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a b s t r a c t

The accurate estimation of the State of Charge (SOC) and an acceptable prediction of the Remaining
Useful Life (RUL) of batteries in autonomous vehicles are essential for safe and lifetime optimized
operation. The estimation of the expected RUL is quite helpful to reduce maintenance cost, safety
hazards, and operational downtime. This paper proposes an innovative health-aware control approach
for autonomous racing vehicles to simultaneously control it to the driving limits and to follow the
desired path based on maximization of the battery RUL. To deal with the non-linear behavior of the
vehicle, a Linear Parameter Varying (LPV) model is developed. Based on this model, a robust controller
is designed and synthesized by means of the Linear Matrix Inequality (LMI) approach, where the
general objective is to maximize progress on the track subject to win racing and saving energy. The
main contribution of the paper consists in preserving the lifetime of battery and optimizing a lap time
to achieve the best path of a racing vehicle. The control design is divided into two layers with different
time scale, path planner and controller. The first optimization problem is related to the path planner
where the objective is to optimize the lap time and to maximize the battery RUL to obtain the best
trajectory under the constraints of the circuit. The proposed approach is formulated as an optimal
on-line robust LMI based Model Predictive Control (MPC) that steered from Lyapunov stability. The
second part is focused on a controller gain synthesis solved by LPV based on Linear Quadratic Regulator
(LPV-LQR) problem in LMI formulation with integral action for tracking the trajectory. The proposed
approach is evaluated in simulation and results show the effectiveness of the proposed planner for
optimizing the lap time and especially for maximizing the battery RUL.

1. Introduction

In the last decades, autonomous driving technology has be-
come a research field of interest for the automotive industry.
Autonomous driving technology is anticipated to decrease driver
errors, prevent possibly dangerous situations and simplify the
driver’s work [1,2]. The advanced driver assistance systems (ADAS)
or even autonomous driving are a fast developing fields, with
increasing interest in both industry and academia. ADAS can be
found nowadays in many commercial vehicles such as cruise
control or lane keeping which are based on classic control strate-
gies [3]. However, lateral control of an autonomous vehicle still
needs to be more investigated because of the difficulties it poses.

The recent research on autonomous driving incorporates dif-
ferent fields, including perception, planning, and control. The
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purpose of perception is to acquire information for autonomous
vehicles regarding its localization in the environment. The goal
of control is to obtain the suitable parameters for systems to
follow the planned path and planning is the decision-making
frame between perception and control [4,5]. The specific ob-
ject of planning is to the steer vehicle with a safe and without
collision path to their destination, considering vehicle dynamics
and road lines. Path planning has been widely investigated in
mobile robotics applications [6]. In [7], the grid-based approach
is used for dynamic path planning where the environment is
planned to a set of cells and each cell describes the behavior of
an obstacle at that situation in the environment. A hierarchical
path planning approach for mobile robot navigation in complex
situations is presented in [8]. Both approaches perform well for
path planning in low-speed applications but are not suitable for
high-speed driving. The artificial potential fields method where
stream functions are applied to plan the paths of autonomous
vehicles is provided in [9].
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The control goal of autonomous driving system is to follow the
references generated by the trajectory generator. This is a com-
plicated task that must guarantee certain levels of performance
and ensure vehicle stability. The trajectory-tracking problem is
very crucial for autonomous racing vehicles, and many control
algorithms have been proposed such as fuzzy controller [10],
Linear Quadratic Regulator (LQR) [11], Model Predictive Control
(MPC) [12] and Linear Parameter Varying (LPV) [13]. The idea of
controlling nonlinear systems such as autonomous driving system
considering LPV models has been widely investigated in the lit-
erature [13,14]. The main advantage of LPV models is that allows
solving nonlinear problems in a quasi-linear mode by embedding
the model non-linearities inside model parameters that depend
on some scheduling variables [15]. In [16], authors propose a
model predictive path tracking controller according to the vehicle
dynamics and actuators conditions in its path tracking. Though,
the planned path might not be adequately tracked by the vehicle
since the vehicle dynamics and its constraints are not included in
path generation [17]. In [18], a tracking method for a mobile robot
is presented, where the fuzzy predictive control is used to predict
the position and the orientation of the robot. A path tracking
scheme for the mobile robot based on neural predictive control is
introduced in [19], where a multi-layer back propagation neural
network is employed to model kinematics of the robot.

In general, the main objective of the autonomous racing is to
make the lap in the shortest possible time while maintaining a
smooth driving behavior. However, if the objective is the mini-
mization of the lap time, the controller has to plan the trajectory
on an adequately time horizon to avoid steering the vehicle
outside the track [20]. In this area, there are some research such
as in [21] that proposes an adaptive MPC approach for solving
lane keeping problem. In [22], a real-time MPC control scheme is
introduced that solves the racing problem and test it in miniature
race cars. Also, the Learning MPC is proposed to provide a solution
to the racing problem in [20]. To minimize the time in a circuit
implies going as fast as possible without exceeding circuit limits.
But, it also affects the energy consumption of the vehicle and
a trade-off between these two objectives have received great
interest in recent years, particularly in the area of car racing.
Several studies solve this problem by using an optimal control
technique, [23] and [22]. However, the considered control frame-
work requires the use of safe energy mechanisms which still
have not been considered in scientific literature. In this paper,
we propose to develop a framework for optimal compromise
between control and energy management increasing enlarging
the autonomous operation of the vehicle.

