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Abstract: Electrical smart grids are complex MIMO systems whose operation can be noticeably
affected by the presence of uncertainties such as load demand uncertainty. In this paper, based on
a restricted representation of the demand uncertainty, we propose a robust economic model predictive
control method that guarantees an optimal energy dispatch in a smart micro-grid. Load demands
are uncertain, but viewed as bounded. The proposed method first decomposes control inputs into
dependent and independent components, and then tackles the effect of demand uncertainty by
tightening the system constraints as the uncertainty propagates along the prediction horizon using
interval arithmetic and local state feedback control law. The tightened constraints’ upper and lower
limits are computed off-line. The proposed method guarantees stability through a periodic terminal
state constraint. The method is faster and simpler compared to other approaches based on Closed-loop
min–max techniques. The applicability of the proposed approach is demonstrated using a smart
micro-grid that comprises a wind generator, some photovoltaic (PV) panels, a diesel generator,
a hydroelectric generator and some storage devices linked via two DC-buses, from which load
demands can be adequately satisfied.

Keywords: smart grid; economic MPC; robustness; uncertainty; zonotope

1. Introduction

The most trivial approach of tackling uncertainties is simply to neglect them i.e., to consider only
the nominal system, and rely on the receding horizon control principle of MPC, which introduces
a Closed-loop mechanism that could minimize the effects of uncertain disturbances. Unfortunately,
there is no guarantee of achieving an optimal and stable control system in the presence of uncertainties.
Therefore, it is quite necessary that, some well-thought control strategies have to be developed.
Without advanced predictive control strategies, it is quite unrealistic to achieve optimal control of
complex Multiple Input Multiple Output (MIMO) interconnected electrical systems such as smart grids.
Many previous works [1–4] have used stochastic approaches to deal with uncertainties in generalized
flow-based networks. In this study, we consider a deterministic approach namely robust optimization
for tackling load demand uncertainty. Model Predictive Control (MPC) [5–8] has become nowadays
one of the most sophisticated and regularly used techniques for performing optimal control of complex
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MIMO systems. Furthermore, uncertainties and noise can tremendously increase the complexity of
smart electrical grids [9,10]. Computational constraints as reported in [11–13] can be enforced to
tackle model uncertainty and noise. But, the issue of tractability is often of concern in this approach.
Optimization techniques such as min–max MPC approaches as discussed in [14–19] can better tackle
uncertainties in electrical smart grids. However, one of the main disadvantages of min–max approaches
is that, they principally concentrate on worst-case scenarios. Furthermore, [13,20] have proposed
some adjustable robust solutions, which assume that there exists an affine dependence between some
adjustable control inputs and the uncertainty parameters of the problem. This approach is more
flexible, and it is usually expected to produce a computationally tractable problem [21]. Tube-based
robust MPC [22] This approach uses an independent nominal model of the system, and a feedback
controller to ensure that the actual state converges to the nominal state. It is important to notice
that, the optimization is made over the nominal system whose constraints are dynamically tightened
with the help of robust positively control invariant sets. After that the nominal computed control
inputs are adjusted using a linear feedback controller. One of its drawbacks is the requirement of
a robust positively invariant set. Constraint Tightening MPC [23] This method is based on the idea of
widening the state constraints, so that a trajectory can be found under any evolution of the disturbance.
There is no need to compute a robustly invariant terminal constraint set. This approach might be
computationally expensive. Feedback min–max MPC [24] To tackle the drawbacks of Open-loop
min–max MPC, a feedback min–max MPC has been proposed. This approach is based on the idea
of steering the system to a robust control invariant set using min–max MPC. Once the state is in the
control invariant set Xf, a linear state feedback can be applied to adjust the control input. The method
assumes that the objective function of the optimization problem is convex and zero for any state inside
the control invariant set. Stability is guaranteed by using the control invariant set Xf as a terminal
state constraint. The main drawback of this method is that it leads to a control law that is more
computationally intensive. However, the computational load can be significantly reduced if the system
is linear and the constraints are convex. Moreover, if the disturbance set is polytope, then it is sufficient
to only consider the worst-case realizations of the disturbance i.e., only the vertices could be considered
in the optimization problem.

In general, Open-loop frameworks of robust MPC methodologies are termed to be conservative,
while Closed-loop predictions are usually based on controllers with high computational complexity.
In [18,19], the authors proposed Closed-loop min–max approach to solve the problem of uncertain
economic energy dispatch in smart micro-grids. However, the obtained results show that the
computational performance was not only complex but also not optimal as desired. In [25], we proposed
a novel Open-loop robust economic model predictive control method. In this work, we extend
the method presented in [25] by adding a feedback control law, which results in a Closed-loop
system. This could palliate shortcomings of the Open-loop approach such as tackling higher demand
uncertainty, thereby improving the overall feasibility and stability of the controller.

