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Abstract. In this paper we make a systematic study of the multiplicity of the jumping
points associated to the mixed multiplier ideals of a family of ideals in a complex surface
with rational singularities. In particular we study the behaviour of the multiplicity by
small perturbations of the jumping points. We also introduce a Poincaré series for mixed
multiplier ideals and prove its rationality. Finally, we study the set of divisors that
contribute to the log-canonical wall.

1. Introduction

Let X be a complex surface with a rational singularity at a point O ∈ X and OX,O
its corresponding local ring. Let a ⊆ OX,O be an m-primary ideal where m = mX,O is
the maximal ideal of OX,O. Then, for any real exponent c > 0, we may consider its
corresponding multiplier ideal J (ac). Indeed, the multiplier ideals form a discrete nested
sequence

(1.1) OX,O ! J (aλ1) ! J (aλ2) ! . . . ! J (aλi) ! . . .

indexed by an increasing sequence of rational numbers 0 < λ1 < λ2 < . . . such that
J (aλi) = J (ac) ! J (aλi+1) for any c ∈ [λi, λi+1). The λi are the so-called jumping
numbers of the ideal a. Ein, Lazarsfeld, Smith and Varolin [12], using the fact that the
multiplier ideals are m-primary as well, defined the multiplicity of a point c ∈ R as

(1.2) m (c) := dimC
J (ac−ε)

J (ac)

for ε > 0 small enough. With this definition, it is clear that c is a jumping number if and
only if m (c) > 0. A way to encode the information provided by the filtration of ideals
(1.1) is by means of its Poincaré series of multiplier ideals

(1.3) Pa(t) =
∑
c∈R>0

m(c) tc
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introduced by Galindo and Montserrat in [14]. Actually, they proved that this series is a
rational function when X is smooth and a is simple. In [3] we gave a systematic study of
multiplicities and proved the rationality of the Poincaré series for any ideal a in a complex
surface with a rational singularity at O.

Whenever we extend to the case of mixed multiplier ideals J (aaac) := J (ac11 · · · acrr )
associated to a tuple of m-primary ideals aaa := (a1, . . . , ar) ⊆ (OX,O)r and a point c :=
(c1, . . . , cr) in the positive orthant Rr

>0, things become a little bit more trickier. Instead of
having a partition of the positive real line into intervals defined by the jumping numbers
where the multiplier ideals are constant, we get a partition of the positive real orthant
into constancy regions whose boundary is described by the so-called jumping walls. We
point out that only a few results on mixed multiplier ideals are available in the literature.
Libgober and Mustaţǎ [19] studied properties of the log-canonical wall, i.e. the jumping
wall associated to λλλ0 = (0, . . . , 0). Naie in [21] describes a nice property that jumping
walls must satisfy. Cassou-Noguès and Libgober study in [10, 11] mixed multiplier ideals
and jumping walls associated to germs of plane curves, under the analogous notion of
ideals of quasi-adjunction and faces of quasi-adjunction (see [18]).

We may define the multiplicity of any given point ccc ∈ Rr
>0 and we say that it is a

jumping point, if and only if m (ccc) > 0. In particular, jumping points lie on jumping
walls. The most natural generalization of a Poincaré series for mixed multiplier ideals
is to consider a filtration of ideals J (aaac) indexed by points over a ray L in Rr

>0 with
direction vector in Qr

>0 and set

(1.4) Paaa(t;L) =
∑
ccc∈L

m(ccc) tccc

where tccc := tc11 · · · tcrr . We have to mention that the multiplicity is sensitive to small
perturbation of a given point. Indeed, if we consider a sequence of mixed multiplier ideals

J (aaaccc0) ) · · · ) J (aaaccci−1) ) J (aaaccci) ) J (aaaccci+1) ) · · ·
indexed by jumping points {ccci}i>0 over a ray L and perturb minimally this ray, for example
taking a parallel ray L′ that is close enough, then the sequence of mixed multiplier ideals
indexed by jumping points in L′ may vary (see Example 4.1) and thus, the corresponding
Poicaré series also varies.

The organization of the paper is as follows. In Section 2 we recall all the basics on mixed
multiplier ideals. In Section 3 we extend the results of [3] to this setting. Namely, we
make a systematic study of the multiplicities of points in the positive orthant. The main
result is Theorem 3.4 where we give a precise formula for the multiplicity. We also prove in
Theorem 3.9 that the Poincaré series associated to a ray is a rational function. In Section
4 we study the variation of the multiplicity of a jumping point by small perturbations. We
prove that this multiplicity does not vary for points in the interior (with the Euclidean
topology) of a C-facet (see Proposition 4.2) but it does so in a controlled way at the
intersection of C-facets (see Theorem 4.5). In Section 5 we study the exceptional divisors
that contribute to the log-canonical wall. Our main result is Theorem 5.9 where we
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establish (except for a very particular case considered in Proposition 5.7) a one-to-one
correspondence between the facets of the log-canonical wall and the exceptional divisors
of the so-called Newton nest (see Definition 5.1) generalizing a result of Cassou-Noguès
and Libgober [11, Theorem 4.22].

2. Mixed multiplier ideals

Let X be a complex surface with at most a rational singularity at a point O ∈ X (see
Artin [8] and Lipman [20] for details) and m = mX,O be the maximal ideal of the local
ring OX,O at O. Given a tuple of m-primary ideals aaa = (a1, . . . , ar) ⊆ (OX,O)r we will
consider a common log-resolution, that is, a birational morphism π : X ′ → X such that
X ′ is smooth, ai · OX′ = OX′ (−Fi) for some effective Cartier divisors Fi, i = 1, . . . , r
and

∑r
i=1 Fi + E is a divisor with simple normal crossings, where E = Exc (π) is the

exceptional locus. Actually, the divisors Fi are supported on the exceptional locus since
the ideals are m-primary. The fundamental cycle is the unique smallest non-zero effective
divisor Z (with exceptional support) such that Z · Ei 6 0 for every i = 1, . . . , r. The
fundamental cycle satisfies m · OX′ = OX′ (−Z) (see [8, Theorem 4]). We point out that

any effective divisor with integer coefficients D̃ is called antinef if D̃ · Ei 6 0 for every
i = 1, . . . , r. Indeed, for any effective divisor D there exists a unique minimal antinef

divisor D̃ satisfying D 6 D̃ that is called the antinef closure of D. It can be computed
using an inductive procedure called unloading (see [22] and [4] for details).