The increasing requirement for considering the reliability and
availability of autonomous vehicles has led to the improvement
and integration of prognostics and health management (PHM)
techniques with automated systems [24,25]. There are two stages
in PHM, particularly, prognostics and health management. Prog-
nostic is classified as the main process in maintenance strategies
according to the remaining useful life of the equipment, which
allow anticipating critical damages and reducing costs [26]. The
remaining useful life (RUL) is defined as the remaining time that
a component (or system) will be able to perform its expected
operation. This time regularly depends on the ageing of the com-
ponents and the operating conditions. RUL estimation is a key
element in condition based maintenance, prognostics and health
management. Generally, RUL is unknown and random, and as
such it should be estimated from available information provided
by health monitoring and condition modules [27]. Regularly, the
energy source of an autonomous racing vehicle is based on a bat-
tery. Obtaining more information about battery lifetime behavior
would allow developing more cost-effective and long-lasting bat-
teries. The performance of the racing vehicle is progressively

reduced over time because of the battery ageing . The effect
of ageing is characterized by losing power. This deterioration is
caused by several factors such as high-rate cycling, overburden
and overdischarge [28]. To avoid damages and decrease the age-
ing rate during the charge/discharge cycles of the battery, it is
required to monitor the State of Charge (SoC). The SoC is the
proportion of the possible charge, compared to the total charge
available when the battery is fully charged at a specific time.

A recent summary of methods for battery diagnosis can be
found in [29,30]. The battery RUL prediction and the uncertainty
management by using the particle filter (PF) approach (apply-
ing the practical degradation model to create a state transition
equation) are provided in [31]. An integrated method based on
a mixture of Gaussian process model and PF for battery SoH
estimation is presented in [32]. Using the model-based tracking
approach is a general way to obtain suitable results [33]. The
usage of Kalman filtering for monitoring the SoC was reported
in a lot of studies, e.g.[34,35]. On the other hand, motion control
actions are observed as a source of stress degradation such as [36,
37]. In [38] the authors proposed an approach to estimate RUL
based on assuming a decisive relation between the degradation
and the control input. To the knowledge of the authors, there is no
control approach in the literature that considers the SoC and RUL
of the battery of a racing vehicle. For this reason, in this work, we
propose a health-aware control approach for a racing vehicle as a
novel approach to solve the autonomous driving control problem
and at the same time to maintain and minimize the consumption
of the battery energy.

The main contribution of this paper is to provide a health-
aware control design for a racing vehicle that generates an op-
timal path for the racing by optimizing the lap time and maxi-
mizing the RUL of the battery in the planner. The control design
is divided into two layers (path planner and controller) with dif-
ferent time scales. The first layer included a path planner whose
objective is to optimize the lap time and maximize the battery
RUL to obtain the best trajectory under the constraints of the cir-
cuit. The second layer is focused on a controller gain with integral
action for tracking the trajectory obtained by the planner. Both
optimization problems are solved using Linear Matrix Inequality
(LMI) approach for MPC considering an LPV model of the vehicle
and the input and output constraints. Several reasons justify the
use of LMIs [39]. In fact, the resulting LMI-based optimization
problems can be solved in polynomial time, using interior-point
methods and the optimal solution is global [40]. Finally, the
proposed approach is assessed in simulation and results show the
effectiveness of the proposed planner for optimizing the lap time
while at the same maximizing the RUL of the battery.

The remainder of the paper is organized as follows. In Sec-
tion 2, the model of racing vehicle is introduced and the LPV
model of vehicle is presented. The problem statement and the
main control goal are presented in Section 3. The on-line op-
timization approaches for planner based on robust LMI control
design including the battery health management is provided in
Section 4. Moreover, the optimization approaches for controller to
track the path of planner is introduced in Section 4. In Section 5,
results of applying the proposed control strategy to a racing
vehicle are summarized. In Section 6, the conclusions of this work
are drawn and some research lines for future work are proposed.

Notation

Throughout this paper, R,R+,Rn,Rm×n indicate the field of
real numbers, the set of non-negative real numbers, the set of
column real vectors of length n and the set ofm by n real matrices,
respectively. Define the set I[a,b] := {x ∈ I+|a ≤ x ≤ b} for
some a, b ∈ I+ and I≥c := {x ∈ I+|x ≥ c} for some c ∈



I+. The operator ⊗ is means the tensor product of two values.
Furthermore, ∥.∥ denotes the spectral norm for matrices and
∥.∥2 is the squared 2-norm symbol. The superscript ⊤ represents
the transpose and operators <, ≤, =, >,≥ indicate element-wise
relations of vectors.

2. System description and modeling

In racing, the race car drivers goal is to win a race, which
means finishing the race with the smallest time. A race car driver
has to drive the car as fast as possible without losing control of
the vehicle at the limits. Moreover, it has to keep and control
consistently the energy of the vehicle for keeping in the race.
Therefore, a racing controller has to robustly track the desired
path and stabilize the vehicle. For obtaining an optimal response
in terms of maneuverability, it is required the vehicle to work in
the dynamic limits established. The dynamic model of the vehicle
used in this paper is a standard bicycle model version obtained
from [41] described by means of the following equations

v̇x = α +
−Fyf sin(δ) − µm g

m
+ ωvy,

v̇y =
Fyf cos(δ) + Fyr

m
− ωvx,

ω̇ =
Fyf lf cos(δ) − Fyr lr

I
,

(1)

where vx , vy and ω are the body frame velocities linear in x,
linear in y in (m/s) and angular velocity in (rad/s), respectively. δ
is the steering angle in (rad) and α is longitudinal acceleration in
(m/s2), while both of them are control inputs of the system (see
Fig. 1).