The proposed method first decomposes control inputs into dependent and independent
components, and then considers the effect of demand uncertainty by tightening the system
constraints along the prediction horizon. The bounds of the tightened constraints are calculated
off-line. The decomposition of control inputs offers a possibility of dividing the control strategy into two
parts: an Open-loop system that tightens only the dependent components, and a Closed-loop system
using a local feedback control law that is used to tighten the independent components. The dependent
components have further been divided into two parts, whereby one of the parts is bounded by a
zonotope and is employed to compensate for any deviation of the actual demand from the forecasted
one. The uncertainty in load demands is captured using a zonotope that is subsequently propagated
through the system. System stability is guaranteed through a periodic terminal state constraint.
The proposed method is simpler and faster than Closed-loop min–max approaches, because the online
computational burden is reduced. Additionally, we also present a comparison of the Open-loop and
Closed-loop approaches based on the daily economic costs of energy production.
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The applicability of the proposed approach is demonstrated using a smart micro-grid that
comprises a wind generator, some photovoltaic (PV) panels, a diesel generator, a hydroelectric
generator and some storage devices linked via two DC-buses, from which load demands can be
satisfied. Load demands are uncertain, but viewed as bounded.

The contributions of this paper are manifold:

• Development and application of a novel robust MPC Method based on zonotopes extending
classical tube-based approaches for tackling an uncertain energy dispatch problem in smart
micro-grids including several heterogeneous generators and storage elements.

• Assessing the suitability and reliability of Economic MPC paradigm to incorporate the developed
robust MPC method.

• The proposed method tackles the effect of demand uncertainty by tightening the system
constraints in real-time as the uncertainty propagates throughout the prediction horizon.

The structure of the paper is as follows: in Section 2 the problem formulation and the EMPC
strategy are presented. Section 3 describes the robustification of the proposed EMPC strategy against
demand uncertainty. Section 4 shows how the variable bounds of the MPC optimization problem are
adjusted to tackle demand uncertainty. Section 5 presents an application of the proposed approach to a
smart micro-grid system. Section 6 draws the main conclusions and presents future research directions.

2. Problem Statement

2.1. Control-Oriented Modelling

Electrical smart grids can be viewed as instances of generalized flow-based networks. Basically,
every flow-based network consists of some components [2,18,19,26], e.g., flow sources, flow handling
and sink elements, nodes, links and storage elements.

Let us consider a smart grid consisting of nu energy flow handling and source elements, nx storage
elements, nq intersection nodes and nd sinks (demands). Then, from control point of view, let the smart
grid be represented by the following discrete-time descriptor linear model

x(k + 1) = Ax(k) + Bu(k) + Bdd(k)

Euu(k) + Edd(k) = 0 (1)

where x ∈ <nx is the state vector, u ∈ <nu stands for the vector of control inputs, d ∈ <nd denotes
the disturbances (i.e., demands) vector. A ∈ <nx×nx , B ∈ <nx×nu , Bd ∈ <nx×nd are system matrices.
Eu ∈ <nq×nu and Ed ∈ <nq×nd are matrices of suitable dimensions that connect energy suppliers to
load demands on the nq DC bus(ses).

Assumption 1. The states x are observable at time k, and the pair (A,B) is also controllable.

Assumption 2. The realization of actual demands for current time k and future time instants k + i: d̃(k + i)
may be decomposed as a summation of expected and uncertain additive demands

d̃(k + i) = d(i|k) + ∆d(i|k) i = 0, 1, . . . , Hp (2)

where d(i|k) is the expected demand for the prediction horizon step i at sampling time instant k and ∆d(i|k) is
the error of this prediction. The error ∆d(i|k) is unknown but regarded as bounded

∆d(i|k) ∈ [−∆θ, ∆θ] i = 0, 1, 2, . . . , Hp (3)
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where ∆θ are the bounds. To propagate the effect of the uncertainty along the prediction horizon these bounds
will be represented in a zonotopic form

∆d(i|k) ∈ 0⊕ Hdzd i = 0, 1, 2, . . . , Hp (4)

where: 0 is a column vector of nd zeros considered as the center of the zonotope,
⊕

denotes the Minkowski sum,
Hd is a diagonal matrix defined as diag

(
∆θ1 . . . θnd

)
and zd ∈ Bnd with B = [−1, 1] .

2.2. Control Objectives

The control objectives of the economic MPC controller consist of the following terms: Economic
cost, Safety storage levels and Smoothness of the control actions. These terms are described in the
following lines.

