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Abstract. Recent breakthroughs made by deep learning rely heavily
on a large number of annotated samples. To overcome this shortcoming,
active learning is a possible solution. Besides the previous active learn-
ing algorithms that only adopted information after training, we propose
a new class of methods named sequential-based method based on the
information during training. A specific criterion of active learning called
prediction stability is proposed to prove the feasibility of sequential-based
methods. We design a toy model to explain the principle of our proposed
method and pointed out a possible defect of the former uncertainty-based
methods. Experiments are made on CIFAR-10 and CIFAR-100, and the
results indicates that prediction stability was effective and works well
on fewer-labeled datasets. Prediction stability reaches the accuracy of
traditional acquisition functions like entropy on CIFAR-10, and notably
outperformed them on CIFAR-100.
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1 Introduction

Recent breakthroughs made by deep learning heavily relied on Supervised Learn-
ing (SL) with large amount of annotated datasets [10,12]. But in the practical
applications, large amount of labels are expensive and time-consuming [13]. Lack
of labels is an important obstacle to adopt SL methods. To achieve similar accu-
racy to SL with less labels, (pool-based) active learning (AL) [11] has become a
possible solution. These strategies have succeeded in many realms such as image
processing [18] and natural language processing(NLP) [17].

The goal of active learning is to select the least number of typical samples
and train the model to reach the same accuracy as one trained on all the sam-
ples. It’s not difficult to find out that the core of active learning methods is
the strategy of sample selection called acquisition function. Most of the previ-
ous works belong to the pool-based method, which selects a subset of samples
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after a whole training process on the existing labeled dataset and then goes on
[3,4,7,8,16,19]. Basing on the learning process of pool-based active learning,
the samples selected are expected to be the ones with the most information.
In many works, the selected samples were the most uncertain ones. The basic
ideas included using confidence, max-entropy [16], mutual information [7], mean
standard deviation [8] or variation-ratio [3] of samples as a measurement. Recent
works of AL adopted strategies based on Bayesian Convolutional Neural Net-
works [4] and Generative Adversarial Nets (GAN) [19]. Although the principles
of the networks were different from typical classification convolutional neural
networks (CNN), the methods still generated or chose samples with the highest
uncertainty. Another class of work selected samples by the expectation of model
change. For instance, expected gradient length [15] choose samples expected to
cause the largest gradients to the current model. After approximation of the
algorithm, the selected samples were similar to adversarial examples [5]. Some
works concentrate on exploring the typical samples of the whole dataset. For
example, core-set [14] choose samples that are at the center of a neighbor area,
and expect all the selected samples to cover the whole feature space.

Present active learning methods are different in strategy and implementa-
tion, but we can classify all the methods mentioned above as spatial-based ones.
That is, although different methods concentrate on different parts of the AL
process (prediction, model updating, etc.), the information took in to account
all came from the prediction of the well-trained models before selection. The
whole process was a flat one without information from the time course. Here we
propose sequential-based methods, and as a verification of it, we propose a new
criterion of sample selection in image classification called the prediction stability,
which describes the oscillation of predictions across the epochs during training.
Instead of starting from a well-trained model, this model also gathered informa-
tion for the selection process while training the model. Among different epochs
of a training process, the fluctuation of prediction on a sample is taken as the
measure of uncertainty of the feature space around this sample. We designed
a toy model to explain the principle of our proposed method and pointed out
a possible defect of the former uncertainty-based methods. The results of our
experiments also agreed with our assumption and prove the proposed method
as an effective one.

The following parts of this paper are divided into 4 sections. The second
section introduces the relation to prior work. The third is our methodology.
The fourth section provides the experimental results. And the final part is the
conclusion.

2 Relation to Prior Work

When comparing our proposed method with present AL algorithms mentioned in
the introduction part, there are two major differences. First, our sequential-based
method not only extracts features after training but also during the training pro-
cess. Second, the previously proposed measures of the amount of information are
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based on more apparent criteria including uncertainty, the influence on the model
and typical samples. They care more about the scales of the final predictions,
but prediction stability is a new criterion to catch the indirect information of
relative prediction changes.

