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Abstract— This paper proposed an economic reliabilityaware
model predictive control (MPC) for the management of drink-
ing water transport networks (DWNs) that includes a new
goal to increase the system and components reliability based
on a finite horizon stochastic optimization problem with joint
probabilistic (chance) constraints. The proposed approach is
based on a single-layer economic optimization problem with
dynamic constraints. The inclusion of components and system
reliability in the MPC model using an LPV modelling approach
aims at maximizing the availability of the system by estimating
system reliability. The solution of the optimization problem
related to the MPC problem is obtained by solving a series
of Quadratic Programming (QP) problem. The use of chance-
constraint programming allows computing an optimal policy
based on a desirable risk acceptability level and managing
dynamically volume tank stocks to cope with non-stationary
flow demands. Finally, the proposed approach is applied to a
part of a real drinking water transport network of Barcelona
for demonstrating the performance of the method.

I. INTRODUCTION

Drinking Water Networks (DWNs) are critical infrastruc-
tures in urban environments. DWNs are multivariate dynamic
constrained systems that are described by the interconnection
of several subsystems (tanks, actuators, sources, nodes and
consumer demands). Moreover, its optimal management, that
can be formulated as a multi-criteria optimization problem,
is a complex challenge for water suppliers. To deal with
these complexity, Model Predictive Control (MPC) has been
established as a suitable method [1]. Regarding optimized
control strategies for managing water systems, MPC is not
implemented in a classical way because there is no reference
to be tracked [2]. For this purpose, Economic MPC (EMPC)
provides a systematic method for optimizing economic per-
formance. Latterly, system reliability in the process of con-
trol system has been considered through a Prognosis and
Health Management (PHM) framework. On the other side,
MPC predicts the suitable control actions to obtain optimal
performance according to multi-objective cost functions and
physical constraints. This is the reason to be considered
as a suitable approach for developing health-aware control
schemes. The system reliability has a strong relationship
with the control input determined by the controller. Several
studies on the DWN control are focused on the application
of MPC to provide optimal management of the DWN and
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to satisfy the consumer demand while preserving the DWN
reliability, e.g. [3]. However, considering the reliability at the
actuator level not at the system level is the main drawback
of the previous methods. Otherwise, it leads to the use
of non-linear MPC because non-linearity of the resulting
constraints. Generally, Economic Nonlinear MPC (ENMPC)
is computationally costly and, there is no guarantee that
the solution of the optimization problem corresponds to the
global optimum. One way to deal with nonlinearity is to
represent the process behavior by means of Linear Parameter
Varying (LPV) models. Another weakness of previous ap-
proaches according to the reliability analysis and MPC strate-
gies is the conservatism of the resultant control policy that
effects negatively on the efficiency function of the DWNs
operation. A more realistic qualification of uncertainty is
the stochastic paradigm. Powerful tools for control design,
heading to the Stochastic MPC, which has a particular
alternative called Chance-Constrained MPC (CCMPC) [4].
By placing this value suitably, the user/operator can obtained
the desired trade-off between robustness and performance.
Some economic-oriented controller that consider the relia-
bility issue has been proposed [3], but without considering
reliability at the system level and probabilistic constraints
based on the reliability of the system.

The aim of this paper is to propose an economic health-
aware MPC controller based on PHM information that is
provided by the online evaluation of the system reliability
according to the probabilistic constraints for the reliability of
the system by means of the chance constraints programming
paradigm. By using the LPV structure, the system reliability
is incorporated into the control algorithm. The augmented
model that includes both the reliability models and DWN
is expressed as an LPV model that at each time instant the
varying parameters are updated according to the value of
the scheduling variables. Therefore, the control inputs are
determined to satisfy the control objectives and simultane-
ous to increase the lifespan and reliability of the system
components. The use of chance constraints to compute an
optimal based on a desired risk acceptability level, system
reliability and presenting the advantage of a given system
and component reliability that is computed on-line in an
MPCLPV strategy is the main goal of this paper.