2.2.1. Economic Cost

The total economic cost of operation of the smart grid is given by:

fE(k) = (α1 + α2(k))Tu(k)∆t (5)

where u(k) is a vector of control actions at time k; ∆t is the sampling time in seconds; α1 is a known
vector related to fixed economic costs as e.g., maintenance of generators and their accessories; α2(k) is
a known time-varying vector associated to the economic cost of power flows related to transmission
and distribution.

2.2.2. Safety Storage Levels

The safety objective penalizes the amount of energy in storage elements that violates (below or
above) a pre-specified security thresholds x(k) ∈ [δmin, δmax]. They are defined as:

- Upper safety level:
f+s (k) = ε+(k)Tε+ (k) (6)

- Lower safety level:
f−s (k) = ε−(k)Tε− (k) (7)

where ε−(k) and ε+(k) are the lower and upper safety limit violations that are included as the
following soft constraint

δmin − ε−(i|k) ≤ x(k) ≤ δmax + ε+(i|k) (8)

2.2.3. Smoothness of the Control Actions

This objective is used to protect storage elements by avoiding peaks of power during charging
and discharging processes.

f∆u(k) = ∆u(k)T∆u(k) (9)

where ∆u(k) is the control signal rate of change, defined as ∆u(k) = u(k)− u(k− 1).
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2.3. Formulation of the Nominal Economic MPC Controller

Taking into consideration the model of the smart micro-grid (1) and the control objectives (5)–(9),
the overall objective function can be formulated as follows

JEMPC(i|k) = (λ1(α1 + α2(k))Tu(i|k)
+ λ+

2 ε+(i|k)Tε+(i|k) + λ−2 ε−(i|k)Tε−(i|k)
+ λ3(u(i|k)− u(i− 1|k))T(u(i|k)− u(i− 1|k)) (10)

Even though renewable energy sources (e.g., solar and wind) are intermittent and uncertain,
we can still create some profiles of their power generations according to their geographical locations.
By interpolating those profiles it is expected that, some constraints (i.e., bounds) on their power
generations can be consistently defined. Based on those profiles and the state of energy storage
elements, the dispatchability of renewable energies can be reasonably realised.

The formulation of the nominal MPC controller of the optimization problem is given as follows:

min
u(i|k)ε+(i|k)ε−(i|k)

Hp−1

∑
i=0

JEMPC(i|k)

s.t.
x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bdd(i|k)
Euu(i|k) + Edd(i|k) = 0
umin(k) ≤ u(i|k) ≤ umax(k)
xmin ≤ x(i + 1|k) ≤ xmax

δmin − ε−(i|k) ≤ x(i|k) ≤ δmax + ε+(i|k)
ε+(i|k) ≥ 0
ε−(i|k) ≥ 0

(11)

where umin(k) and umax(k) are the lower and upper bounds of the control inputs; xmin and xmax are
the lower and upper limits of the storage elements with xmin ≤ δmin and xmax ≥ δmax ; λ1, λ2

−, λ2
+, λ3

are weighting coefficients for prioritizing the selected objectives.
Finally, for load demands that exhibit repetitive periodic patterns, the prediction horizon Hp

corresponds to the period, and the following constraint is enforced so that storage elements are
effectively used.

x(Hp|k) = x(0|k) (12)

However, it is visible that the MPC controller (11) is not robust against the demand uncertainty
forecast defined in (2). Therefore, in the coming section, the robustification of this controller will be
carried out by considering the uncertainty bounds (3).

3. Robustyfing the MPC Controller

The proposed method considers the uncertainty effect by tightening system constraints along
the prediction horizon using simultaneously zonotopes and interval arithmetic [27–31]. First, Control
inputs are partioned into dependent and independent variables. After that, some particular dependent
control variables are chosen and bounded by a zonotope, so that any possible discrepancy between
actual and predicted demands is immediately compensated, as the uncertainty goes forward along the
prediction horizon. Moreover, the corresponding uncertain state estimation caused by the uncertain
demand is also computed and bounded by a zonotope at each time instant throughout the prediction
horizon. Upper and lower limits of the adjusted constraints are calculated off-line.
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3.1. Decomposition of the Control Variables

The static equations of the smart grid model (1) can be used to decompose control input variables
into dependent and independent variables. The main goal is to come up with an affine parameterization
of the control input variables in terms of demand variables. In fact, several studies [1,4,8,11] have
already discussed about the affine dependence method.

Assumption 3. There are more variables than algebraic equations, i.e., nq < nu. The matrix Eu in (1) has
maximal rank, i.e., rank Eu = nq.