Since the point O has a rational singularity, the exceptional locus E is a tree of
smooth rational curves E1, . . . , Es. Moreover, the matrix of intersections (Ei · Ej)16i,j6s
is negative-definite. For any exceptional component Ej, we define the excess of ai at Ej
as ρi,j = −Fi · Ej. We also recall the following notions:

· A component Ej of E is a rupture component if it intersects at least three more
components of E (different from Ej).
· We say that Ej is dicritical if ρi,j > 0 for some i. Such components correspond to

Rees valuations (see [20]).

We define the mixed multiplier ideal at a point c := (c1, .., cr) ∈ Rr
>0 as1

(2.1) J (aaac) := J (ac11 · · · acrr ) = π∗OX′ (dKπ − c1F1 − · · · − crFre)
where d·e denotes the round-up and the relative canonical divisor

Kπ =
s∑
i=1

kjEj

is the Q-divisor on X ′ supported on the exceptional locus E characterized by the property
(Kπ + Ei) · Ei = −2 for every exceptional component Ej, j = 1, . . . , s. We say that X is
log-canonical (resp. log-terminal) at O if kj > −1 ( resp. kj > −1) ∀j.

1By an abuse of notation, we will also denote J (aaaccc) its stalk at O so we will omit the word ”sheaf” if no
confusion arises.
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Associated to any point ccc ∈ Rr
>0, we consider:

· The region of ccc: Raaa (ccc) =
{
ccc′ ∈ Rr

>0

∣∣ J (aaaccc′) ⊇ J (aaaccc)
}

· The constancy region of ccc: Caaa (ccc) =
{
ccc′ ∈ Rr

>0

∣∣ J (aaaccc′) = J (aaaccc)
}

The boundary of the region Raaa(ccc) is what we call the jumping wall associated to ccc. One
usually refers to the jumping wall of the origin as the log-canonical wall. It follows from
the definition of mixed multiplier ideals that the jumping walls must lie on supporting
hyperplanes of the form

(2.2) Vj,` : e1,jz1 + · · ·+ er,jzr = `+ kj , j = 1, . . . , s

for a suitable ` ∈ Z>0. Here we assume that the effective divisors Fi such that ai · OX′ =
OX′ (−Fi), for i = 1, . . . , r, are of the form Fi =

∑s
j=1 ei,jEj. Notice that each supporting

hyperplane Vj,` is associated to an exceptional component Ej. Indeed, we may find other
exceptional components associated to the same hyperplane, that is, we may find Ei and
`′ ∈ Z>0 such that Vj,` = Vi,`′ .

It is proved in [4, Theorem 3.3] that the region Raaa(ccc) is (the interior of) a rational
convex polytope defined by the inequalities

e1,jz1 + · · ·+ er,jzr < kj + 1 + ecccj , j = 1, . . . , s

corresponding to either rupture or dicritical divisors Ej and Dccc =
∑
ecccjEj is the antinef

closure of bc1F1 + · · ·+ crFr −Kπc.
The intersection of the boundary of a connected component of a constancy region Caaa(ccc)

with a supporting hyperplane of Raaa(ccc) is what we call a C-facet of Caaa(ccc). Every facet of
a jumping wall decomposes into several C-facets associated to different mixed multiplier
ideals.

The main result of [4] is an algorithm to compute all the constancy regions, and their
corresponding mixed multiplier ideals, in any desired range of the positive orthant Rr

>0.
In particular the set of jumping walls of aaa, that we will denote from now on as JWaaa,
is precisely described. The points on the jumping walls, which we will denote with λλλ
when we want to emphasize this fact, satisfy the property J (aaaccc) ! J

(
aaaλλλ
)

for all ccc ∈
{λλλ−Rr

>0} ∩Bε(λλλ) and ε > 0 small enough. In the sequel, we will refer to these points as
the jumping points of the tuple of ideals aaa.

3. Multiplicities of jumping points

In this section we are going to provide a systematic study of the multiplicity of any
point ccc ∈ Rr

>0. The results that we present are a natural generalization of the ones we
obtained in [3].

Definition 3.1. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals. We define
the multiplicity attached to a point ccc ∈ Rr

>0 as the codimension of J (aaaccc) in J
(
aaa(1−ε)ccc

)
for ε > 0 small enough, i.e.
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m(ccc) := dimC
J
(
aaa(1−ε)ccc

)
J (aaaccc)

.

Our first goal is to compute explicitly these multiplicities using the theory of jumping
divisors in this mixed multiplier ideals setting as considered in [4]. Since we are dealing
with any general point, it will be more convenient to consider the notion of maximal
jumping divisors as opposed to the minimal jumping divisors, which are only meaningful
for jumping points.

Definition 3.2. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Given any point
ccc ∈ Rr

>0, we define its maximal jumping divisor as the reduced divisor Hccc 6
∑r

i=1 Fi
supported on those components Ej such that

c1e1,j + · · ·+ crer,j − kj ∈ Z>0 .

Equivalently, for a sufficiently small ε > 0,

Hccc = dKπ − (1− ε)c1F1 − · · · − (1− ε)crFre − dKπ − c1F1 − · · · − crFre .
In particular, we have

J (aaa(1−ε)ccc) = π∗OX′(dKπ − c1F1 − · · · − crFre+Hccc) .

The following numerical properties for maximal jumping divisors will be useful for our
purposes. We will skip the details of the proof just because it is a natural generalization
of [3, Proposition 3.6] and the same proof holds mutatis mutandi.

Proposition 3.3. Fix any ccc ∈ Rr
>0, and let Hccc be its associated maximal jumping divisor.

Then the following inequalities hold:

• (dKπ − c1F1 − · · · − crFre+Hccc) · Ei > −1 for all Ei 6 Hccc, and
• (dKπ − c1F1 − · · · − crFre+Hccc) ·H > −1 for any connected component H 6 Hccc.