Moreover, Fyf and Fyr are the lateral forces produced in front
and rear tires in (N), respectively, given by

Fyf = Cf

(
δ −

vy

vx
−

lf ω
vx

)
, (2)

Fyr = Cr

(
−

vy

vx
−

lrω
vx

)
. (3)

where variables Cf and Cr are the tire stiffness coefficient for the
front and rear wheels. m and I represent the vehicle mass and
inertia. lf and lr are the distances from the center of gravity to the
front and rear wheel axes, respectively. µ and g are the friction
coefficient and the gravity value, respectively.

On the other hand, the kinematic model is based on the
velocity vector movement in order to obtain longitudinal and
lateral velocities referenced to a global inertial frame [13]. Kine-
matic based model has generally used because its low parameter
dependency. The kinematic model used in this paper is based on
the error model which is obtained as the difference between the
real position orientation states and their references. These kine-
matic equations are determined by the following curvature-based
equations:

ėy = sin(eθ )vx + cos(eθ )vy,

ėθ = ω −
cos(eθ )vx − sin(eθ )vy

1 − eyκ
κ,

ṡ =
cos(eθ )vx − sin(eθ )vy

1 − eyκ
,

(4)

where ėy and ėθ are the heading lateral distance and angle error
between the vehicle and the path and s indicates the distance
traveled along the centerline of the road. κ is the circuit curvature
and presents the lateral behavior reference. The vehicle model is
concisely expressed in state space representation as

ẋ(t) = f (x(t), u(t), w(t), v(t)), (5)

Fig. 1. Racing vehicle variables along the road.

where at time t the vectors x, u, w and v represent the state,
input,disturbances and noise

x = [vx vy ω ey eθ ]
⊤, u = [δ α]

⊤, (6)

and v is the measurement noise that is applied into measurable
states and w is the friction force disturbances that is considered
as a variation of the nominal friction force Ffriction = µmg .

In order to achieve the best trajectory where the lap time
is optimized, the time (t) should considered as a state variable.
This is achieved by formulating kinematic model (4) in the space
domain considering the time (t) as a state variable which will
be used for optimizing the lap time. Furthermore, because of the
problem consists on finding out the best path, the curvature (κ)
has to be implemented in terms of the driven distance since the
time evolution is unknown at the beginning of the optimization.
By considering xc = [ey, eθ , s]⊤ as the state vector of kinematic
model (4), then, a new state vector x̃c = [ẽy, ẽθ , t]⊤ is
determined by applying

x̃c =
dxc
ds

=
dxc
dt

.
dt
ds

= ẋc
1
ṡ
. (7)

Then, the following kinematic model equation when the time
is considered as a state in the model
˜̇ey = sin(eθ )vx + cos(eθ )vy,

˜̇eθ =
ω

ṡ
− κ,

ṫ =
1
ṡ
.

(8)

The main goal of this paper is to maximize the Remaining
Useful Life (RUL) of the battery vehicle that has a direct connec-
tion by reducing vehicle energy consumption as low as possible
considering that the energy is stored in the battery. In order to
minimize the vehicle energy and maximize the RUL, the state of
charge (SoC) of the battery must be considered as a state variable.
The SoC of a battery at a given time is the proportion of the charge
available, compared to the total charge available when it is fully
charged. The range for the battery state of charge is defined as
SoC ∈ [0, 1], where 0 denotes the battery is fully discharge, and
1 corresponds to 100% of the charge, i.e., that, the battery is fully
charged. Based on the previous study [35], the most common



used approach to compute the SoC is described as follows:

SoC(t) = SoC(t0) −
1
CT

∫ t

t0

Ibatt (t)dt, (9)

where t0 presents the initial time and CT is total capacity of the
battery. However, to include the SoC of the battery in the vehicle
model, the SoC can be expressed in function of the velocity of the
vehicle. Then, the SoC in the battery can be modeled as follows

SoC(t) = SoC(t0) − Pbatt (t),
Pbatt (t) = Pmove(t) + Pfriction(t),

Pbatt (t) =
1
2
CdρArv

2
x + µmgvx,

(10)

where Cd is drag coefficient for the wheel, Ar indicates the vehicle
front area and ρ is the air density at 25◦C.

Therefore, based on the (1)–(10), Eq. (5) can be expressed as:

˙̃x(t) = f̃ (x̃(t), u(t), w(t), v(t)), (11)

where the augmented vector of states is defined as follows

x̃(t) = [vx, vy, ω, ẽy, ẽθ , t, SoC]
⊤, (12)

2.1. LPV Modeling

The previous vehicle non-linear model will be transformed
into an LPV representation by embedding the nonlinearities in-
side some varying parameters following the procedure presented
in [42]. As a result, these parameters are expressed in terms of
some system variables called scheduling variables that vary in a
known bounded interval. This procedure leads to the following
LPV model in discrete-time
x̃(k + 1) = A(θ (k))x̃(k) + B(θ (k))u(k) + Ew(k)

ỹ(k) = Cx̃(k) + Dv(k),
(13)

where the k ∈ N is the discrete time instant. The matrices A, B, C
and E are as follows

A(θ (k)) =

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 0 0 0
0 a22 a23 0 0 0 0
0 a32 a33 0 0 0 0
0 1 0 0 a45 0 0
0 a52 a53 0 1 0 0
a61 a62 0 0 0 0 0
a71 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B(θ (k)) =

⎡⎢⎢⎢⎢⎢⎢⎣

b11 1
b21 0
b31 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , E =

⎡⎢⎢⎢⎢⎢⎢⎣

1/m
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C =

[1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
.

