependent on the choice of
bilateration sequence and can be greatly reduced through a careful choice. Consider-
ing again the example in Figure 3, it was found that using the sequence [(P1, P2)→
P6, (P2, P6) → P7, (P3, P7) → P8, (P5, P6) → P10, (P4, P10) → P9] (see Figure 3b) instead
of the one previously indicated in point (b) the time required to obtain a solution is
much shorter. The script was run with MATLAB R2019a and an Intel Core processor
i7-8700 CPU at 3.20 GHz: with this setup, the DKP was solved in two days with the
first choice for the bilateration sequence and in ten minutes with the second one. Our
empirical observation is that the bilateration sequence is optimized by taking approx-
imately the same number of steps in clockwise sense (such as (P3, P7) → P8 in the
last sequence, see Figure 3b) and in counterclockwise sense (such as (P5, P6)→ P10):
under this guideline, there are fewer nested radicals in the final closure conditions,
which then becomes easier to simplify.

• We conjecture that, for an n-RRR robot, the characteristic univariate polynomial has
degree 2n+1 − 4, namely 12, 28, 60 and 124 for, respectively, n = 3, 4, 5 and 6.

We verified our conjectures for 3 ≤ n ≤ 6, by numerically verifying, for a number
of generic architectures, that all the (complex) solutions of the final polynomial equation
satisfy the closure loop equations of the original mechanism. We also verified that our
conjecture is true for n = 7. However, in this case, due to the increasing computational cost
needed to obtain a univariate polynomial, we preferred to compute all 252 solutions of the
problem by a purely numerical approach, such as homotopy continuation, through the
software Bertini [51]. Moreover, we found special architectures (in terms of link lengths
and positions of the fixed joints) for the 3-, 4- and 5-RR structures such that the DKP
has 12, 28 and 60 real and distinct solutions, respectively. Note that the rigid-EE, 3-DoF
linkage in [30] can be seen as a special case of the n-RRR architectures considered here
for n = 3. In [30], it was shown that said linkage can have up to six distinct solutions.
In our analysis, for generality, we also include solutions where the EE can “flip” into its
symmetric form (which requires the EE to rotate outside the plane of motion): this doubles
the number of solutions. It is also possible to analyze the DKP through bilateration without
this assumption.

The parameters for the special architectures mentioned above are reported in Tables 1–3
and the corresponding solutions are in Tables 4–6. These parameters were found by means
of a genetic-algorithm search (similarly to the approach used in [52,53] for a spatial robot),
using the MATLAB routine ga with a population of 200 individuals and a MATLAB in-
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terface to Bertini [54]: for each n, the algorithm iteratively searches for the architecture
parameters that lead to the maximum number of real and distinct solutions. For each case,
the algorithm converges within 18 generations (or fewer) to an architecture that has as
many real and distinct solutions as the characteristic univariate polynomial degree.

Table 1. Coordinates of fixed points Pi (i ∈ {1, 2, 3}) and link lengths for a 3-RR structure whose DKP
has 12 real and distinct solutions. Without loss of generality, points P1 and P2 are taken respectively at
the coordinate-system origin and on the x axis; the other values in the table are found by optimization.

i xPi [mm] yPi [mm] di [mm] li [mm]

1 0 0 2.031 1.087
2 1 0 1.890 1.449
3 −0.775 0.889 1.385 2.204

Table 2. Architecture parameters for a 4-RR structure having 28 real and distinct assembly configura-
tions (compare with Table 1).

i xPi [mm] yPi [mm] di [mm] li [mm]

1 0 0 2.196 1.373
2 1 0 1.952 1.606
3 1.017 −0.998 1.703 1.881
4 2.071 −1.056 2.186 2.200

Table 3. Architecture parameters for a 5-RR structure having 60 real and distinct assembly configura-
tions (compare with Table 1).

i xPi [mm] yPi [mm] di [mm] li [mm]

1 0 0 1.888 1.714
2 1 0 2.221 2.211
3 −1.101 −0.0284 2.131 2.049
4 −1.399 −2.088 2.099 1.857
5 −2.201 −0.442 1.946 2.186