The main result of this section is the following:

Theorem 3.4. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and Hccc the
maximal jumping divisor associated to some ccc ∈ Rr

>0. Then,

m (ccc) = (dKπ − c1F1 − · · · − crFre+Hccc) ·Hccc + # {connected components of Hccc} .

Proof. Given the short exact sequence

0 −→ OX′ (dKπ − c1F1 − · · · − crFre) −→ OX′ (dKπ − c1F1 − · · · − crFre+Hccc) −→
−→ OHccc (dKπ − c1F1 − · · · − crFre+Hccc) −→ 0

we have, after pushing it forward to X and applying local vanishing [17] for the case of
mixed multiplier ideals

0 −→ J (aaaccc) −→ J (aaa(1−ε)ccc) −→
−→ H0 (Hccc,OHccc (dKπ − c1F1 − · · · − crFre+Hccc))⊗ CO −→ 0
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for ε small enough. Therefore the multiplicity of ccc is just

m (ccc) = h0 (Hccc,OHccc (dKπ − c1F1 − · · · − crFre+Hccc))

=
∑
Ei6Hccc

h0 (Ei,OEi (dKπ − c1F1 − · · · − crFre+Hccc))− aHccc ,

where in the second equality we have used that Hccc has simple normal crossings, and
hence the sections of the line bundle OHccc (dKπ − c1F1 − · · · − crFre+Hccc) correspond to
sections over each component that agree on the aHccc intersections, where aHccc denotes the
number of edges of Hccc in the dual graph. Then, since we have

degOEi (dKπ − c1F1 − · · · − crFre+Hccc) = (dKπ − c1F1 − · · · − crFre+Hccc) · Ei > −1

by Proposition 3.3, we get

m (ccc) =
∑
Ei6Hccc

((dKπ − c1F1 − · · · − crFre+Hccc) · Ei + 1)− aHccc

= (dKπ − c1F1 − · · · − crFre+Hccc) ·Hccc + vHccc − aHccc
= (dKπ − c1F1 − · · · − crFre+Hccc) ·Hccc + # {connected components of Hccc} .

�

The above formula can be rephrased as follows

Corollary 3.5. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and Hccc the
maximal jumping divisor associated to some ccc ∈ Rr

>0. Then,

m (ccc) =
∑
Ei6Hccc

 ∑
Ej∈Adj(Ei)

{c1e1,j + · · ·+ crer,j − kj}+ c1ρ1,i + · · ·+ crρr,i


−# {connected components of Hccc} .

We may also provide a very simple numerical criterion to detect whether a given point
ccc ∈ Rr

>0 is a jumping point.

Theorem 3.6. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and ccc ∈ Rr
>0.

Then, ccc is a jumping point if and only if m(ccc) > 0 or equivalently, there exists a connected
component H 6 Hccc such that

(dKπ − c1F1 − · · · − crFre+Hccc) ·H ≥ 0.

Proof. We have

m (ccc) = (dKπ − c1F1 − · · · − crFre+Hccc) ·Hccc + # {connected components of Hccc}

=
∑
H6Hccc

((dKπ − c1F1 − · · · − crFre+Hccc) ·H + 1) ,

where the sum is taken over all the connected components H 6 Hccc. The result follows
since we have (dKπ − c1F1 − · · · − crFre+Hc) ·H > −1 by Proposition 3.3. �
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3.1. Poincaré series of mixed multiplier ideals. Given a m-primary ideal a ⊆ OX,O
we consider its Poincaré series

(3.1) Pa(t) =
∑
c∈R>0

m(c) tc.

which was first considered, in the case that X is smooth and a is simple, by Galindo and
Montserrat [14] and extended in [3] to the case where X has a rational singularity and a
is any m-primary ideal.

For a tuple of m-primary ideals aaa = {a1, . . . , ar} ⊆ (OX,O)r we are going to give a
generalization of this series by considering a sequence of mixed multiplier ideals indexed
by points in a ray L : ccc0 + µu in the positive orthant Rr

>0 with u = (u1, . . . , ur) ∈ Zr>0,
u 6= 0 and ccc0 ∈ Qr

>0. Here we are considering, for simplicity, a point ccc0 belonging to
a coordinate hyperplane but not necessarily being the origin and µ ∈ R>0. Namely, we
consider the sequence of mixed multiplier ideals

J (aaaccc0) ) J (aaaccc1) ) J (aaaccc2) ) · · · ) J (aaaccci) ) · · ·
where {ccci}i>0 = L ∩ JWaaa or equivalently {ccci}i>0 is the set of jumping points of this
sequence. Then we define the Poincaré series of aaa alongside the ray L as

(3.2) Paaa(t;L) =
∑
ccc∈L

m(ccc) tccc.

where tccc := tc11 · · · tcrr . Notice that we have

Paaa(t;L) =
∑
ccc∈L

m(ccc) tccc =
∑

ccc∈[ccc0,ccc0+u)

∑
k∈N

m(ccc+ ku) tccc+ku = tccc0
∑
µ∈[0,1)

∑
k∈N

m(ccc+ ku) t(µ+k)u

where the last equality follows from the fact that we are considering points of the form
ccc = ccc0 + µu with µ ∈ [0, 1). Our goal is to prove that this Poincaré series is rational
in the sense that it belongs to the field of fractional functions C(z1, . . . , zr), where the

indeterminate zi corresponds to a fractional power t
1/e
i for e ∈ N>0 being the least common

multiple of the denominators of the coordinates of all jumping points. To do so we need
to prove a linear recurrence among the coefficients of the series. A key ingredient will be
a periodicity property of the maximal jumping divisor which follows from its definition.

Lemma 3.7. For any ccc ∈ Rr
>0 and ααα = (α1, . . . , αr) ∈ Zr>0 we have Hccc = Hccc+ααα.

The linear recurrence that the multiplicities satisfy is described in terms of the excesses
at dicritical components.