The mathematical expressions of the varying parameters in
matrices A and B are provided in Appendix. The vector θ (k) ∈ Rnθ

is the vector of varying parameters. Each parameter θj varies in a
defined interval θj ∈ [θj, θj] ∀j ∈ [1, . . . , nθ ], which belongs to a
convex polytope Θ defined by

Θ :=

⎧⎨⎩θ (k) ∈ Rnθ |

N∑
j=1

µj(θ (k)) = 1, µj(θ (k)) ≥ 0

⎫⎬⎭ , (14)

where N = 2nθ is the number of vertices models obtained
from the vertices of the polytope (14). The coefficients µj of the

polytopic decomposition are given by

µj(θ (k)) =

N∏
j=1

ζ (ηj
0, η

j
1),

η
j
0 =

θj − θj

θj − θj
, η

j
1 = 1 − η

j
0.

(15)

Clearly, as θ (k) varies inside the convex polytope Θ , the ma-
trices of the system (13) vary inside a corresponding polytope
Ψ , which is defined by the convex hull (Co) of N matrix vertices
[Aj, Bj, E, C,D], j ∈ [1, . . . ,N],

Ψ := Co
{[

A1 B1 E C D
]
,
[
A2 B2 E C D

]
,

. . . ,
[
AN BN E C D

]}
,

(16)

Using the matrices (16), the system (13) can be rewritten in
polytopic form as follows

A(θ (k)) =

N∑
j=1

µj(θ (k))Aj, B(θ (k)) =

N∑
j=1

µjBj(θ (k)). (17)

3. Problem statement

The main control goal for the vehicle is to obtain the best path
trajectory according to the vehicle dynamics and its limits for rac-
ing. Then, the controller forces the vehicle to track the trajectory
obtained online by the planner. However, if the objective is only
the minimization of the lap time, the controller has to plan the
trajectory on an adequately time horizon to avoid steering the
vehicle outside the track. But, this plan also affects the energy
consumption of the vehicle. Thus, the management of the trade-
off between these two objectives is an open problem in the
area of car racing. Therefore, in addition to obtaining a planned
trajectory with optimal lap time, the energy consumption of the
vehicle that depends on the battery RUL should be considered
into the optimization problem solved by the planner.

Generally, the design of multi-layer control structures can be
related to the different type of control objectives, which would
not be able to be addressed considering a single layer architec-
ture [43]. Specifically, the control objectives can be arranged in
the following way:

• The objectives of planner operation are to minimize lap
time and maximize battery lifetime. Since, the assessing the
battery SoC requires more time than the tracking trajectory
evaluation, the planner operates at slowly time scale that
the controller.

• The objectives of controller are to guarantee a stable opera-
tion of the vehicle while tracking the trajectory provided by
the planner.

The control strategy presented in this paper is based on a mul-
tilayer (hierarchicalcontrol structure including the energy man-
agement. This structure, conceptualized in Fig. 2, is a two-layer
hierarchical architecture, where the solution of the problem is ob-
tained by decoupling the problem into two different time-scales.
In the upper layer, the planner solves an optimization problem
that has a objective to provide the optimal path (references that
are shown by subindex r in Fig. 2) to the automatic control (low
layer). In the lower layer, the tracking controller receives the path
trajectory calculated by the upper layer and determines the best
trajectories for the controller-layer, which is operated by pole
placement method, by considering the faster dynamics of the
plant.



Fig. 2. Block diagram of control approach.

Fig. 3. Berkeley Autonomous Vehicle [44]. .

4. Proposed approach

4.1. LPV MPC Planner

The main goal of the planner part is to find the optimal path
within the circuit and provide such information to the controller.
In general, the path trajectory is obtained according to the body
frame velocities of the vehicle. In this paper, for solving these
optimization problems to obtain the best path, a robust LMI-
based MPC controller, which is able to deal with the unknown
future evolution of the varying parameters of the LPV model in
the prediction horizon, is considered. This approach consider that
the varying parameters in this horizon are not exactly known
but instead are considered to vary inside the corresponding re-
gions of variation determined by the operational limits of the
scheduling variables. Hence, the optimal control problem can be
reformulated as the following robust LMI-based MPC [45], which
minimizes the infinite horizon quadratic objective function:

J∞(k) =

∞∑
i=0

(∥ x̃(k + i|k) ∥Q1 + ∥ ũ(k + i|k) ∥R), (18)

where ũ = [δ α]
⊤ is the control input generated by the planner.

Moreover, x̃(k + i|k) and ũ(k + i|k) denote the state predicted
based on the measurements and the control input at time k + i,
computed at time k, respectively. x̃(k) = x̃(k|k) and ũ(k) = ũ(k|k)
denote the measured state and control input planned for time k,
respectively. Besides, Q1 = Q⊤

1 > 0 and R⊤ > 0 are positive
definite weighting matrices.

The control law is obtained by minimizing cost function (18)
with respect to the control moves, that is:

min
ũ(k+i|k),i≥0

max
[A(k+i),B(k+i)]∈Ψ ,i≥0

J∞(k), (19)

where the maximization in (19) is taken over the set Ψ of the
polytopic representation of the LPV model (16). The solution of
(19) leads to a state feedback law for planner given by:

ũ(k + i|k) = K (θ (k))x̃(k + i|k), (20)

where the state feedback gain is given by

K (θ (k)) =

N∑
j=1

µj(θ (k))Kj, (21)

which optimizes (19).