Table 4. All 12 possible solutions of the DKP for the 3-RR architecture in Table 1. Each solution
is defined by the value of the unknown s2,4 in the characteristic polynomial; from this value, the
coordinates of points Pi (i ∈ {4, 5, 6}) are found through bilateration and the pose π =

[
xP4 , yP4 , φ1

]T
is derived.

s2,4 xP4 [mm] yP4 [mm] φ1 [°] s2,4 xP4 [mm] yP4 [mm] φ1 [°]

1.419 1.852 0.832 112.254 6.803 −0.840 −1.849 −175.797
2.649 1.237 −1.610 −145.848 7.686 −1.281 1.575 −124.472
3.991 0.566 1.950 107.386 7.925 −1.401 −1.470 −94.413
4.921 0.101 2.028 84.062 8.175 −1.526 1.340 −6.086
5.717 −0.297 −2.009 6.196 8.366 −1.621 1.222 −49.419
6.327 −0.602 1.939 −6.847 8.728 −1.803 0.935 −9.103

Table 5. All 28 possible solutions of the DKP for the 4-RR architecture in Table 2.

s2,5
xP5

[mm]
yP5

[mm] φ1 [°] φ2 [°] s2,5
xP5

[mm]
yP5

[mm] φ1 [°] φ2 [°]

1.439 2.191 0.141 88.308 −82.185 2.877 1.472 −1.629 −175.676 −34.982
1.496 2.162 −0.380 −100.786 66.259 3.364 1.228 −1.820 23.770 103.060
1.538 2.141 0.486 −60.445 129.994 3.709 1.056 1.925 −161.920 −29.821
1.567 2.127 −0.546 −109.921 −156.138 4.343 0.739 −2.068 17.808 −139.497
1.575 2.123 −0.560 57.699 176.872 4.640 0.590 2.115 −16.369 −139.009
1.796 2.012 0.879 128.995 −64.617 5.647 0.0867 2.194 −12.185 −69.531
1.811 2.005 −0.895 46.566 −100.651 6.318 −0.249 −2.181 9.747 174.167
1.812 2.004 −0.897 −130.048 17.285 6.432 −0.306 −2.174 9.346 12.964
1.885 1.968 −0.974 −134.621 168.071 6.551 −0.365 −2.165 106.607 −64.919
1.898 1.961 −0.987 43.857 155.226 8.334 −1.257 1.800 −74.637 −82.443
1.910 1.955 −0.999 −136.083 7.983 8.774 −1.477 −1.625 65.920 −72.265
1.924 1.948 −1.013 43.135 −102.777 10.076 −2.128 −0.542 −10.938 53.300
2.119 1.851 1.181 −38.567 −98.047 10.166 −2.173 −0.316 −14.058 −68.241
2.291 1.765 −1.306 −154.742 138.322 10.172 −2.176 −0.295 24.982 13.511
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Table 6. All 60 possible solutions of the DKP for the 5-RR architecture in Table 3. Notice that some solutions are very close
in terms of s2,6 (and are thus indistinguishable from each other without providing more significant digits that those which
can be displayed in the available space), yet lead to clearly different poses.

s2,6 xP6 [mm] yP6 [mm] φ1 [°] φ2 [°] φ3 [°] s2,6 xP6 [mm] yP6 [mm] φ1 [°] φ2 [°] φ3 [°]