II. EMPC FOR TRANSPORT WATER NETWORKS

A. Control-oriented model
In this paper, since the transportation layer is considered,

a control-oriented modeling approach that is based on a flow
model is considered that follows the principles introduced by
the authors in [5]. Following flow/mass balance principles,



a discrete-time model based on linear differential algebraic
equations (DAEs) for all time instant k ∈ Z≥0 can be
formulated for a given DWN as follows:

x(k + 1) = Ax(k) +Bu(k) +Bddm(k), (1a)
0 = Euu(k) + Eddm(k), (1b)

where state vector x ∈ Rnx is defined to represent the
tank volumes. The vector u ∈ Rnu of controlled inputs is
associated to the flow rates through the actuators (pumps
and valves) of the network, and the vector dm ∈ Rnd
demanded flow as measured disturbances. A ∈ Rnx×nx , B ∈
Rnx×nu , Bd ∈ Rnx×nd , Eu ∈ Rnd×nu , Ed ∈ Rnd×nd and
C ∈ Rny×nx are time-invariant matrices of that depends on
the network topology. The system is subject to hard input
and state as

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (2a)
u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (2b)

for all k ∈ Z≥0, where G ∈ Rmx×nx , g ∈ Rmx , H ∈
Rmu×nu and h ∈ Rmu are vectors/matrices collecting the
system constraints, signifying mu ∈ Z≥0 and mx ∈ Z≥0 the
number of input and state constraints, respectively.

B. EMPC formulation

The control goal can be formulated as the minimization
of a convex multi-objective cost function considering

1) Economic costs Minimization : Minimizing the eco-
nomical costs that include water production and electrical
costs related to pumping is the main control objective of the
DWN. Therefore, the cost function related to this objective
can be expressed as

`e(k) , α(k)>Weu(k), (3)

where α(k) , (α1 + α2(k)) ∈ Rnu , α1 ∈ Rnu denotes
a fixed water-production costs that related to the water
treatments and α2 ∈ Rnu corresponds to a time-varying
water cost associated to pumping that varies in each time
instant k with respect to the dynamic electricity tariff. We

indicates the weighting term.
2) Safety Management: Regarding preserving water stock

despite the change of water demands among two consecutive
MPC iterations, an appropriate safety capacity for each
storage tank is required to be maintained. The safety cost
function can be expressed through a soft constraint by adding
a slack variable ξ that can be formulated as

`s(k) , ξ>(k)Wsξ(k), (4)

where the next soft constraint is included x(k) ≥ xs − ξ(k)
and xs indicates the vector of the safety levels for all the
tanks. Ws is diagonal positive definite matrix.

3) Smoothness of Control Actions: For guarantee the
smoothing effect, the slew rate of the control actions among
two sequential time instants is penalized according to

`∆u(k) , ∆u(k)>W∆u∆u(k), (5)

where ∆u(k) , u(k) − u(k − 1), and W∆u is a diagonal
positive definite matrix.

According to the network model (1), the MPC controller
design is based on minimizing the following cost function
in the prediction horizon Np

J =

Np∑
l=0

(`e(l|k) + `s(l|k) + `∆u(l|k)). (6)

where at each time instant, the following optimization prob-
lem is solved online.

min
u(k),x(k),ξ(k)

J(u(k),x(k), ξ(k)), (7a)

subject to:

x(l + 1|k) = Ax(l|k) +Bu(l|k) +Bddm(l|k), (7b)
0 = Euu(l|k) + Eddm(k), l = 0, · · · , Np − 1 (7c)
x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (7d)
u(l|k) ∈ U, x(l|k),∈ X (7e)
ξ(l|k) ≥ 0, x(0|k) = x(k). (7f)

The optimal sequences u∗(k) = {u(l|k)}l∈Z[0,Np−1]
,

x∗(k) = {x(l|k)}l∈Z[1,Np]
and ξ∗(k) = {xi(l|k)}l∈Z[1,Np]

are obtained online. Considering the receding horizon philos-
ophy [1], the procedure is based on solving the optimization
problem (7a) from the current time instant k to k + Np by
using x(0|k) as the initial condition that is computed from
state estimation at time k.

III. CHANCE-CONSTRAINED MODEL PREDICTIVE
CONTROL

If the stochastic nature of disturbances (demands) and
reliability of components of the system is not explicitly
considered, an finding optimal solution of (7) satisfying all
constraints can not be found in real scenarios. Therefore, in
order to guarantee feasibiliy of the optimization problem (7),
it is appropriate to relax the original constraints that involve
stochastic elements with probabilistic statements in the form
of chance constraints. Chance-constrained programming is a
technique of stochastic programming dealing with constraints
of the general form as