4.2. LMI Control design of planner including health management

One of the motivations in this work is to integrate the informa-
tion about the battery SoC in the planner and controller design.
Accordingly, the battery lifetime will be estimated by means of
the RUL computed using an approach based on the SoC.

4.2.1. RUL computation via SoC assessment
Once the battery SoC is calculated for the racing vehicle, an

approach to evaluate RUL function is introduced.

Proposition 1. Considering that RUL is computed when the state
of charge behavior reaches (or exceed) the state of charge threshold
value which is denoted by SoCthresh. Therefore, the expected RUL is
given by

RUL(k) =
SoCthresh − SoC(k)

−ub(k)
, (22)

where ub is the battery input.

Proof. The derivative of the state of charge of the battery is given
by
d(SoC)

dt
= udischarge(k), (23)

or, equivalently in discrete-time can be rewritten as follows
SoC(k + 1) − SoC(k)

∆t
= udischarge(k). (24)

Assuming the SoC(k + 1) reaches the SoC threshold (SoCthresh),
where SoC threshold is the point at which the battery would no
longer reliably provide energy for moving the vehicle. Then, (24)
can be rewritten as:
SoCtresh − SoC(k)

∆t
= udischarge(k) (25)

According to (25), the definition of the RUL and considering
that δt provides an estimation of the RUL yields to:

RUL(k) =
SoCthresh − SoC(k)

udischarge(k)
, (26)

where, udischarge is considered the negative value of the battery
input that is denoted by −ub.



Fig. 4. Comparison of planner racing laps with and without RUL objective.

Fig. 5. The reference and response of racing lap without RUL objective.

4.2.2. LMI Control design based RUL objective
The LMI control design for the planner based on the optimizing

the lap time and RUL objectives is now proposed for the racing
vehicle. The objective of the trajectory planner is modified to find
the best path within the circuit that optimizes the lap time t and
at the same time maximizes the lifetime of the battery. In order
to increase the RUL of the battery and optimizing the lap time, the
optimization planner objective (18) should be modified according
to the new objective. According to the (22), there is a relation
between the RUL and battery SoC and control input. Moreover,
the SoC model (8) and (10) are considered as new states in the
vehicle model. Hence, the optimization planner can be updated
based on the RUL and lap time and the robust LMI optimization
problem of the planner (18) is reformulated as follows:

min
ũ(k+i|k),i≥0

max
[A(k+i),B(k+i)]∈Ψ ,i≥0

Jg,∞(k) =

∞∑
i=0

(∥ t ∥
2
λ1

+ ∥
1

RUL
∥
2
λ2
),

(27)

where λ1 and λ2 are positive definite weighting matrices, that
allow establishing the trade-off between lap time and battery
RUL.

Given that the time t is considered as an additional state of
the model and the RUL is estimated based on the SoC which is
another state of the model, the optimization problem (27) can be
solved as a LQR problem based on the robust LMI similarly to (18).
Therefore, the state feedback control law now can be formulated
for the LPV planner model as follows:

ũ(k + i|k) = Kg (θ (k))x̃(k + i|k), (28)

where the state feedback gain matrix is given by

Kg (θ (k)) =

N∑
j=1

µj(θ (k))Kj, (29)
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Fig. 6. The reference and response of racing lap with RUL objective.

Fig. 7. Comparison of the velocity with and without the RUL objective.

that is obtained using a theorem that will be introduced in the
following based on the [45], but adapted to the racing vehicle
and using the new objective function (27). Before presenting the
theorem, let consider some auxiliary lemmas.

Lemma 1 ([46]). Consider A as a symmetric matrix. Then

λmax(A) ≤ 0 ⇐⇒ γA − γ I ≤ 0. (30)

Lemma 2 ([46]). Consider A a matrix of appropriate dimensions, and
γ a positive scalar. Hence,

A⊤A − γ 2I ≤ 0 ⇐⇒

[
−γ I A
A⊤

−γ I

]
≤ 0. (31)

Lemma 3 (Schur Complement Lemma). [46] Consider[
Q (x) S(x)
S⊤(x) R(x)

]
> 0, (32)

where Q (x) = Q⊤(x), R(x) = R⊤(x) and S(x) is the affine function
of x. Then, (32) is equivalent to the following conditions:

Q (x) > 0, R(x) − S⊤(x)Q−1(x)S(x) > 0,

R(x) > 0, Q (x) − S(x)R−1(x)S⊤(x) > 0.
(33)

Theorem 1. Considering x̃(k|k) is the state of the system (13)
measured at each sampling time k and that there are constraints on
the output and control input where umax and ỹmax are the maximum
values of control input and output of vehicle. The state feedback
matrix K in the control law ũ(k + i|k) = Kg (θ (k))x̃(k + i|k) that
minimizes the upper bound on the performance objective function
at sampling time kg given by Kg = YQ−1 can be found, if there exist
Kg , Q , γ and γ ∈ R1×1 > 0, Q = Q⊤

∈ R7×7 > 0, Y ∈ R2×7

where Q and Y are obtained from the solution of the following linear
objective minimization problem

min
γ ,Q ,Y

γ (34)



Fig. 8. Error achieved during the simulation racing laps.

Fig. 9. Comparison of the battery RUL.