Proposition 3.8. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and
ααα = (α1, . . . , αr) ∈ Zr>0. Then,

m (ccc+ααα)−m (ccc) =
∑
Ei6Hccc

r∑
j=1

αjρj,i .
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Proof. Lemma 3.7 above states that ccc and ccc+ααα have the same maximal jumping divisor,
say Hccc. Therefore, by Theorem 3.4, we have

m (ccc+ααα)−m (ccc) = −(α1F1 + · · ·+ αrFr) ·Hccc =
∑
Ei6Hccc

∑
16j6r

αjρj,i.

�

In the sequel, we will just denote ρccc,ααα :=
∑

Ei6Hccc

∑r
j=1 αjρj,i . The formula for the

Poincaré series that we obtain is the following:

Theorem 3.9. Let aaa = {a1, . . . , ar} ⊆ (OX,O)r be a tuple of m-primary ideals and let
L : ccc0 +µu be a ray in the positive orthant Rr

>0 with u ∈ Z>0, u 6= 0. The Poincaré series
of aaa alongside L can be expressed as

Paaa(t;L) = tccc0
∑
µ∈[0,1)

(
m(ccc0 + µu)

1− tu
+ ρccc0+µu,u

tu

(1− tu)2

)
tµu

Proof. Given a point ccc = ccc0 + µu, with µ ∈ [0, 1) we have, using Proposition 3.8, that

m(ccc+ ku) = m(ccc) + k
∑
Ei6Hccc

r∑
j=1

ujρj,i = m(ccc) + kρccc,u

Therefore∑
k>0

m(ccc+ ku) tccc+ku = m(ccc) tccc + (m(ccc) + ρccc,u) tccc+u + (m(ccc) + 2ρccc,u) tccc+2u + · · ·

=

(
m(ccc)

1− tu
+ ρccc,u

tu

(1− tu)2

)
tccc

and the result follows. �

Remark 3.10. In the case that L is the i-th axis of the positive orthant Rr
>0, in particular

if ccc0 is the origin, we obtain the Poincaré series of the ideal ai.

4. Multiplicities of jumping points after small perturbations

Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and consider two parallel
rays L : ccc0 + µu and L′ : ccc′0 + µu as those considered in the previous section that are
close enough. Our aim is to compare the sequences of mixed multiplier ideals indexed by
points in both rays and see how the multiplicity of a jumping point varies with a small
perturbation. To illustrate this phenomenon we start with the following example.

Example 4.1. Consider the tuple of ideals aaa = (a1, a2) on a smooth surface X given by:

· a1 = ((x+ y)4, x9(x+ y), x11, x6(x+ y)2, x3(x+ y)3),
· a2 = (y3, x7, x5y, x3y2).

The dual graph of the log-resolution of aaa is as follows:
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E1 E2 E3E4E5E6E7 E8E9E10

where the blank dots correspond to dicritical divisors and their excesses are represented
by broken arrows. The divisors associated with this resolution are

· F1 = 4E1 + 4E2 + 4E3 + 8E4 + 12E5 + 8E6 + 11E7 + 20E8 + 32E9 + 44E10,
· F2 = 3E1 + 6E2 + 7E3 + 14E4 + 21E5 + 3E6 + 3E7 + 6E8 + 9E9 + 12E10

and the relative canonical divisor is:

· Kπ = E1 + 2E2 + 3E3 + 6E4 + 9E5 + 2E6 + 3E7 + 6E8 + 10E9 + 14E10.

In Figure 2, we present the constancy regions of the corresponding mixed multiplier ideals,
those regions are computed using the algorithm in [4]. The chains of mixed multiplier
ideals over the parallel rays L :

(
0, 101

780

)
+ µ(1, 1) and L′ :

(
0, 37

390

)
+ µ(1, 1) are given in

Table 1. The sets of generators for these ideals are computed using the algorithm in [1]
(see also [9] ).

Figure 1. Constancy regions of the mixed multiplier ideals of aaa and the
rays L,L′, in blue and Bordeaux respectively.

In the previous example, we observe that the chains of mixed multiplier ideals differ
whenever the corresponding ray crosses the intersection of C-facets. Indeed, the multiplic-
ity of a jumping point at the intersection of C-facets is bigger than the multiplicities of
jumping points in its neighborhood. The aim of this section is to provide an explanation
to this phenomenon. We start with the fact that the multiplicity does not increase in the
interior of C-facets.

Proposition 4.2. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and let
λλλ,λ′λ′λ′ be two jumping points in the interior of a C-facet. Then m(λλλ) = m(λ′λ′λ′).
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Jumping
points in L

J (aaaλλλ)
Jumping
points in L′

J (aaaλλλ)(
81
260
, 86
195

)
(x, y)

(
67
130
, 119
195

)
(x, y)(

203
520
, 757
1560

)
(x + y, x2)(

631
2860

, 751
2145

)
(x2, y2, xy)

(
267
455
, 1861
2730

)
(x2, y2, xy)(

697
1820

, 1399
2730

)
(xy + x2, x3, y2 + 2xy + x2)

(
347
1430

, 724
2145

)
(xy + x2, x3, y2 + 2xy + x2)(

827
1820

, 797
1365

)
(y2 + xy, x2y, x2y + x3)

(
477
1430

, 919
2145

)
(y2 + xy, x2y, x2y + x3)(

957
1820

, 1789
2730

)
(y2 + xy, x2y, x2y + x3)

(
607
1430

, 1114
2145

)
(y2 + xy, x2y, x2y + x3)(

1151
2860

, 1141
2145

)
(y2 + xy, x3y, x3y + x4)(

1411
2860

, 1336
2145

) (y3 +xy2, x3y, x3y+x4, x2y2,

xy2 + x2y)

(
1161
3640

, 4519
10920

) (y3 +xy2, x3y, x3y+x4, x2y2,

xy2 + x2y)

(
1849
3640

, 6961
10920

) (y3 + 2xy2 + x2y, x4y, xy2 +

x2y,

x2y2 + 2x3y + x4, x3y + x4)

(
1681
3640

, 6079
10920

) (y3 + 2xy2 + x2y, x4y, xy2 +

x2y,

x2y2 + 2x3y + x4, x3y + x4)(
2109
3640

, 7741
10920

) (y3 + 2xy2 + x2y, x2y2 + x3y,

x4y, x2y2 + 2x3y + x4)

(
1941
3640

, 6859
10920

) (y3 + 2xy2 + x2y, x2y2 + x3y,

x4y, x2y2 + 2x3y + x4)(
2369
3640

, 8521
10920

) (y3 + 2xy2 + x2y, x2y2 + x3y,

x5y, x2y2 + 2x3y + x4)

(
2201
3640

, 7639
10920

) (y3 + 2xy2 + x2y, x2y2 + x3y,

x5y, x2y2 + 2x3y + x4)

Table 1. Chains of mixed multiplier ideals of aaa over the rays L and L′.
In bold type we present the jumping points with multiplicity 2.