3 Methodology

We can define the dataset of all samples as X = {xi|i = 1...n}, with XL ⊆ X
representing the labeled set containing nl labels, and the complementary set
XU = X\XL is the set of unlabeled nu samples. The budget of AL is defined
as B. For pool-based active learning, after initialization, in each round of AL,
the model will select b samples from XU for annotation and put the set of them
S ⊆ XU into XL, then the model is retrained on the new XL set. This process
repeats until the total number of selected samples reaches the budget. In previous
works [7,8,16], the acquisition functions of subset S can be concluded as (1). In
this equation, f(·) is the feature extracting function, and g(·) outputs the scores
of samples.

S = argmax
S

[
b∑

i=1

g(f(si))], si ∈ S (1)

The previous spatial-based methods mentioned in the introduction part con-
centrate on the quality of final predictions. All the innovations focus on the
measurements of the final prediction. Different from this kind of methods, we
propose sequential-based methods that make use of the information during train-
ing. We’ll prove the necessity of information during training later. Defining num-
ber of epochs in training as Ne, and fn(·) as the f(·) function in n-th epoch, the
acquisition function can be rewritten as Eq. 2.

S = argmax
S

[
b∑

i=1

g(f1(si), ..., fNe
(si))], si ∈ S (2)

As an application of sequential-based methods, we propose prediction stabil-
ity, a new criterion of selecting the subset S in active learning. For implementa-
tion, we also adopt the common CNN model as the feature extractor and clas-
sifier. An important distinction with former spatial-based methods is that this
criterion focuses not on the final scales of outputs, but the fluctuation of scales
during training. As Fig. 1 shows, looking through the whole training process,
features of samples like (a) tend to be relatively stable, but other samples like
(b) oscillates from the beginning to the end. Instinct speculation is that samples
like Fig. 1(b) should be selected for labeling. To do quantitative analysis, we test
some common-used measures of fluctuation of data and choose the average vari-
ance of each unit of outputs across epochs as the measure of prediction stability.
The diagrams in Fig. 1 also shows that, due to under-fitting, the former epochs
of training are definitely to violate severely. Therefore only epochs in the later
training process should be included in the calculation. After the experiment,
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(a) Sample with high prediction stability (b) Sample with low prediction stability

Fig. 1. Example of samples with different prediction stability during training. The
horizontal axis in the right diagrams is the index of epochs, and the vertical axis shows
the scale of a unit of the output vector.

we find that the selected epochs are actually in the over-fitting area, which is
relatively stable. Also, considering the time complexity, only several epochs are
chosen in the end.

The definition of prediction stability can be written as Eq. 3:

g(x) =
C∑

c=1

var(fe1(x)c, ..., fen(x)c) (3)

Where C is the length of the output vectors by f(·), f(x)c is the c-th unit of
output f(x), and {e1, e2, ..., en} = E is the set of index of selected epochs. The
whole framework of prediction stability is displayed in Algorithm1.

Algorithm 1. Prediction Stability
Input: CNN model M , dataset X = {xi|i = 1...n}, initial sampling number k, number

of epochs per training process Ne, set of index of selected epochs E, budget B,
subset of samples selected each round S.

1: Generate first k samples randomly, and produce labels for them;
2: repeat
3: for i = 1 → Ne do
4: Train the model M on labeled samples;
5: if i ∈ E then
6: Predict outputs Pi of M on unlabeled set.

7: Get prediction stability of each image along selected epochs;
8: Select top |S| samples with lowest prediction stability, generate labels and put

them into labeled sample pool;
9: until Reach the budget B
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Fig. 2. Toy example applying different acquisition functions to iris dataset. The axes
are the first two features (sepal length, sepal width) of the samples. Plains of different
colors reflect the decision boundaries of each category (setosa, versicolor and verginica).
Dashed lines are the one-against-all classifiers trained on the original iris dataset. Col-
ored points are original samples of different categories in the iris dataset. The validation
set consists of samples randomly generated around the original samples. White stars
are samples selected from the validation set by different acquisition functions. The top-
left image shows the changes of decision boundaries during training. The small patches
are areas that belonged to different categories during training, and white stars are the
same as those selected by prediction stability.