It is assumed that, control inputs can be decomposed into dependent and independent variables
(e.g., by applying LU-decomposition or heuristic approaches).

u(k) = P1uindep(k) + P2udep(k) (13)

where P1 ∈ <nu×nindep and P2 ∈ <nu×ndep are suitable permutation matrices which define u from
independent variables uindep and dependent variables udep.

Then, we can write
Euu(k) = Eindepuindep(k) + Edepudep(k) (14)

where Eindep = EuP1 and Edep = EuP2.
Assuming, dependent input vector will compensate future deviations of demand predictions

defined in Equation (2), we decompose the actual predicted control input into two components:

ũdep(i|k) = udep(i|k) + ∆udep(i|k) i = 0, 1, . . . , Hp−1 (15)

where udep(i|k) is the nominal prediction that is computed by nominal MPC problem (11) and
∆udep(i|k) is the component of dependent inputs that would compensate future unexpected additive
demand, i.e., ∆d(i|k) in Equation (2). On the other hand, we suppose that, the independent component
will be given directly by MPC optimization problem (11) i.e.,

ũindep(i|k) = uindep(i|k) i = 0, 1, . . . , Hp−1 (16)

Substituting the actual demands (2) and the actual predicted inputs (15) into (14), we obtain

Eindepuindep(i|k) + Edep

(
udep(i|k) + ∆udep(i|k)

)
= −Ed (d(i|k) + ∆d(i|k)) (17)

Furthermore, (17) can be split into deterministic and stochastic (uncertain) parts. The deterministic
part that is considered in the MPC optimization problem (11) is given as:

Eindepuindep(i|k) + Edepudep(i|k) = −Edd(i|k) (18)

while the uncertain part is given by:

Edep∆udep(i|k) = −Ed∆d(i|k) (19)

Assuming matrix Edep to be invertible, we can write

∆udep(i|k) = −E−1
depEd∆d(i|k) (20)

Considering the zonotopic demand bounds (4), the dependent input vector can also be bounded
with a zonotope as follows:

∆udep(i|k) ∈ 0⊕ H̄dzd (21)
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with H̄d = −Edep
−1Ed Hd.

3.2. Decomposition of the State Variables

Since the control inputs can be decomposed into two components, it is expected that the states
can also be decomposed into two parts.

The predicted evolution of the actual state can be expressed as

x̃(i + 1|k) = Ax̃(i|k) + Bũ(i|k) + Bdd̃(k + i) i = 0, 1, 2, . . . , Hp − 1 (22)

Considering demand uncertainty and inputs decomposition leads to

x̃(i + 1|k) = Ax̃(i|k) + Binduind(i|k) + Bdep

(
udep(i|k) + ∆udep(i|k)

)
+ Bd (d(i|k) + ∆d(i|k)) (23)

where Bind = BP1 and Bdep = BP2.
Expanding (23) and applying demand error compensation, we obtain:

x̃(i + 1|k) = Ax̃(i|k) + Binduind(i|k) + Bdepudep(i|k) + Bdd(i|k)

+
(
−BdepE−1

depEd + Bd

)
∆d(i|k) (24)

Now, the future state can be decomposed as

x̃(i + 1|k) = x(i + 1|k) + ∆x(i + 1|k) (25)

where x(i + 1|k) is the deterministic estimation part considered in MPC optimization problem,
and ∆x(i + 1|k) is the uncertain part due to the demand error estimation.

Considering that the current state is known, then x̃(0|k) = x̃(k) and ∆x(0|k) = 0. Therefore the
deterministic state estimation part can be given by

x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bdd(i|k) i = 1, 2, . . . , Hp (26)

On the other hand, iteratively computing the state of the system at every time instant k, we end
up expressing the uncertain state estimation part ∆x(i + 1|k) as an accumulative function of the
unexpected additive demands

∆x(i + 1|k) =
i+1

∑
j=1

(
Ai−j

(
−BdepE−1

depEd + Bd

)
∆d(i− j|k)

)
i = 0, 1, 2, . . . , Hp (27)

Now, considering demand bounds (2), the uncertain state estimation part can also be bounded
with the following zonotope:

∆x(i|k) ∈ 0⊕ H̄x(i)z̄di
i = 1, 2, . . . , Hp + 1 (28)

with z̄t
di
=
[
zd1

t . . . zdi
t] where zdj

∈ Bnd j = 1, . . . , i and

H̄x(i) =
[

H̄dx AH̄dx · · · Ai−1H̄dx

]
(29)

where H̄dx =
(
−BdepEdep

−1Ed + Bd

)
Hd.
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4. Formulation of the Robust MPC