To prove this result it is more convenient to compute the multiplicity of a jumping point
by using the so-called minimal jumping divisor instead of the maximal jumping divisor
as we did in Section 3. This minimal jumping divisor is closely related to the algorithm
developed in [4] to compute the constancy regions of mixed multiplier ideals. We give its
definition below but we refer to [4] for details.

Definition 4.3. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of ideals. Given a jumping
point λλλ = (λ1, . . . , λr) ∈ Rr

>0, its corresponding minimal jumping divisor is the reduced
divisor Gλ 6

∑r
i=1 Fi supported on those components Ej for which the point λλλ satisfies

λ1e1,j + · · ·+ λrer,j = kj + 1 + e
(1−ε)λλλ
j ,

where, for a sufficiently small ε > 0, D(1−ε)λλλ =
∑
e
(1−ε)λλλ
j Ej is the antinef closure of

b(1− ε)λ1F1 + · · ·+ (1− ε)λrFr −Kπc.
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Using the same arguments that we used in the proof of Theorem 3.4 we may provide the
following formula for the multiplicity of a jumping point in terms of the minimal jumping
divisor.

Proposition 4.4. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and Gλλλ

the maximal jumping divisor associated to some jumping point λλλ ∈ Rr
>0. Then,

m(λλλ) = (dKπ − λ1F1 − · · · − λrFre+Gλλλ) ·Gλλλ + #{connected components of Gλλλ}

It was proved in [4, Lemma 4.6] that two interior points of a C-facet have the same
minimal jumping divisor, which we refer to as the minimal jumping divisor associated
to the C-facet. Therefore by applying 4.4, the multiplicity is constant along the interior
points of a C-facet and thus proving Proposition 4.2. We point out that two interior points
of a C-facet may have different maximal jumping divisor

This constancy property for the multiplicities is no longer true when considering jump-
ing points at the intersection of C-facets. However we can control the multiplicity depend-
ing on the number of C-facets that contain this jumping point.

Theorem 4.5. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and let
L : ccc0 + µu and L′ : ccc′0 + µu be two parallel rays that are close enough. Let λλλ ∈ L be a
jumping point and Bε(λλλ) be a ball centered at λλλ of a sufficiently small radius ε > 0 such
that L ∩ JWaaa ∩Bε(λλλ) = {λλλ}. If L′ ∩ JWaaa ∩Bε(λλλ) = {λλλ1, . . . ,λλλn} then

m(λλλ) = m(λλλ1) +m(λλλ2) + · · ·+m(λλλn) .

Proof. Let V1, . . . , Vk be all the hyperplanes associated to exceptional divisors that contain
the jumping point λλλ. For each hyperplane Vi we consider the divisor Hi =

∑
j Ej where

the sum is taken over the exceptional divisors that support the hyperplane Vi, i.e. for
all Ej ≤ Hi there exists some `j ∈ Z>0 such that the hyperplane Vi is of the form
e1,jz1 + · · ·+ er,jzr = `j + kj. Notice that, even though it is possible that not all of these
hyperplanes support a jumping wall, we have a decomposition of the maximal jumping
divisor as Hλλλ = H1 + · · · + Hk. Let {c1, . . . , ck} be the ordered2 set of points resulting
from the intersection of the ray L′ with the hyperplanes V1, . . . , Vk. Notice that we have
L′ ∩ JWaaa ∩Bε(λλλ) = {λλλ1, . . . ,λλλn} ⊆ {c1, . . . , ck}.

For each ci = (ci,1, . . . , ci,r) we may find a point (1−ε′)ci := ((1−ε′1)ci,1, . . . , (1−ε′r)ci,r)
over the ray L′ that is close enough but smaller than c1 and a point over the ray L and
smaller than λλλ that we will denote as (1− ε)λλλ := ((1− ε1)λ1, . . . , (1− εr)λr) satisfying

dKπ − (1− ε1)λ1F1 − · · · − (1− εr)λrFre = dKπ − (1− ε′1)ci,1F1 − · · · − (1− ε′r)ci,rFre.
From the construction of the hyperplanes Vi we have:

· dKπ − λ1F1 − · · · − λrFre = dKπ − (1− ε1)λ1F1 − · · · − (1− εr)λrFre+Hλλλ.

· dKπ− ci,1F1−· · ·− ci,rFre = dKπ− (1−ε′1)ci,1F1−· · ·− (1−ε′r)ci,rFre+H1 + · · ·+Hi.

2The order on the set of points {c1, . . . , ck} is given by their distance to the origin. We order the
hyperplanes V1, . . . , Vk accordingly.
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Therefore

(4.1) dKπ − λ1F1 − · · · − λrFre − dKπ − ci,1F1 − · · · − ci,rFre = Hi+1 + · · ·Hk.

By Theorem 3.4, one has

m(λλλ) = (dKπ − λ1F1 − · · · − λrFre+Hλλλ) · Hλλλ + #{connected components of Hλλλ} .

Thus, we can rewrite this formula as

m(λλλ) =
k∑
i=1

(dKπ − λ1F1 − · · · − λrFre+Hi) ·Hi

+
k∑
i=1

k∑
j=1
j 6=i

HiHj + #{connected components of Hλλλ}

=
k∑
i=1

(dKπ − ci,1F1 − · · · − ci,rFre+Hi) ·Hi

+
k∑
i=1

k∑
j>i

HiHj + #{connected components of Hλλλ}

where the last equality follows from Equation 4.1. Now, recall that for any divisor D with
exceptional support #{connected components of D} = vD−aD, where vD and aD denote
the number of vertices and edges of D in the dual graph. Since vHλλλ = vH1 + · · ·+ vHk and

aHλλλ = aH1 + · · ·+ aHk +
∑k

i=1

∑k
j>iHiHj we deduce

#{connected components of Hλλλ} =
k∑
i=1

#{connected components of Hi} −
k∑
i=1

k∑
j>i

HiHj.