0.788 1.888 −0.0132 65.8 −134.9 −99.3 6.241 −0.839 −1.691 −17.7 178.1 −116.0
0.788 1.887 0.0191 −65.4 135.2 −99.3 6.244 −0.840 1.690 17.7 −83.8 −99.3
0.990 1.786 −0.610 35.1 178.4 −99.6 6.409 −0.923 −1.647 100.0 23.4 −99.4
1.086 1.739 −0.735 −120.1 178.2 16.3 6.444 −0.940 −1.637 −19.1 177.9 122.3
1.098 1.733 −0.749 −121.2 178.1 −17.6 6.457 −0.947 −1.633 99.2 −92.2 31.2
1.192 1.686 −0.850 −128.7 177.8 106.1 6.474 −0.956 −1.628 98.9 −95.1 −119.3
1.246 1.659 −0.901 −132.5 177.6 92.0 6.493 −0.965 −1.622 98.5 −98.1 122.1
1.273 1.645 0.926 −24.1 177.4 −99.5 6.502 −0.970 −1.620 98.4 −99.4 108.6
1.396 1.583 1.028 141.9 −175.7 −94.8 6.534 −0.986 −1.610 −19.8 177.8 108.6
1.467 1.548 1.080 145.8 −175.4 −95.1 6.635 −1.036 −1.578 96.1 −116.5 −98.1
1.876 1.343 −1.326 −164.0 175.6 53.0 6.676 −1.056 1.564 −95.3 103.4 −93.3
2.061 1.251 −1.413 10.8 149.5 −178.5 6.711 −1.074 1.552 −94.7 108.4 −94.5
2.061 1.251 −1.413 −170.7 48.3 179.5 6.859 −1.148 1.499 22.3 −176.0 −93.6
2.070 1.246 −1.418 10.7 −179.0 147.2 6.962 −1.200 1.457 −90.2 133.7 −96.6
2.226 1.169 −1.482 9.1 −179.2 −98.8 7.084 −1.260 1.405 24.2 −175.8 −94.4
2.606 0.978 −1.614 5.6 138.4 −99.3 7.465 −1.451 1.207 −80.5 7.5 −99.2
2.606 0.978 −1.614 172.9 37.5 −99.3 8.097 −1.767 −0.663 −37.8 49.2 179.6
3.501 0.531 −1.811 151.9 169.4 −97.6 8.097 −1.767 −0.663 64.7 −21.0 −176.7
3.747 0.408 1.843 2.5 −178.2 −107.9 8.123 −1.780 −0.628 63.9 −167.4 −12.1
4.420 0.0717 1.886 6.5 −109.7 −179.3 8.134 −1.786 −0.612 −38.7 175.0 47.0
4.420 0.0716 1.886 −134.1 −13.8 −175.8 8.163 −1.800 −0.569 −39.5 174.9 −97.9
4.605 −0.0210 1.887 −130.8 −11.7 −99.4 8.295 −1.866 −0.285 56.0 −169.9 −97.1
4.819 −0.128 1.883 −127.0 −158.3 8.5 8.323 −1.880 −0.171 53.6 −170.6 −97.0
5.678 −0.558 −1.803 112.4 126.2 −96.2 8.331 −1.884 −0.119 −47.8 173.2 −97.8
5.830 −0.633 −1.778 109.8 111.9 −95.0 8.333 −1.885 0.0953 −52.1 172.1 27.8
6.047 −0.742 1.736 −106.1 −104.6 86.6 8.334 −1.885 0.0904 48.4 −171.8 −31.1
6.053 −0.745 −1.734 −16.4 178.2 28.8 8.336 −1.886 0.0671 48.8 −36.1 −177.8
6.080 −0.758 1.728 −105.6 −100.2 103.5 8.336 −1.886 0.0671 −51.5 33.2 178.9
6.097 −0.767 1.725 −105.3 −97.7 127.1 8.338 −1.887 −0.0241 −49.7 35.1 −99.3
6.126 −0.782 1.718 −104.8 −93.2 4.2 8.338 −1.887 −0.0240 50.6 −34.2 −99.3

4. Singularity Analysis
4.1. General Classification

With the definitions of the joint vector θ and the pose vector π given in Section 3, the
kinematic constraints of the linkage can be written in the general form:

f(π, θ) = 0 (8)

assuming that all constraints are holonomic, that is, they can be expressed in configuration
form.

Differentiating Equation (8) with respect to time, we obtain a relationship between the
input joint rates and the EE velocity, as follows:

∂f
∂π︸︷︷︸
Jπ

π̇ +
∂f
∂θ︸︷︷︸
Jθ

θ̇ = 0 (9)

where Jπ and Jθ are the Jacobian matrices of the direct and of the inverse kinematics,
respectively. Since we only consider fully-actuated robots, where the number of DoFs is
equal to the number of actuators, the Jacobians are square matrices and thus they are rank
deficient if and only if their determinant is zero, in which case we say that the parallel
manipulator is at a singular configuration. Depending on which matrix is rank deficient,
there can be different types of singularities. We refer to the standard classification in [42]
that distinguishes between three types of singularities. Note also that more refined and
complete classifications, which take into account the kinematics of passive joints, can be
found in [43,44]. The three types of singularities from [42] are defined in the following.