4.1. Open-Loop Approach

As soon as the effect of demand uncertainty is propagated to the control inputs and states,
input and state constraints in the MPC problem (11) have to be adjusted, in order that actual predicted
inputs and states do not violate the defined input and state bounds, i.e.,

umin ≤ ũ(i|k) ≤ umax

xmin ≤ x̃(i + 1|k) ≤ xmax (30)

where
ũ(i|k) = P1ũdep(i|k) + P1ũindep(i|k) = P1

(
udep(i|k) + ∆udep(i|k)

)
+P1uindep(i|k) (31)

and
x̃(i + 1|k) = x(i + 1|k) + ∆x(i + 1|k) (32)

In this paper, for the sake of easing the MPC implementation, the dependent uncertain input
vector ∆udep(i|k) and ∆x(i + 1|k) state estimation error vector will be bounded using interval boxes
obtained from the interval hull of (21) and (21), as follows

∆udep(i|k) ∈ 0⊕ Hdepzdep i = 0, 1, 2, . . . , Hp − 1 (33)

with Hdep = diagonal
(

∆dep,1 . . . ∆dep,ndep

)
and zdep ∈ Bndep and

∆x(i + 1|k) ∈ 0⊕ Hx(i + 1)zx i = 0, 1, 2, . . . , Hp − 1 (34)

with zx ∈ Bnx and Hx(i) = diagonal (∆x,1(i) . . . ∆x,nx (i))
This approximation supposes that the uncertain vector components will be independent.
Taking into account the uncertain dependent input vector bounded by the box defined in (33)

and the actual predicted inputs constraints (30), we can formulate the input constraints in the MPC
optimization problem (11) as follows:

umin
indep,j(i|k) ≤ uindep,j(i|k) ≤ umax

indep,j(i|k)
i = 0, . . . Hp − 1, j = 1, . . . , nindep
umin

dep,j(i|k) + ∆dep,j ≤ udep,j(i|k) ≤ umax
dep,j(i|k)− ∆dep,j

i = 0, . . . Hp − 1, j = 1, . . . , ndep

(35)

where the bounds that affect dependent input variables are big enough to guarantee demand error
compensation (23) i.e., zonotope defined in (24) should be included in the box defined by (33)

0⊕ H̄dzd ⊆ 0⊕ Hdepzdep (36)

According to [29], box bounds can be solved using interval hull of zonotope

∆dep,j =
∥∥∥H̄d,j

∥∥∥
1

j = 1, . . . , ndep (37)

where H̄d,j denotes the jth row of matrix H̄d.
On the other hand, considering the state estimation error bounded by the box defined in (34) and

the actual predicted state constraints (30), we can express the state constraints in the MPC optimization
problem (11) as follows:

xmin
j + ∆x,j(i|k) ≤ xj(i|k) ≤ xmax

j − ∆x,j(i|k) i = 1, . . . , Hp; j = 1, . . . , nx (38)
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where constants ∆x,j(i|j) ∈ <+ for i = 1, . . . , Hp and i = 1, . . . , ndep are big enough to consider the
effect of the demand bounds error (2) in the state.

As with the computation of dependent input bounds presented above, we may also calculate
state estimation bounds as follows:

∆x,j(i|k) =
∥∥H̄x,j(i|k)

∥∥
1 i = 1, . . . Hp − 1; j = 1, . . . , ndep (39)

where H̄x,j(i|k) denotes the jth row of matrix H̄x(i|k) defined in (29).
Taking into consideration the tightened constraints derived above, we can reformulate the MPC

optimization problem (11) in a robust way as follows:

min
u(i|k)ε+(i|k)ε−(i|k)

Hp−1

∑
i=0

JEMPC(i|k)

s.t.
x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bdd(i|k)
Eindepuindep(i|k) + Edepudep(i|k) + Edd(i|k) = 0
umin

indep,j(i|k) ≤ uindep,j(i|k) ≤ umax
indep,j(i|k) j = 1, . . . , nindep

umin
dep,j(i|k) + ∆dep,j ≤ udep,j(i|k) ≤ umax

dep,j(i|k)− ∆dep,j j = 1, . . . , ndep

δmin − ε−(i|k) ≤ x(i|k) ≤ δmax + ε+(i|k)
xmin

j + ∆x,j(i) ≤ xj(i|k) ≤ xmax
j − ∆x,j(i) j = 1, . . . , nx

ε+(i|k) ≥ 0
ε−(i|k) ≥ 0
x(Hp|k) = x(0|k)

(40)

4.2. Closed-Loop Approach

To improve the performance and guarantee recursive feasibility of the Open-loop method,
we introduce a linear state feedback control law applied to the independent control input uindep,
as follows

ũindep(i|k) = uindep(i|k) + ∆uindep(i|k) i = 0, 1, 2, . . . , Hp−1 (41)

where
∆uindep(i|k) = −K∆x(i|k) (42)

that counteracts the effect of the additive uncertain demand

∆x(i|k) = x̃(i|k)− x(i|k) (43)