Therefore

m(λλλ) =
k∑
i=1

[(dKπ − ci,1F1 − · · · − ci,rFre+Hi) ·Hi + #{connected components of Hi}]

= m(c1) + · · ·+m(ck).

The only points with non zero multiplicity are those over a jumping wall, namely the
jumping points {λλλ1, . . . ,λλλn} and thus we get the desired result. �

5. Contribution to the log-canonical wall

Let X be a smooth complex surface and a ⊆ OX,O an ideal. A common theme in the
study of multiplier ideals is to check which exceptional divisors contribute to the jumping
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numbers of a. In the case of the log-canonical threshold we know that it is described by
the formula

lct(a) = min
i

{
ki + 1

ei

}
.

In the case that a is m-primary and simple, this minimum is achieved at the first rupture
or dicritical exceptional component, starting from the origin, in the dual graph of the
log-resolution of a (see [15], [23]). For non simple ideals we may find some analogous
statements in [16], [13], [6], [5].

For the case of mixed multiplier ideals, Cassou-Noguès and Libgober [11, Theorem
4.22] studied the contribution of exceptional divisors to the log-canonical wall for the case
where the tuple of ideals corresponds to the branches of a plane curve. In this section we
will give a generalization of their result that works for general tuples of m-primary ideals
aaa = (a1, . . . , ar) ⊆ (OX,O)r, where X is a complex surface with a rational singularity at O
and the points in the log-canonical wall have multiplicity one.

Their result is described in terms of the so-called Newton nest introduced in [11, Defini-
tion 4.19]. In order to give a generalization to our setup of the Newton nest we will need
to fix some notation. When X has a rational singularity we may have an strict inclusion
OX,O ! J (aaa0) where 0 = (0, . . . , 0) is the origin of the positive orthant Rr

>0. Indeed, the
mixed multiplier ideal J (aaa0) is described by a divisor D0 =

∑
e0jEj which is the antinef

closure of b−Kπc that can be computed using the unloading procedure described in [2].
Therefore, the log-canonical wall is supported on hyperplanes of the form

e1,jz1 + · · ·+ er,jzr = kj + 1 + e0j , j = 1, . . . , s.

For each point zzzi = (0, . . . , 0, lct(ai), 0, . . . , 0) in the i-th coordinate axis corresponding to
the log-canonical threshold of the ideal ai, i = 1, . . . , r, we consider the reduced divisor
G′zzzi =

∑
Ej, where the sum is taken over those exceptional divisors associated to the

supporting hyperplanes of the log-canonical wall which contain the point zzzi. Notice that
this divisor is contained in the minimal jumping divisor of zzzi, that is G′zzzi 6 Gzzzi .

Definition 5.1. Consider the minimal connected subgraph Γ′aaa of the dual graph Γaaa con-
taining the divisors G′zzzi , for i = 1 . . . , r. The Newton nest of Γaaa is the set of rupture or
dicritical divisors belonging to Γ′aaa.

Remark 5.2. In the case that X is smooth and the ideals aaai are simple, this definition
coincides with the one given by Cassou-Noguès and Libgober in [11, Definition 4.19] since
in this case we have that G′zzzi = Gzzzi = Eji , where Eji is the rupture divisor in the dual
graph Γai which is closest to its root.

Cassou-Noguès and Libgober [11, Theorem 4.22] established a one-to-one correspon-
dence between the divisors of the Newton nest and the C-facets of the log-canonical wall
in the case where X is smooth and the tuple of ideals correspond to the branches of a
plane curve. The only restriction that we are going to impose in our generalization is
that the multiplicity of all the points in the log-canonical wall have multiplicity one. This
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condition is achieved, for example, in the case that X has a log-terminal singularity at
O ∈ X.

Lemma 5.3. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of simple m-primary ideals and
X is a complex surface with a log-terminal singularity. Then, all the points in the log-
canonical wall have multiplicity one.

Proof. From the definition of log-terminal singularity, it follows that the antinef closure of
b−Kπc is 0 because all the coefficients of b−Kπc are strictly smaller than one. Therefore
the ideal associated to the point 000 is the whole ring.

Let λλλ be a jumping point in the log-canonical wall. All the coefficients of the divisor
bλλλF − Kπc must be smaller or equal to one so we have bλλλF − Kπc 6 Z where Z is
the fundamental cycle. Therefore we have m = π∗OX′(−Z) ⊆ J

(
aaaλλλ
)
( OX,O. So

J
(
aaaλλλ
)

= m, and consequently m(λλλ) = 1 for all points in the log-canonical wall. �

Before stating the main result of this section we will present some properties concerning
jumping points of multiplicity one. This is a very restrictive condition on the correspond-
ing minimal jumping divisors. To such purpose we have to introduce some technical
notation. Given any exceptional component Ei and a reduced divisor D 6 E = Exc(π),
we define the set of components adjacent to Ei inside D and its number as:

AdjD (Ei) = {Ej 6 D | Ei · Ej = 1} and aD (Ei) = #AdjD (Ei)

Lemma 5.4. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals and λλλ a
jumping point such that m(λλλ) = 1. Then, the minimal jumping divisor Gλλλ has only one
connected component and no rupture or dicritical divisor Ei such that aGλλλ(Ei) > 1.

Proof. Using Proposition 4.4 we have the following formula.

m(λλλ) = (dKπ − λ1F1 − · · · − λrFre+Gλλλ) ·Gλλλ + #{connected components of Gλλλ} .