(1) A type-1 kinematic singularity occurs when det Jθ = 0. In this case, the null space of
Jθ is not empty, thus there exists some nonzero θ̇ that yields π̇ = 0 in Equation (9).
Therefore, infinitesimal motions of the EE along certain directions cannot be accom-
plished with finite joint rates and the manipulator loses one or more DoFs. Type-1
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kinematic singularities usually occur at the workspace boundary or where different
branches of the IKP converge [42].

(2) A type-2 kinematic singularity occurs when det Jπ = 0. In this case, there exist
some nonzero π̇ that yields θ̇ = 0. The EE can have infinitesimal motions while
all actuators are locked and the EE gains one or more uncontrolled DoFs. Type-2
kinematic singularities usually occur where different branches of the DKP meet.

(3) A type-3 singularity occurs when both Jπ and Jθ are singular. Generally, this type
of singularity can only occur for manipulators with special architectures. At these
configurations, Equation (8) degenerates to the identity 0 = 0. The EE can have
infinitesimal motions while the actuators are locked and it can also remain stationary
while the actuators undergo infinitesimal motions.

4.2. Definition of the Jacobian Matrices

To define the Jacobian matrices Jπ and Jθ for the PRCPs at hand, we write the loop
equation for each RRR chain from the base to the EE:

pn+i = ai + ci + di, i ∈ {1, . . . , n} (10)

Differentiating Equation (10) with respect to time (and considering that vectors ci and
di have fixed lengths), one has

ṗn+i = θ̇ik× ci +
(
θ̇i + ψ̇i

)
k× di (11)

where k is the vector orthogonal to the plane of motion, and we have used ȧi = 0, since
points Ai are fixed. By dot-multiplying by di we obtain an equation without the passive
joint angles ψi:

ṗn+i · di = θ̇i(k× ci) · di +
(
θ̇i + ψ̇i

)
(k× di) · di = θ̇ik · ci × di (12)

using known properties of the triple vector product.
In a similar fashion, one can also find the velocity of point Pn+i by writing the closure

equation for the first i − 1 links on the EE kinematic chain (starting from point Pn+1)
and differentiating with respect to time. One thus obtains ṗn+i from the time derivative
π̇ =

[
ẋPn+1 , ẏPn+1 , φ̇1, φ̇2, . . . , φ̇n−2

]
of the pose vector as

ṗn+i =

ñ
ẋPn+1

ẏPn+1

ô
+

i−1

∑
j=1

φ̇jk× lj, i ∈ {1, . . . , n− 1} (13)

By dot-multiplying Equation (13) again by di, and combining the result with Equation (12),
one has

θ̇ik · ci × di =

ñ
ẋPn+1

ẏPn+1

ô
· di +

i−1

∑
j=1

φ̇jk ·
Ä

lj × di
ä

(14)

The term at the left-hand side of Equation (14) depends on θ̇, while the terms on the
right-hand side only depend on π̇. We thus have n− 1 linear relationships between the
actuated joint velocities and the derivative of the EE pose, from which we can derive the
first n − 1 rows of matrices Jθ and Jπ . Finally, we use bilateration to find point P2n as
(Pn+1, P2n−1)→ P2n and differentiate with respect to time, thus obtaining ṗ2n as a function
of π̇; setting

θ̇nk · cn × dn = ṗ2n · dn, (15)

we find the last row of the Jacobian matrices. By setting the determinants of Jθ and Jπ and
solving the resulting equations for the pose π, we can obtain the full set of input-output
singularities for the mechanisms at hand.

From Equation (14), it can be seen that the Jacobian of the inverse kinematics Jθ is,
in general, a diagonal matrix for all PRCPs in the class here considered, having elements
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k · ci×di on the main diagonal. This matrix is singular if and only if any of these elements is
zero; ignoring degenerate cases where one link has zero length, we see that this corresponds
to a configuration where two links in a RRR chain from the base to the EE are aligned, either
in a stretched-out or folded-back configuration, as shown in Figure 4. These configurations
are therefore type-1 kinematic singularities.

Analyzing type-2 kinematic singularities, on the other hand, is more difficult: we will
consider the 5–RRR robot as an example.

ci

di

Ai

Pi

Pn+i

(a)

ci

di
Ai

Pi

Pn+i

(b)
Figure 4. The two configurations of a type-1 singularity for a generic n-RR structure: (a) stretched-out;
(b) folded-back.