To help explain the principle of prediction stability, we made a toy example on
the iris dataset [1,2], as demonstrated in Fig. 2. The main body of this example
came from the sample code in the document of sklearn1. This task aimed to
do a 3-class classification (setosa, versicolor and verginica). We adopted SVM-
based multi-class stochastic gradient descent (SGD) linear-classifiers. For the
convenience of visualization, the task was done on the first two features (sepal
length, sepal width) of the iris dataset. The axes in Fig. 2 are the first two
features of the samples, and therefore the plains are the feature space of the
samples, which is the set of all the possible values of the samples. One class
(setosa, blue points in Fig. 2) is linearly separable from the other two; the latter
(versicolor and verginica) are not linearly separable from each other.

1 https://scikit-learn.org/stable/auto examples/linear model/plot sgd iris.html.

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html
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The distribution of selected samples reflected the principle of different acqui-
sition functions. Randomly selected samples roughly obeyed uniform distribu-
tion. Samples selected by entropy were around the T-crossing of three categories
and were surrounded by samples of the training set. But for prediction stability,
the samples were gathering at the outer side of the decision boundaries. Dur-
ing the training process, the decision boundaries between different categories
were swinging roughly around the crossing point of the boundaries. The sway
was within a sector-shaped area, like the small patches in the top-left image of
Fig. 2. Because the boundary was a straight line, the outer part of the sector
was influenced most by the change of the boundary, which was the area where
the selected samples (white stars in the top images of Fig. 2) located.

The uncertainty-based acquisition functions tended to make finer-grained
borders near the crossing of multi-categories, where the predicted probabilities of
a sample to belong to different categories were close to each other. But as shown
in this example, these methods sacrificed the accuracy at the feature space far
from the training set. Rather, the samples selected by prediction stability, which
located at the boundaries with the least number of training samples, were the
ones the classifiers were of least certainty because no information about this area
was obtained from the training data.

4 Experimental Results

4.1 Implementation Details

Datasets. CIFAR-10 and CIFAR-100 [9] were used for the evaluation of our
proposed method. The samples of the two datasets are all 32 × 32 small image
patches. Each dataset contains 50000 training samples and 10000 test samples
respectively. The training and test samples are equally distributed into all cate-
gories. But the difference is that CIFAR-10 only has 10 classes, and CIFAR-100
contains 100 classes. Therefore, the number of samples in each class of CIFAR-10
is 10 times that of CIFAR-100.

Architecture Details. As for the model M for feature extraction, we employed
ResNet-18 [6], which is a relatively deep architecture, and a popular choice among
recent works on AL. This network mainly consists of the first convolution layer
and the following 4 residual blocks. The implementation was based on an open-
source framework2. The softmax outputs of the network, which were the final
score vector of categories, were chosen as the output in this work.

All the models in this work were implemented on an NVIDIA TITAN Xp
GPU. During training, the batch size was 128, and 164 epochs were utilized in
each training process. In our experiments, for each dataset, a subset containing
1000 samples was selected for the first training process. Since biases of numbers
among different classes in the initially labeled dataset might heavily influence

2 https://github.com/bearpaw/pytorch-classification.git.

https://github.com/bearpaw/pytorch-classification.git
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the selection after the first training process, an equal number of samples were
randomly selected from each category of the dataset in the beginning. 1000
samples were selected and labeled after each training process, and the final size
of the labeled dataset was 10000. To overcome the influence of random factors
and get objective results, we generated 6 sets of initially labeled samples at first
and did the first training processes of all the methods on the same 6 datasets.
The final results of each method were the average of the six trails.

(a) Results on CIFAR-10. (b) Results on CIFAR-100.

Fig. 3. Results on CIFAR-10 and CIFAR-100 (1 standard deviation; across 6 trials).