In the case that m(λλλ) = 1 we can deduce that #{connected components of Gλλλ} = 1 and

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) ·Gλλλ =
∑
Ei6Gλλλ

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = 0

since we already had (dKπ − λ1F1 − · · · − λrFre+Gλλλ) ·Gλλλ > 0 by [4, Proposition 4.13].
Indeed, using again this result we have

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei = 0

for all Ei 6 Gλλλ. We may provide a more explicit description of this equation using [4,
Lemma 4.11]. Namely we have

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei =

= −2 + λ1ρ1,i + · · ·+ λrρr,i + aGλλλ (Ei) +
∑

Ej∈AdjE(Ei)

{λ1e1,j + · · ·+ λrer,j − kj} .
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Thus, if Ei is a rupture or dicritical component with aGλλλ (Ei) > 1, then we have

(dKπ − λ1F1 − · · · − λrFre+Gλλλ) · Ei > 0

so we get a contradiction and the result follows. �

Corollary 5.5. Let λλλ ∈ Rr
>0 be a jumping point not contained in any coordinate hyper-

plane such that m(λλλ) = 1. Then:

i) If λλλ is an interior point of a C-facet which does not intersect any other C-facet, the
minimal jumping divisor Gλλλ contains at most two dicritical or rupture divisors.

ii) If λλλ is an interior point of a C-facet which intersects, at least, another C-facet, the
minimal jumping divisor Gλλλ is a dicritical or rupture divisor.

iii) If λλλ is at the intersection of two C-facets, the minimal jumping divisor Gλλλ is
connected and contains exactly two dicritical or rupture divisors, which are its two
ends.

Proof. Let λλλ ∈ Rr
>0 be a jumping point. By [4, Theorem 4.14], the ends of the connected

components of the minimal jumping divisor Gλλλ over the dual graph are either rupture
or dicritical divisors. If we assume m(λλλ) = 1, then, using Lemma 5.4, we have that
aGλλλ(Ej) 6 1 for any rupture or dicritical divisor Ej. Therefore either Gλλλ is just one
exceptional component or it is connected with just two ends which are rupture or dicritical
divisors in the dual graph. In particular, i) follows.

Now assume that λλλ is at the intersection of two C-facets C1 and C2 with associated
minimal jumping divisors G1 and G2 respectively. We have Gλλλ = G1 +G2 +G′ for some
divisor G′ with exceptional support. Moreover, the jumping points in the interior of C1
and C2 have multiplicity 1 so the same properties considered above also apply for G1 and
G2. The two C-facets are supported on different hyperplanes with different slope, so G1

and G2 do not share any exceptional divisor. By Lemma 5.4, this forces G1 and G2 to
be just one exceptional component being a rupture or dicritical divisor and the minimal
jumping divisor Gλλλ contains exactly two dicritical or rupture divisors. Thus, ii) and iii)
follow. �

Remark 5.6. Given a tuple of m-primary ideals aaa = (a1, . . . , ar) ⊆ (OX,O)r we may pick
a subfamily a′ = {ai1 , . . . , aik | 1 ≤ i1 < · · · < ik ≤ r} and, if no confusion arise, we may
view it either as a tuple (OX,O)s or a subtuple of aaa in (OX,O)r in the obvious way. Notice
for example that the Newton nest of aaa′ is a subset of the Newton nest of aaa. In the case
that λλλ = (λ1, . . . , λr) ∈ Rr

>0 is a jumping point contained in a coordinate hyperplane, we
may consider the tuple aaa′ = (ai | λi 6= 0). Corollary 5.5 holds whenever we consider λλλ as
a jumping point for aaa′ and thus, a point not in the coordinate hyperplanes of the lower
dimensional positive orthant.

Notice that Corollary 5.5 already singles out a very particular case where we may
not have our desired one-to-one correspondence. Namely, assume that the log-canonical
wall has a unique C-facet with points of multiplicity one. Part i) of Corollary 5.5 says
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that the Newton nest contains either one or two divisors. Therefore the desired one-to-
one correspondence fails when we have exactly two divisors and this case can indeed be
achieved. Recall that the effective divisors Fi such that ai·OX′ = OX′ (−Fi) are of the form
Fi =

∑s
j=1 ei,jEj for i = 1, . . . , r and the relative canonical divisor is Kπ =

∑s
i=1 kjEj.

Let Ej and E` be the divisors in the Newton nest and Vj,1 : e1,jz1 + · · ·+ er,jzr = kj + 1
and V`,1 : e1,`z1 + · · · + er,`zr = k` + 1 be their associated hyperplanes. The numerical
conditions for which these hyperplanes support the unique C-facet of the log-canonical
wall are

e1,`
e1,j

= · · · = er,`
er,j

=
k` + 1

kj + 1
.

This result can be reformulated in the following

Lemma 5.7. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals where X is a
complex surface with a rational singularity at O ∈ X. Assume that all the points in the
log-canonical wall have multiplicity one and the Newton nest contains two divisors Ej and
E`. Then, the log-canonical wall has a unique C-facet if and only if

e1,`
e1,j

= · · · = er,`
er,j

=
k` + 1

kj + 1
.

We illustrate this case with the following

Example 5.8. Consider a smooth surface X and a tuple of ideals aaa = {a1, a2} such that
they have a minimal log-resolution with the following vertex ordering

E1 E2E3 E4

E5E6E7

E8E9 E10

E11 E12

E13

E14 E15 E16

and the divisors given by the ideals are:

· F1 = (18, 24, 45, 72, 73, 146, 218, 72, 144, 216, 21, 42, 63, 64, 128, 194), and
· F2 = (18, 24, 45, 72, 72, 144, 216, 74, 147, 222, 21, 42, 63, 64, 128, 194).

with Kπ = (1, 2, 4, 7, 8, 16, 24, 8, 16, 25, 2, 4, 6, 7, 14, 21).

The divisors in the Newton nest are E4 and E13 and the log-canonical wall only has a
unique C-facet whose supporting hyperplane has the following equation:

V4,1 : 72x1 + 72x2 = 8, or equivalently, V13,1 : 63x1 + 63x2 = 7 .

The main result of this section is that the one-to-one correspondence established by
Cassou-Noguès and Libgober in [11, Theorem 4.22] still holds in our setup except for this
very particular case where we may have two divisors in the Newton nest and just a unique
C-facet.
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Theorem 5.9. Let aaa = (a1, . . . , ar) ⊆ (OX,O)r be a tuple of m-primary ideals where X
is a complex surface with a rational singularity at O ∈ X. Assume that the log-canonical
wall has at least two C-facets and all its points have multiplicity one. Then, there is a
one-to-one correspondence between the exceptional divisors in the Newton nest of aaa and
the C-facets of the log-canonical wall.