4.3. Jacobian Matrices of a 5-RRR Pcrp

In this case, we define the joint and pose vectors as θ = [θ1, θ2, θ3, θ4, θ5]T and π =[
xP6 , yP6 , φ1, φ2, φ3

]T , respectively. By applying the procedure described in Section 4.2,
we obtain the matrices

Jπ =


d1x d1y 0 0 0
d2x d2y k · l1 × d2 0 0
d3x d3y k · l1 × d3 k · l2 × d3 0
d4x d4y k · l1 × d4 k · l2 × d4 k · l3 × d4
d5x d5y e f g

 (16)

and

Jθ =


k · c1 × d1 0 0 0 0

0 k · c2 × d2 0 0 0
0 0 k · c3 × d3 0 0
0 0 0 k · c4 × d4 0
0 0 0 0 k · c5 × d5

 (17)

where the scalar quantities e, f and g are defined in Appendix B.
Type-1 singularities have already been found, for the most general case, in Section 4.2.

Type-2 singularities for this PRCP can be found analyzing matrix Jπ . In Figure 5 we present
three examples of singular configurations.

(a) A type-2 singularity occurs when all links PiPi+5 are parallel (Figure 5a). In this
case, one can see that the first two columns of Jπ from Equation (16) are linearly
dependent and thus the matrix is singular. The EE gains a uncontrolled DoF, namely,
the rigid translation in the direction orthogonal to the parallel links.

(b) If links P1P6, P6P7, and P7P2 are aligned (Figure 5b), then k · l1 × d2 = 0 and d1
is a scalar multiple of d2, so that the first two rows of Jπ are linearly dependent.
In this configuration, points P6 and P7 move perpendicularly to d1, while the EE
undergoes small deformations. By symmetry, this singular configuration extends to
the cases where the links

(
P2P7, P7P8, P8P3

)
,
(
P3P8, P8P9, P9P4

)
,
(
P4P9, P9P10, P10P5

)
or
(
P5P10, P10P6, P6P1

)
are aligned.

(c) In Figure 5c we show another type of singularity, first noted by Crapo in [45] for
a similar type of structure, that can also be applied in our case. For a given link
PiPi+1 on the EE, we define point Ni, at the intersection of the lines through the links
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connecting PiPi+1 to the base, and point Qi, at the intersection of the lines through
the links on the EE connected to PiPi+1; also, let T be at the intersection of the lines←−→
Qi Ni and

←−→
QjNj. If the line

←−−→
PkPn+k (through the distal link on the remaining RR chain

connecting the EE to the base) also passes through point T, we have a type-2 singular
configuration. Note that this includes the special case where all lines

←−−→
PiPn+i pass

through the same point T.

d1
d2

d3
d4

d5

l1

l2

l3l4

l5

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

(a)

d1

d2

d3
d4

d5

l1

l2

l3
l4

l5

P1

P2

P3

P4

P5

P6 P7

P8

P9

P10

(b)

P1
P2

P3

P4

P5

P6 P7

P8

P9

P10

Q5

Q3

N5
N3

T

(c)

d1 d2

d3
d4

d5

l1 l2

l3
l4

l5

P1
P2

P3

P4

P5

P6 P7

P8P9

P10

(d)
Figure 5. Some examples of type-2 kinematic singularities of a 5-RR structure (derived from a 5-RRR
mechanism): (a) a singularity occurring when all links PiPn+i are parallel; (b) a singularity occurring
when three consecutive links are aligned; (c) a singularity configuration derived from [45]; (d) the
auxiliary figure of Figure 5c. For each structure, we also show (in dashed lines) a configuration which
is close to the singular one; this approximates the infinitesimal motion that the structure can have
around its singularity (for Figure 5c, we added the auxiliary Figure 5d).

5. Examples

A 5-RRR prototype has been developed at IRI (Institut de Robòtica i Informàtica
Industrial, Barcelona, Spain) as shown in Figure 6. Its main parameters are reported in
Table 7, together with the input angles for an example configuration for which we solve
the DKP using the MATLAB script reported in Section 3.2.