4.2 CIFAR-10

The results on CIFAR-10 is displayed by Fig. 3(a). Because the output features
were the probability of all classes, entropy and least confidence (ranking by the
largest score among categories for each sample) measure were calculated on the
outputs directly. For the calculation of prediction stability, we finally selected 5
epochs starting from the last one with an interval of 5.

ei = Ne − (i − 1) × interval, i = 1, 2, 3, 4, 5 (4)

The results showed that although information about the value of outputs was
not included directly, the proposed prediction stability method still overwhelmed
random selection, and achieved similar performance with acquisition functions
like entropy and least confidence on CIFAR-10.
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4.3 CIFAR-100

The performance of each method on CIFAR-100 is exhibited in Fig. 3(b). To
perform prediction stability on CIFAR-100, the interval of epoch selection was
set to 1. Previous works in the introduction part hardly reported their results
on this dataset, but our results on CIFAR-100 showed different tendencies with
CIFAR-10. Entropy and least confidence, especially the least confidence, suffered
from deterioration of performance. The accuracy of both acquisition functions
was lower than random selection. But our proposed method proves better per-
formance and outperforms random selection.

We believe the better performance of our proposed model on CIFAR-100 than
CIFAR-10 is caused by the number of training samples in the feature space.
The major difference between the two datasets is CIFAR-100 has fewer sam-
ples in each class, which means the feature space of each class is more sparse
and has fewer labels to distinguish the border. As shown in the toy model,
the uncertainty-based method tends to make a fine-grained border around the
labeled samples and ignore the unknown area of the feature space. Therefore
it worked worse when there were less labeled samples. The result of the two
datasets showed that prediction stability has a better capacity for fewer-labeled
datasets.

4.4 Ablation Study

Measure of Prediction Stability. Experiments were made to test the per-
formance of different measures of prediction stability, as displayed in Fig. 4. We
tested the absolute increase among features of different epochs. This measure is
represented by Eq. 5.

F (x) =
|E|∑

i=2

|fei(x) − fei−1(x)| (5)

Taking the absolute increase as a measure led to a nearly 40% drop in perfor-
mance. It suggests that it’s not the tendency of change, but the distribution of
output, that determines the performance of prediction stability.

Also, we tested the result of taking variance as the acquisition function but
removed the softmax calculation. A deterioration of the result could also be
observed clearly, which proved the necessity of the softmax layer’s function of
normalization. The output features of different samples were transferred into
comparable probabilities, and therefore the differences in absolute scales of out-
put features didn’t influence the variances.

Interval of Epoch Selection. Experiments were made to test the influence
of epoch selection on the results of prediction stability. The epoch selection
process was based on Eq. 4. Results on the two datasets are different, as exhibited
in Fig. 5. Although accuracy was slightly better when the interval equaled 5,
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Fig. 4. Results on CIFAR-10 with different measure of prediction stability (1 standard
deviation; across 6 trials).

CIFAR-10 was not sensitive to interval change. But in CIFAR-100, the accuracy
declined as the interval of epoch increased. This happened may because the
models trained on CIFAR-100 over-fitted at later epochs than CIFAR-10. That
is, when the interval was 10, the result of some epochs of CIFAR-100 was still
not in the relatively stable state and caused a decrease in accuracy.

(a) Result on CIFAR-10 (b) Result on CIFAR-100

Fig. 5. Results on different intervals of prediction stability (1 standard deviation; across
6 trials).

5 Conclusion

In this paper, we proposed a new class of AL methods named sequential-based
AL method. A new criterion, prediction stability was proposed as an application
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of the sequential-based method. We designed an example to demonstrate the
principle of prediction stability and unveiled that the previous uncertainty-based
methods tend to ignore unknown areas in the feature space. Testing results of
prediction stability on CIFAR-10 and CIFAR-100 proved the feasibility of the
sequential-based method class.

As for the future work, we will focus on fusing our proposed method with
uncertainty-based AL methods, because the information extracted by two kinds
of methods are complementary.
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