Proof. We start with the case r = 2, that is aaa = (a1, a2). In order to construct the Newton
nest of aaa we start considering two points zzz1 and zzz2 in the coordinate axes corresponding
to the log-canonical thresholds of the ideals a1 and a2 respectively. Then we order the
C-facets of the log-canonical wall C1, C2, . . . , Cl in such a way that zzz1 ∈ C1, zzz2 ∈ Cl and each
C-facet Ci intersects Ci−1 and Ci+1. Roughly speaking, we are considering a path from zzz1
to zzz2 over the log-canonical wall. By Corollary 5.5, the exceptional divisors associated to
the supporting hyperplanes of C1, C2, . . . , Cl are unique, but they are also different because
the hyperplanes have different slopes. Therefore, we can order these dicritical or rupture
divisors Ej1 , Ej2 , . . . , Ejl accordingly to their corresponding C-facets. Moreover, Corollary
5.5 implies that they form a path in the dual graph Γaaa of the log-resolution of aaa with no
dicritical or rupture divisors in between two consecutive Eji ’s.

Now, let Γ′aaa ⊂ Γaaa be the minimal connected subgraph containing Ej1 and Ejs . Then
we have that Ej2 , . . . , Ejs−1 belong to Γ′aaa and the result follows because the Newton nest
is the set {Ej1 , Ej2 , . . . , Ejs} by construction.

For the case r > 2, that is aaa = (a1, . . . , ar), we have to consider points zzz1, . . . , zzzr in the
coordinate axes corresponding to the log-canonical thresholds. We are going to pick one
of them, say zzz1, and a C-facet C1 containing this point zzz1. Let c ∈ C1 be an interior point
with rational coordinates and q := (0, q2, . . . , qr) a point in the coordinate hyperplane
{x1 = 0} with rational coordinates. Notice that q corresponds to the mixed multiplier

ideal J (aq22 · · · aqrr ) = J
(

(adqi2 · · · adqrr )
1
d

)
for some d ∈ Z such that dqi ∈ Z for i = 2, . . . , r.

The mixed multiplier ideals appearing in the restriction of the positive orthant Rr
>0 to

the plane containing the points c, q and the origin 0 are the mixed multiplier ideals of
the duple aaa′ = (a1, a

dq2
2 · · · adqrr ) so the facets of the corresponding log-canonical wall are

in one-to-one correspondence with the exceptional divisors in the Newton nest of aaa′ which
is contained in the Newton nest of aaa. Just moving the points c and q conveniently allows
us to cover the whole log-canonical wall of aaa and the result follows. We point out that a
log-resolution of aaa is also a log-resolution of aaa′. �

In the following example we show that with our definition of the Newton nest we may
also consider the case of non-simple ideals in a smooth surface which was not considered
in [11].

Example 5.10. Consider the tuple of ideals aaa = (a1, a2, a3) on a smooth surface X:

· a1 = (y3, x6y, x8, x3y2),

· a2 = (x (x2 + x+ y)
4
, (x2 + x+ y)

2
(x2 − x− y)

2
, x5 (x2 − x− y)

2
, x5 (x2 + x+ y)

2
,

x3 (x2 + x+ y) (x2 − x− y)
2
, x3 (x2 + x+ y)

3
),
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· a3 = (−x6 (x− y) , x7, x5 (x− y)2 ,−x3 (x− y)3 , x5 (x− y)2 ,− (x− y)5 , x2 (x− y)4).

The dual graph of the log-resolution of aaa is:

E1

E2 E3E4 E5

E6

E7 E8

E9 E10 E11E12E13 E14

For simplicity we denote the divisors associated with this resolution as

· F1 = (3, 6, 8, 15, 24, 3, 3, 6, 3, 6, 3, 6, 9, 15),
· F2 = (4, 4, 4, 8, 12, 8, 9, 18, 9, 18, 4, 8, 12, 20),
· F3 = (5, 5, 5, 10, 15, 5, 5, 10, 5, 10, 7, 14, 20, 35).

In the same manner, the relative canonical divisor isKπ = (1, 2, 3, 6, 10, 2, 3, 6, 3, 6, 2, 4, 6, 10).
The Newton nest of aaa consists of the exceptional divisors E1, E5, E6 and E14 and they
correspond, matching the colors, to the C-facets of the log-canonical wall which is:

0

0.2

0.4

0
0.1

0.2
0.3

0

0.2

In the following example we present a case where X has a log-canonical singularity and
Theorem 5.9 does not hold. This shows how sharp is the condition of having points in
the log-canonical wall with multiplicity one.

Example 5.11. Consider a surface X with a rational singularity at O whose minimal
resolution π : X ′−→X has six exceptional components E1, . . . , E6 with the following dual
graph and intersection matrix:

E1E2

E3

E4

E5

E6

12

Vertex ordering
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M = (Ei · Ej)16i,j66 =



−2 1 1 1 0 0

1 −3 0 0 1 1

1 0 −1 0 0 0

1 0 0 −3 0 0

0 1 0 0 −3 0

0 1 0 0 0 −6


.

The fundamental cycle is the divisor Z = (3, 2, 3, 1, 1, 1) and the relative canonical
divisor is Kπ =

(
−1

2
,−1, 1

2
,−1

2
,−2

3
,−5

6

)
so the singularity is log-canonical. Then we

consider a duple of ideals aaa = (a1, a2), with a1 non singular and a2 = m given by the
divisors F1 = (15, 6, 15, 9, 2, 1) and F2 = Z = (3, 2, 3, 1, 1, 1). The log-canonical wall has
two C-facets and the corresponding mixed multiplier ideals are different (see Figure 2).
In particular we have jumping points on the log-canonical wall with multiplicity bigger
that 1. In this case the Newton nest consists of the exceptional divisors E1, E2 and E4 so
we no longer have the bijection given in Theorem 5.9.

z2

z1

Figure 2. Constancy regions of the the mixed multiplier ideals of aaa.
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