K is assumed to be an invertible linear disturbance rejection controller e.g., LQR gain.
Thus, Equation (27) can be rewritten

∆x(i + 1|k) =
i

∑
j=0

(
(A− BindK)i−j

(
−BdepE−1

depEd + Bd

)
∆d(i− j|k)

)
i = 0, 1, 2, . . . , Hp − 1 (44)

and considering demand bounds (2), the uncertain state estimation part can also be bounded with the
following zonotope:

∆x(i|k) ∈ 0⊕ H̄x(i)z̄di
i = 1, 2, . . . , Hp (45)

with z̄t
di
=
[
zd1

t . . . zdi
t] where zdj

∈ Bnd, j = 1, . . . , i and

H̄x(i) =
[

H̄dx (A− BindK)H̄dx · · · (A− BindK)i−1H̄dx

]
(46)
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where H̄dx =
(
−BdepEdep

−1Ed + Bd

)
Hd.

Taking into account the uncertain dependent input vector bounded by the box defined in (33)
and the actual predicted inputs constraints (30), we can formulate the input constraints in the MPC
optimization problem (11) as follows:

umin
indep,j(i|k) + ∆indep,j ≤ uindep,j(i|k) ≤ umax

indep,j(i|k)− ∆indep,ji = 0, . . . Hp − 1, j = 1, . . . , nindep (47)

According to [29], box bounds can be solved using interval hull of zonotope

∆indep,j = K
∥∥H̄x,j

∥∥
1 j = 1, . . . , nindep (48)

where H̄x,j denotes the jth row of matrix H̄x.
Taking into consideration the tightened constraints derived above, we can reformulate the MPC

optimization problem (11) in a robust way as follows:

min
u(i|k)ε+(i|k)ε−(i|k)

Hp−1

∑
i=0

JEMPC(i|k)

s.t.
x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bdd(i|k)
Euu(i|k) + Edd(i|k) = 0
umin

indep,j(i|k) + ∆indep,j ≤ uindep,j(i|k) ≤ umax
indep,j(i|k) − ∆indep,j j = 1, . . . , nindep

umin
dep,j(i|k) + ∆dep,j ≤ udep,j(i|k) ≤ umax

dep,j(i|k)− ∆dep,j j = 1, . . . , ndep

δmin − ε−(i|k) ≤ x(i|k) ≤ δmax + ε+(i|k)
xmin

j + ∆x,j(i) ≤ xj(i|k) ≤ xmax
j − ∆x,j(i) j = 1, . . . , nx

ε+(i|k) ≥ 0
ε−(i|k) ≥ 0
x(Hp|k) = x(0|k)

(49)

The control action applied to the system is given by:

ũ(i|k) = u(i|k) + K∆x(i|k) (50)

5. Application

5.1. Description

In this section, we use the smart micro-grid proposed in [25] to verify the applicability of the
proposed method. The considered smart micro-grid is divided into two clusters connected with
two DC-buses linked by a switch. The purpose of the first cluster is primarily to satisfy residential
demands, and it is made up of a diesel generator, some photovoltaic panels, and a lead–acid battery.
While the second cluster is intended to generate required energy for industrial and other DC-load.
It consists of a hydroelectric generator, a wind turbine generator, and one virtual sink (external
grid connection). It might be important to realise that, the external grid connection is viewed as
a source when selling energy, and as a sink when buying energy. The considered smart micro-grid is
diagrammatically depicted in Figure 1.
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Figure 1. Block diagram of the smart micro-grid.

5.2. Control-Oriented Model

We consider all the smart micro-grid’s components as manipulated inputs (excluding sinks),
and its states are represented by the state of charge of the storage elements.

State variables: xb and xh are the state of charge (SOC) of the batteries (lead-acid and
hydrogen respectively):

x(k) = [xb(k), xh(k)]
t (51)

Control input variables:

u(k) =
[

Pb1(k), Pb2(k), Ph1(k), Ph2(k), Pd(k), Pw(k), Ppv(k), Pf (k), Phy(k), Pg1(k), Pg2(k)
]t

(52)

where Pb1 and Pb2 are the charged power and discharged power of the lead-acid battery; Ph1 and Ph2
are the charged and discharged power of the hydrogen battery; Pg1 and Pg2 are the exported and
imported power into/from the external grid; Pd, Phy, Ppv, and Pw stand for the power supplied to the
DC Buses by the diesel, hydroelectric, wind, and photovoltaic generators respectively. Pf is the power
flow from Bus 2 to Bus 1.