[
1 x̃(k)⊤

x̃(k) Q

]
≥ 0, (35)⎡⎢⎣

Q ∗ ∗ ∗

AjQ + BjY Q 0 0
Q 1/2
1 Q 0 γ I 0
R1/2Y 0 0 γ I

⎤⎥⎦ > 0, (36)

[
−γ I (−1/RUL(k))

(−1/RUL(k))⊤ −γ I

]
≤ 0, (37)[

u2
maxI Y
Y⊤ Q

]
≥ 0, (38)[

Q (AjQ + BjY )⊤C⊤

C(AjQ + BjY ) ỹ2max

]
≥ 0, (39)

Proof. The proof is obtained applying the following steps:

(1) Proof for the stability and optimization.
By considering a quadratic Lyapunov–Krasovskii function

V (x(k)) = x̃⊤(k)Px̃(k) > 0, where P > 0 is a symmetrical positive-
definite matrix, the upper bound on the objective function J∞ is
obtained.

To guarantee the existence of the upper bound on the per-
formance at sampling time k, the following inequalities must be
satisfied

V (x̃(k + i + 1|k)) − V (x̃(k + i|k)) ≤ −Jg,∞(k)
∀[A(k + i), B(k + i)] ∈ Ψ , i ≥ 0

(40)

Then, by requiring x̃(∞|k) = 0 such that V (x̃(∞|k)) = 0 and
summing (40) from i = 0 to i = ∞, it can be obtained

max
[A(k+i),B(k+i)]∈Ψ ,i≥0

J∞ ≤ V (x̃(k|k)). (41)



Fig. 10. Comparison of the Response with and without the disturbance and noise with RUL objective.

Fig. 11. Comparison of the velocity with and without the disturbance and noise with RUL objective.

The minimization of V (x̃(k)) = x̃(k)⊤Px̃(k) (with P > 0) is
equivalent to

min
γ ,P

γ

s.t. x̃(k)⊤Px̃(k) ≤ 0.

Defining Q = γ P−1 > 0 and using the Schur-complement [46],
the (35) is established.

Then, by substituting (13) and (28), inequality (40) becomes:

x̃(k + i|k)⊤
(
(A(k + i) + B(k + i)Kg )⊤P(A(k + i) + B(k + i)Kg ) − P

+ K⊤

g RKg + Q1

)
x̃(k + i|k) ≤ 0.

that it is defined in [A(k + i), B(k + i)]. Then, it is satisfied for all

[A(k + i), B(k + i)] ∈ Ψ . Hence, by substituting P = γQ−1, Q >

0, Y = KgQ , pre - and post-multiplying by Q and using Lemma 3,

(36) is obtained.

(2) Proof for maximizing the RUL of battery. According to

objective (27) and definition of ∥ (1/RUL) ∥
2, we have

∥ (1/RUL) ∥
2
= (λmax((1/RUL)⊤(1/RUL)))

1
2 .



Fig. 12. Friction force disturbance.

Fig. 13. Poles positions of the planner and controller in a particular operating point.

Then, by using Lemmas 1 and 2, for γ > 0

∥ (1/RUL) ∥
2
≤ γ

⇐⇒ λmax((1/RUL)⊤(1/RUL)) ≤ γ 2,

⇐⇒ (1/RUL)⊤(1/RUL) − γ 2
≤ 0,

⇐⇒

[
−γ I (−1/RUL(k))

(−1/RUL(k))⊤ −γ I

]
≤ 0.

(3) Inclusion of output and input constraints.
Consider the Euclidean norm bound and maximum bound on

the constraints of input

∥ũ(k + i|k)∥2 ≤ umax.

Following [45],

V (x̃(k + i|k)) = x̃(k + i|k)⊤Q−1x̃(k + i|k)

≤ x̃(k|k)⊤Q−1x̃(k|k) ≤ 1,
(42)

is state-invariant ellipsoid. Therefore, it can be obtained

max
i≥0

∥ũ(i|k)∥2
2 = max

i≥0
∥YQ−1x̃(i|k)∥2

2

≤ λmax(Q−1/2Y⊤YQ−1/2) ≥ u2
max

where λmax denotes the largest generalized eigenvalue and by
using Lemma 3, (38) is obtained.



The output constraints (39) are satisfied based on the

∥y(k + i|k)∥2 ≤ ymax.

Thus,

max
i≥1

∥y(i|k)∥2 = max
i≥0

∥[C 0](Ag + BgKg )x̃(i|k)∥2

≤ λmax([C 0](Ag + BgKg )Q 1/2) ≤ ymax

Then, by multiplying on the left and right by Q 1/2

Q 1/2((Ag + BgKg )[C 0]⊤[C 0](Ag + BgKg ))Q 1/2
≤ y2maxI

such that by using Lemma 3, the inequality (39) is satisfied.

4.3. Tracking controller

The controller objective is to track the reference that is gener-
ated by the planner considering the same constraints on inputs
and states. The controller is designed by pole placement and
augmenting the plant with an integrator to remove steady state
errors. The integrator can be including the following equation in
the state space model of the vehicle

z(k + 1) = z(k) + (yr (k) − Cx̃(k)), (45)

where yr is the references that are obtained by the planner. Thus,
the augmented vehicle model (13) with integrator is[
x̃(k + 1)
z(k + 1)

]
=

[
A(θ (k)) 0
−TsC I

][
x̃(k)
z(k)

]
+

[
B(θ (k))

0

]
u(k)

+

[
0
TsI

]
yr (k) +

[
E
0

]
w(k)

y(k) =
[
C 0

] [
x̃(k)
z(k)

] (46)

Then, the feedback control law can be formulated as follows
using state feedback

u(k) = [Kc(θ (k))]
[
x̃(k)
z(k)

]
, (47)

where Kc = [Kc1Kc2] is the feedback gain matrix obtained using
the LMI based formulation for solving the LPV LQR problem via
an H2 problem [13].