From Section 3.2 we know that the characteristic polynomial can have at most 25+1 −
4 = 60 distinct solutions; it is found that, for the geometric parameters in Table 7, the
polynomial has six real solutions. Three of them correspond to feasible configurations,
which are reported in Table 8; the other solutions are not reachable because of physical
constraints, such as interference between the links or because they correspond to unfeasible
values of the unknown s2,6.
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Table 7. Coordinates of the ground joints (points Ai) and the corresponding input angles θi; the links’
lengths are ci = 160 mm, di = 120 mm and li = 80 mm (for i = 1, . . . , 5).

i xAi [mm] yAi [mm] θi [°]

1 0 0 64.8
2 330 0 115.2
3 432 314 201.67
4 165 508 237.6
5 −102 314 320.4

Table 8. The three real solutions of the DKP for the 5-RR prototype defined in Table 7 and the
corresponding poses π.

s2,6 xP6 [mm] yP6 [mm] φ1 [°] φ2 [°] φ3 [°]

6022 186.620 125.830 113.294 82.320 −161.487
21,190 147.477 234.790 −93.704 73.103 78.503
32,029 119.506 253.215 −4.348 98.934 −131.219

(a)

A1
A2

A3

A4

A5

P1

P2

P3
P4

P5

P6

P7

P8

P9

P10

(b)
Figure 6. (a) The 5-RRR prototype developed at IRI; (b) its corresponding schematic.

The robot was actuated by five servo units with a DC motor and integrated gear
reducer (Robotis Dynamixel AX-12A). The motors have a limited rotation range of 300°,
which could limit the reachable workspace; however, this was not found to be an issue
for any of the motions considered in our tests. Each motor can be controlled through
1024 discrete steps by a script we developed starting from MATLAB code provided by the
manufacturer. At every time-step during the motion, we define the EE pose π, which is
defined by five variables. Then, using the inverse kinematics formulas from Subsection 3.1,
we calculate the vector of motor angles θ: these are the angles to be set for the actuators.

The prototype in Figure 6 was studied in terms of position and singularity analysis.
Some experimental tests were also performed. In the multimedia attachment for this work
(see video abstract) a number of possible motions are presented:

(i) the EE translates and rotates while keeping a fixed configuration, like a conventional
(redundantly-actuated) rigid-EE manipulator;

(ii) the robot switches between two different solutions of the IKP for a given EE pose π;
(iii) the robot passes through a type-1 singularity configuration (see Section 4);
(iv) finally, the EE configures itself in order to grip a ball at a first position and moves

it to a different position, to present a potential application of having a configurable
platform. A schematic of this motion is reported for clarity in Figure 7.
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(c)
Figure 7. A schematic of a grasping motion with the prototype (see multimedia attachment): an
object (in gray) is grasped by reconfiguring the EE and moved to a new pose in the plane, through
three successive poses (a–c).

6. Conclusions

In this work, we have considered a general class of planar parallel robots having a
configurable platform (PRCPs), for which we performed the position and the singularity
analysis. While the inverse kinematics can be readily solved through conventional methods
used for planar linkages, the direct kinematics are more challenging; we show that the
bilateration method, which has a relatively recent history in robotics research, can be
usefully applied to this problem. In particular, we developed a general procedure that can
be applied to PRCPs of n-RRR type, having any number n of kinematic chains, and we
found heuristics to reduce the solution time. Furthermore, we showed how to derive the
Jacobian matrices of these robots, again through bilateration; from the Jacobians, we also
showed how to find singular configurations. For an exemplifying PRCP with five kinematic
chains, we showed both simulations that illustrate how to solve the direct kinematics and
results from experiments performed on a prototype.