Disturbance variables: d1 is the industrial load, d2 is the residential load. The disturbance vector d
consists of the two loads:

d(k) = [d1(k), d2(k)]
t (53)

The matrices and vectors that define the system and its constraints are given as follows:

A =

(
1 0
0 1

)
(54)

B =

(
ηbc −ηbd 0 0 0 0 0 0 0 0 0
0 0 ηhc −ηhd 0 0 0 0 0 0 0

)
(55)

Bd =

(
0 0
0 0

)
(56)
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where ηhc and ηhd are the charging efficiency and discharging efficiency of the hydrogen
battery respectively; and ηbc and ηbd are the charging efficiency and discharging efficiency
of the lead-acid battery respectively. xmin = [0, 0]t, xmax = [40kWh, 40kWh]t umin(k) =

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]t umax(k) =
[
2.2, 10.2, 2.2, 10.2, 7.7500, Ppw(k), Pppv(k), 2.2, 8, 3, 3

]t where
Ppw(k) ≤ 7.75 kW and Pppv(k) ≤ 6.75 kW are the energy generation profiles of the wind and
photovoltaic generators respectively.

The additive uncertain demand is considered to be bounded by a box defined in zonotopic
form (4) as

Hd=

(
∆θ1 0

0 ∆θ2

)
(57)

where ∆θ1 and ∆θ1 define the uncertainty demand bounds of the two loads.
On the other hand, the charging batteries’ inputs u1(k) and u3(k) have been chosen as dependent

variables, i.e.,

P1 =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



, uindep =



u2

u4

u5

u6

u7

u8

u9

u10

u11


, P2 =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


udep =

(
u1

u3

)

(58)

Then

Eindep =

(
1 0 1 0 1 1 0 0 0
0 1 0 1 0 −1 −1 −1 1

)

Edep =

(
−1 0
0 −1

) (59)

and

Bindep =

(
ηbd 0 0 0 0 0 0 0 0
0 ηhd 0 0 0 0 0 0 0

)

Bdep =

(
ηbc 0
0 ηhc

) (60)

Therefore −E−1
depEd = −I.

Considering the uncertain dependent input and demand error compensation (20) leads to

∆udep(i|k) = −∆d(i|k) (61)

and

H̄d =

(
−∆θ1 0

0 −∆θ2

)
(62)

Then, applying (37) we can obtain

∆dep,1 = ∆θ1 and ∆dep,2 = ∆θ2 (63)
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and the state uncertain estimation part as

Ai
(
−BdepE−1

depEd + Bd

)
=

(
−ηbc 0

0 −ηhc

)
∀i, j (64)

Then, accumulative function (27) leads to

x̂(k + i + 1) =
i

∑
j=0

((
−ηbc 0

0 −ηhc

)
∆d(i|k + j)

)
i = 0, 1, 2, . . . , Hp (65)

and considering demand error bounds (29) yields

H̄x(i|k) =
i

∑
j=0

((
−ηbc 0

0 −ηhc

))
and Hd =

(
−iηbc∆θ1 0

0 −iηhc∆θ2

)
(66)

Finally, applying (39) we obtain

∆x,1(i|k) = (i + 1)ηbc∆θ1 and ∆x,2(i|k) = (i + 1)ηhc∆θ2 (67)

The simulations were made for 96 h (4 days). Some expected profiles of the PV and wind generator,
as well as load demands are depicted in Figure 2. In Figure 3, the additive uncertain load demands are
represented with the shadowed green area. The state of charge of the batteries and the subsystems’
Initial values are set to [20 kWh, 20 kWh]t. Model parameters and energy prices are summarized
in Table 1.

Figure 2. Forecasted profiles of PV and wind generators, and load demands.
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Table 1. System and control parameter values.

Model Parameters Energy Prices (e.u)

ηbc 0.90 Lead-acid battery charging : 0.34
ηbd 1 Lead-acid battery discharging: 0.34
ηhc 0.90 Hydrogen battery charging : 0.34
ηhd 1.0 Hydrogen battery discharging: 0.34
δmin [10, 10]t Power flow between node: 0.34
δmax [24, 24]t External grid selling: 4.3
Hp 24 External grid buying: 4.3
λ1 2500 Diesel: 8.9
λ−2 = λ+

2 12 Hydroelectric: 1.95
λ3 0.1 Wind: 3.7

Solar: 3.1

The profile of a generator represents the maximum power that can be ideally produced by
the generator.

Figure 3. Load demands profiles.