For obtaining a faster dynamics in the lower layer than in the
upper layer, the position of poles should be forced close to the
zero and inside the unit circle region. The stability and location
of poles in the lower layer controller D-stability concept is used.
By using the definition of the D-stability based on the region
and [47], which is a subset D of the complex plane determined
for a symmetric matrix a = [akl] ∈ Rm×m and a matrix b = [bkl] ∈

Rm×msuch that:

D = {g ∈ C : fD(g) < 0},

where fD(g) is the characteristic function, defined as follows

fD(g) = a + gb + g∗b = [akl + gbkl + g∗bkl]1≤k,l≤m (48)

and g∗ denotes the complex conjugate of g .
By considering the closed-loop model M, the controller gain

Kjh is designed such that

M = {(Aj + BjKj) : eig (Aj + BjKj) ∈ D}. (49)

Therefore, by following the [47], the closed-loop system is
quadratically D-stable if there exists a symmetric matrix P > 0
such that:

a ⊗ P + b ⊗ (Aj + BjKj)P + b⊤
⊗ ((Aj + BjKj)P)⊤ < 0, (50)

Table 1
Model parameters value.

Parameter Value unit

lf 0.125 m
lr 0.125 m
Cf 68 N/rad
Cr 71 N/rad
Cd 0.36 N/rad
I 0.03 kg/m2

m 1.98 kg
µ 0.5 N/rad
ρ 1.184 kg/m3

Ar 1.91 m2

then, by substituting Wj = KjP and establishing that all the
poles of closed-loop system should be inside the circular region
centered in (q, 0) with radius r , it can be shown that:[

−rP qP + AjP + BjWj
qP + PA⊤

j + W⊤

j B⊤

j −rP

]
< 0. (51)

Therefore, by considering (51) and the dimensions of the sys-
tem (12), the following proposition based on [46] can be modified
considering the vehicle LPV model.

Proposition 2 ([39]). Given the LQR parameters Q = Q⊤
∈ R7×7 >

0, Y ∈ R2×7, a state feedback control in the form of u(k) =

Kc(θ (k))[x̃(k), z(k)]⊤ exists such that γ > 0, if and only if there exist
P ∈ R7×7, Y ∈ R2×2 and Wj ∈ R2×7 satisfying

(AjP + BjWj) + (AjP + BjWj)⊤ + x̃0x̃⊤

0 < 0, (52)

trace
(
Q 1/2X(Q 1/2)⊤

)
+ trace(Y ) < γ , (53)[

−Y R1/2Wj
(R1/2Wj)⊤ −P

]
< 0, (54)[

−rP qP + AjP + BjWj
qP + PA⊤

j + W⊤

j B⊤

j −rP

]
< 0. (55)

where a feedback gain is given by Kc,j = WjP−1.

Remark 1. It is important to note that the optimal solution from
the planner in online mode may fail to exist. For such cases, the
planner and controller optimization problems are solved sepa-
rately. It means that the robust LMI problem is solved by an
optimal offline trajectory planner that calculates the best tra-
jectory under the constraints of the circuit. Then, the controller
part using that trajectory as references for tracking the best path
under the same constraints.

5. Simulation results

The performance of the proposed approach that utilizes a
planner that includes battery energy management and tracking
controller are assessed with a case study based on the Berkeley
autonomous racing vehicle that is shown in Fig. 3. This vehicle
can be modeled using the non-linear model (1)-(3) with the
parameters presented in Table 1.

An oval circuit is chosen for assessing the proposed strategy
that endeavors to cover various driving conditions as acceleration
platforms and speed loss on curves also driving on different
road situations. Therefore, there exist the unknown friction forces
related to the different situations which are considered as distur-
bances. According to the different velocity and circuit shape, a tra-
jectory planner has responsibility for creating a feasible trajectory



by using a polynomial curve production method [44]. In addition,
computing consecutive and differentiable curves (accelerations
and velocities ) under an overall constrained vehicle acceleration
are consisted. Hence, in an on-line mode, the planner algorithm
including the health management creates the linear and angular
velocity references plus requested positions and orientations for
the control loop.

Based on oval circuit, the robust LMI-based optimization prob-
lem for planner is solved by using Theorem 1 for obtaining the
best trajectory, where the objective is to minimize the lap time
and at the same time maximizing the RUL of the battery. The
battery RUL is computed by using Proposition 1. To compute
(22), the mean value of interval longitudinal acceleration (α, α) is
considered. The planner tuning is based on finding a best trade-off
between maximizing the battery RUL and minimizing lap time by
properly selecting the weights λ1 and λ2 in the objective function
(27).

The trajectory path that obtained by the planner according to
the oval circuit shape with and without considering maximization
of the RUL objective (37) inside the robust LMI problem of planner
are presented in Fig. 4. From Fig. 4, it can observed that the racing
trajectory of the planner in the case of the RUL objective that
shows by diamond dash line, after some iteration goes to close
to the lower bound of the circuit for saving the energy of battery.
However, the trajectory path of the planner in the case of without
the RUL objective that shows straight line after three-quarters of
the first round goes to close to the lower bound of the circuit
which causes more energy to be lost. However, at the same time
the trajectory lap in the case of the RUL objective is shorter than
without the RUL criteria which makes a small trade-off between
maximizing the battery RUL and optimizing the time.