Our goals for future work in this field are:

• to prove our conjectures regarding the degree of the characteristic polynomial of the
direct kinematics, namely, verifying that it is the polynomial of lowest degree for all n.
Furthermore, we aim to find a general example architectures having the maximum
possible number of real and distinct solutions (at least for the case n = 6);
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• to obtain more general results for planar PRCPs with n kinematic chains, for instance
including chains that have prismatic joints;

• to perform a statistical analysis of the time required to solve the direct kinematics,
both with bilateration and through conventional analytical methods, thus showing
the difference in the required computational effort;

• to find the full set of singular configurations for any number of kinematic chains,
extending the work in Section 4;

• to further develop the prototype in order to apply it to practical manipulation tasks,
for instance by using the flexible EE as a gripper, as shown in Figure 7 and in the
multimedia attachment.
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Appendix A. Example Architectures

For clarity, we report here two selected example architectures: a 3-RRR (Figure A1a)
and a 4-RRR (Figure A1b) mechanism. The first one has a rigid platform, while in the
second case the platform has an internal DoF for reconfiguring its shape.
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Figure A1. Schematics of: (a) a general 3-RRR robot; (b) a general 4-RRR robot. They have, respec-
tively, 3 and 4 DoFs.
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Appendix B. Singularity Equations

For the sake of completeness, we report here the definitions of quantities e, f , g from
Section 4 and their derivations. We find the position of P10 using bilateration; Equations (2)
and (3) give

p10 = p6 +
1

D(P6, P9)

ï
D(P6, P9; P6, P10) −2V(P6, P9, P10)
2V(P6, P9, P10) D(P6, P9; P6, P10)

ò
(p9 − p6), (A1)

where one obtains (through simplifications)

D(P6, P9) = l2
1 + l2

2 + l2
3 + S (A2)

D(P6, P9; P6, P10) =
1
2

Ä
l2
1 + l2

2 + l2
3 − l2

4 + l2
5 + S

ä
(A3)

D(P6, P9, P10) =
1
4

{
2
î
l2
4 l2

5 +
Ä

l2
4 + l2

5

äÄ
l2
1 + l2

2 + l2
3 + S

äó
− l4

4 − l4
5 −
Ä

l2
1 + l2

2 + l2
3 + S

ä2}
(A4)

V(P6, P9, P10) = ±1
2

√
D(P6, P9, P10), (A5)

where the sign of V(P6, P9, P10) depends on the point ordering as seen for Equation (2) and
having defined the auxiliary variable

S = 2(l1 · l2 + l2 · l3 + l3 · l1). (A6)

By differentiating Equations (A2)–(A4) with respect to time, one has (again after
simplifications)

Ḋ(P6, P9) = 2k · [(φ̇1 − φ̇2
)
(l1 × l2) +

(
φ̇2 − φ̇3

)
(l2 × l3) +

(
φ̇3 − φ̇1

)
(l3 × l1)

]
(A7)

Ḋ(P6, P9; P6, P10) =
1
2

Ḋ(P6, P9) (A8)

Ḋ(P6, P9, P10) =
1
2

Ḋ(P6, P9)
Ä

l2
4 + l2

5 − l2
1 − l2

2 − l2
3 − S

ä
. (A9)

By differentiating with respect to time Equation (A1) and introducing Equations (A2)–(A4)
and (A7)–(A9), we find the velocity

ṗ10 = ṗ6 +
φ̇1

D(P6, P9)
{[k · l1 × (l2 + l3)]s + D(P6, P9; P6, P10)(k× l1)− 2V(P6, P9, P10)l1}

+
φ̇2

D(P6, P9)
{[k · l2 × (l3 + l1)]s + D(P6, P9; P6, P10)(k× l2)− 2V(P6, P9, P10)l2}

+
φ̇3

D(P6, P9)
{[k · l3 × (l1 + l2)]s + D(P6, P9; P6, P10)(k× l3)− 2V(P6, P9, P10)l3}

= ṗ6 + φ̇1v1 + φ̇2v2 + φ̇3v3

(A10)

where

s =

ï
1− 2

D(P6, P9; P6, P10)
D(P6, P9)

ò
(l1 + l2 + l3)

−
ï

4V(P6, P9, P10)
D(P6, P9)

+
1

4V(P6, P9, P10)

Ä
l2
1 + l2

2 + l2
3 − l2

4 − l2
5 + S

äò
[k× (l1 + l2 + l3)]

(A11)

Introducing Equation (A10) in Equation (15) and rearranging, one finally obtains

θ̇5
(
c5xd5y − c5yd5x

)
= ẋP6 d5x + ẏP6 d5y + φ̇1e + φ̇2 f + φ̇3g (A12)
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where

e = v1 · d5 (A13)

f = v2 · d5 (A14)

g = v3 · d5. (A15)
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