5.3. Results

The two proposed robust economic MPC strategies the Open-loop and Closed-loop approaches
as well as the nominal approach (i.e., neglecting uncertain demands) have been implemented with
YALMIP [14,32] using CPLEX solver in the Matlab environment. The local contol law K defined in (43)
for the Robust Closed-loop approach is computed using the LQR method as proposed in [33] obtaining

K =

(
0.0667 0 0 0 0 0 0 0 0

0 0.0667 0 0 0 0 0 0 0

)
(68)

Two different Cases have been taken into account in the simulations: Case 1 (low and medium demand
uncertainty) and Case 2 (high demand uncertainty). Demand uncertainty bounds ∆θ1 = ∆θ2 = 0.4 kW
and ∆θ1 = ∆θ2 = 0.7 kW were considered in Case 1 and Case 2 respectively.

As a general summary of the results depicted in Figures 4–8, the diesel and hydroelectric
generators delivered between 1 and 1.3 kWh in summer during the first six hours of the day, and in
winter in the afternoon for six hours. The batteries delivered between 1 and 2 kWh during the first
two hours of the day. 1 kWh was bought from the external grid during the second hour of the day.

Tables 2 and 3 show an economic comparison between the two proposed robust approaches and
the nominal approach. The overall energy production costs are higher in the robust approaches than
in the nominal approach, due to the demand uncertainty. However, the proposed robust methods
provide robustness against unexpected changes in the demands.
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Table 2. Daily economic costs Case study 1.

Nominal EMPC (Zero Uncertainty) Robust Closed-loop EMPC Robust Open-loop EMPC

Summer 1125.2 1154.4 1143.6
Winter 1428.7 1448.4 1437.1

Table 3. Daily economic costs.

Nominal EMPC (Zero Uncertainty) Robust Closed-loop EMPC Robust Open-loop EMPC

Summer 1131.7 1184.0 unfeasible
Winter 1433.6 1466.2 unfeasible

Robust Open-loop approach is more efficient in economic terms than Robust Closed-loop
approach for low and medium uncertainties, as can be seen in Table 2. However, as the demand
uncertainty increases, the performance of the Open-loop approach deteriorates, and at some points
the problem becomes even unfeasible. This fact can be observed in the results of Case study 2 in
Table 3. With high demand uncertainty of 0.7 kW the Open-loop approach becomes unfeasible,
while the Closed-loop approach does not present feasibility problems.

The superiority of the Robust Closed-loop approach to its Open-loop counterpart in dealing with
high demand uncertainties is due to the fact that, a part of the range of independent variables (37)
is devoted to compensate the accumulative effect of demand uncertainties in uncertain state
estimation (27). This compensation leads to smaller uncertain state estimation bounds (39) in the
Closed-loop approach than in the Open-loop approach. This fact is emphasized in Figure 9 where the
evolution of the bounds of state x1 (SOC of lead acid battery) regarding time prediction i. I.e., xmax

1 −
∆x(i|k) and xmin

1 + ∆x(i|k) considering both robust approaches in Case Study 2 (high demand
uncertainty) is depicted. As it can be noticed from this figure, the degree of freedom in the evolution of
predicted state variables is much more limited in the Open-loop approach than in the Closed-loop one.

Figure 4. Sample winter plots of energy production.
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Figure 5. Sample summer plots of energy production.

Figure 6. Sample winter plots of batteries’ State of Charge.

Figure 7. Sample summer plots of batteries’ State of Charge.
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Figure 8. Sample plots of batteries’ State of Charge.

Figure 9. SOC bounds of leadacid battery.

6. Conclusions

In this paper, we have developed a novel robust economic MPC method for guaranteeing
an optimal control of a smart micro-grid considering an unknown but bounded demand uncertainty.
The proposed robust economic MPC strategy tightens in real-time the constraints of the control inputs
as the uncertainty goes throughout the prediction horizon.

We have shown how the control inputs can be decomposed into independent and dependent
components, thereby offering a possibility of two different robust EMPC approaches: a feedforward
(Open-loop) approach that tightens only the dependent components, and a feedback (Closed-loop)
approach that incorporates a local feedback controller for tightening also the independent components.
The dependent components have further been divided into two parts, whereby one of the parts is
bounded by a zonotope and is employed to compensate for any deviation of the actual demand from
the forecasted one. We have also carried out a comparison between the Open-loop and Closed-loop
approaches and prove that the Closed-loop approach is more robust to demand uncertainty than the
Open-loop approach. Finally, the results of a case study have demonstrated that the proposed robust
EMPC method can be successfully used to tackle demand uncertainty in energy dispatch of electrical
smart micro-grids. The next steps for completing this work will be devoted to the development of
an automatic approach of successively selecting optimal control inputs for compensating demand
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deviations. Furthermore, extending the developed method by including uncertainty of energy prices
and renewable energies as done in [19] for a min–max robust method will also be considered.
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