According to the general control approach Fig. 2, the solution
of planner optimization problem (upper layer) will be used as
reference variables for the controller optimization problem (low
layer). In the control optimization, the tuning aims to minimize
the velocity and lateral errors while computing smooth control
actions for the vehicle. The weighting matrices are founded by
iterative tuning until the desired performance is achieved. The
values of the parameters is used in the simulation are presented
in Table 1.

Fig. 5 show the optimal results of the tracking of the trajectory
path that achieved, in an online mode, by the planner without
considering the RUL objective. In Fig. 5, it can seen that the
controller is able perfectly to track the trajectory provided by the
planner without the RUL objective. On the other side, the evalua-
tion results of the tracking of the trajectory path using planner by
considering the RUL objective are presented in Fig. 6. Moreover,
it can observed that despite considering the RUL objective, the
controller perfectly tracked the optimal trajectory that provided
by the planner.

Fig. 7 presents the reference and the response of the lon-
gitudinal velocity profile in both scenario of the RUL objective.
From this figure, it can be observed that in the scenario with
RUL criteria, the response of velocity from the planner is modified
based on the RUL and it is less than the velocity without the RUL
criteria. In both scenarios, the results from the controller tracking
part are quite good and the response of velocity have tracked the
reference from the planner.

The evaluation of error during the simulation racing lap by
considering SoC criteria and without it are presented in Fig. 8. In
fact, The good performance of the controller tracking is shown in
Fig. 8. It can be perceived that the controller is able to reduce
the errors to zero in spite of the complexity of driving in a
high lateral acceleration situation. The comparison of the RUL
of battery between considering the RUL objective and without
adding the RUL objective is presented in Fig. 9, where it can

be seen that at time (50s), the result of battery RUL with RUL
objective is 11.71, while the result of battery RUL without RUL
objective is zero. Therefore, It can be said, the battery RUL is
increased 11.71 according to the solving the robust LMI of planner
without the RUL objective.

To evaluate the effectiveness and RUL efficiency of the pre-
sented approach based on the robust LMI problem, the compari-
son of response of the tracking controller from the system model
that includes the friction force disturbance and measurement
noise with the system model without them are presented in
Fig. 10. Moreover, Fig. 11 depicts the response of the longitudinal
velocity profile in both scenario of the friction force disturbance
and measurement noise where the level of noise considered as
random value of 20% of steady-state level of velocity and friction
force disturbance is shown in Fig. 12.

Furthermore, to show the differences of time scale between
the upper layer and lower layer, the position of closed loop poles
from both layers in a particular operating point are illustrated in
Fig. 13. From this figure can be observed that the poles of both
loops satisfy the stability of the system behaviors. According to
using LPV model cannot be used fixed eigenvalue in closed loop
but, in every iteration try to force and obtain the poles near to
zero. Moreover, the poles position from the two layers are shows
the dynamic behavior of lower layer is faster than upper layer.

6. Conclusions

This paper has proposed a methodology for autonomous steer-
ing a vehicle based on the robust LMI-based MPC approach. The
nonlinear model of vehicle is modified by including the time and
the battery model as states into the vehicle model. Then, to take
into account the nonlinearities of the vehicle, the nonlinear model
is transformed into an LPV model using a polytopic approach. The
proposed approach is designed to solve driving control problems
and at the same time to maintain and minimize the consumption
of the battery energy. The proposed solution is divided into two
layers with different time scale: path planner and controller. Pole
placement approach is used dynamic decoupling between both
layers. The optimal planning algorithm additionally minimizes
the lap time while at the same time maximizes the lifetime of bat-
tery. The controller is designed using a LPV-LQR approach using
LMI formulation. The model of the controller is augmented with
integral action for improving the trajectory tracking obtained
on-line by the planner. To evaluate the effectiveness and RUL ef-
ficiency of the presented approach, the force friction disturbance
and noise is considered inside the system. The strategies are
tested in simulation using the Berkeley autonomous vehicle with
different scenarios including the comparison of system behaviors
and battery RUL. The results show that the RUL of the battery
is maximized in all scenarios. For future research, it would be
interesting to consider the fault in the system and implementing
the proposed approach on the real benchmark of the vehicle.
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Appendix

The mathematical expressions of the varying parameters in
matrices A and B of the LPV model (13) are as follows

a11 =
−µg
vx

, a13 =
Cf lf sin(δ)

mvx
+ vy,

a12 =
Cf sin(δ)
mvx

, a22 = −
Cr + Cf cos(δ)

mvx
,

a23 = −
Cf lf cos(δ) − Cr lr

mvx
− vx, a32 = −

Cf lf cos(δ) − Cr lr
Ivx

,

a33 = −
Cf l2f cos(δ) + Cr l2r

Ivx
, a45 = vx,

a52 = −
κ

1 − eyκ
, a53 =

κ sin(eθ )
1 − eyκ

,

a61 =
cos(eθ )
1 − eyκ

, a62 = −
sin(eθ )
1 − eyκ

,

a71 = −
1
2
CdρAr − µmg, b11 = −

1
m

sin(δ)Cf ,

b21 =
1
m

cos(δ)Cf , b31 =
1
m

cos(δ)Cf lf .
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