P[f(v, ζ) ≤ 0] ≥ 1− δζ , (8)

where P indicates the probability operator, v ∈ Rnv is
the decision vector, ζ ∈ Rnζ a random variable and f :
Rnv × Rnζ −→ Rnc a constraint mapping. The level
δζ ∈ (0, 1) is user given and defines the preference for
safety of the decision v. The constraint (8) means that we
wish to take a decision v that satisfies the nc-dimensional
random inequality system f(v, ζ) ≥ 0 with high enough
probability. As demonstrated in [6], if f(., .) is jointly convex
in (v, ζ) and Φ =∆ P[.] is quasi-concave, then the feasible
set Ψ(δζ) =∆ {v|P[f(v, ζ) ≤ 0] ≥ 1− δζ} is convex for all
δζ(0, 1). All chance-constrained models need prior knowl-
edge of the acceptable risk δζ connected with the constraints.
In this paper, by following the results in [7], a uniform dis-
tribution of the joint risk is approximated by upper bounding
the joint constraint and assuming a similar distribution of the
joint risk amongst a set of individual chance constraints are
transformed inside equivalent deterministic constraints.



By considering the general joint chance constraint (8), and
define f(v, ζ) =∆ ζ − Fv, with F ∈ Rζ×nv . Therefore, the
additive stochastic element is separable and the following
chance constraint is achieved:

P[ζ ≤ Fv] ≥ 1− δζ . (9)

Then, by rewriting ω =∆ Fv, for any duple (ζ, ω), it follows
Φζ(ω) = P[{ζ1 ≤ ω1, ..., ζnc ≤ ωnc}]. Describing the events
Ci =∆ {ζi ≤ ωi}, ∀i ∈ Znc1 (as e.g. faults in the actuators or
unexpected changes in the demand), it follows the Φζ(ω) =
P[Ci ∩ ... ∩ Cnc ]. Indicating the complements of the events
Ci by Cci =∆ {ζi > ωi}, and it is obvious from probability
theory,

(
C1 ∩ ... ∩ Cn = (Cc1 ∪ ... ∪ Ccnc)

c
)
, consequently

Φζ(ω) = P[Ci ∩ ... ∩ Cnc ] (10a)
= P[(Cc1 ∪ ... ∪ Ccnc )c] (10b)

= 1− P[(Cc1 ∪ ... ∪ Ccnc )c] ≤ 1− δζ . (10c)

By using the union bound, the Boole inequality let to
bound the result in (10c), declaring that for a countable set
of events, the probability that at least one event occurs is not
higher than the sum of the individual probabilities [8], such
that

P
[
∪nci=1 Ci

]
≤

nc∑
i=1

P[Ci], (11)

and, by applying (11) to (10c), it yields to
nc∑
i=1

P[Cci ] ≤ δζ ⇐⇒
nc∑
i=1

(1− P[Ci]) ≤ δζ . (12)

Then, a set of constraints rises from previous results as
sufficient conditions to enforce the joint chance constraint
(9), by allotting the joint risk δζ in nc separate risks δζ,i, i ∈
Znci . These constraints are described as follows

P[Ci] ≥ 1− δζ,i, ∀i ∈ Znci (13a)
nc∑
i=1

δζ,i ≤ δζ , 0 ≤ δζ,i ≤ 1, (13b)

where (13a) produces the set of nc effective individual
chance constraints. Moreover, (13b) is condition forced to
bound the new single risks in such a way that the joint
risk bound is not breached. Each solution that satisfies the
aforesaid constraints is guaranteed to provide (9).

According to that the satisfaction of each individual con-
straint is an event Ci,∀i ∈ Znci . A joint chance constraint
needs that the connection of all the individual constraints
is satisfied with the wanted probability level as P

[
∩nci=1

Ci
]
≥ 1 − δζ . Considering that each individual constraint

is probabilistically dependent, the level of conservatism can
be derived by using the inclusion-exclusion principle for
the union of finite events, Ci,∀i ∈ Znc1 , which proves the
following equality:

P
[
∪nci=1 Ci

]
=

nc∑
i=1

P[Ci]−
∑

1≤i<j≤nc

P
[
Ci ∩ Cj

]
+

∑
1≤i<j<k≤nc

P
[
Ci ∩ Cj ∩ Ck

]
− ...

+ (−1)nc−1P
[
∩nci=1 Ci

]
.

(14)

It should be noted that by considering as an event a
fault in an actuator, it can be observed (14) has a similar
as formulation as the one used for evaluating the system
reliability based on the component reliability. In a DWN,
the constraints come from the model (7b)-(7c) that can
be formulated as chance constraints statements taking into
account the probabilities associated to the component relia-
bility. Considering only faults in actuators, the reliability of
the system is related to the system inputs ui(k). Hence, (8)
can be formulated in case of the actuators as follows

P[f(ui(k), ζi(k)) ≤ 0] ≥ 1− δζi , (15)

where ζ(k) ∈ {0, 1} is a stochastic variable which considers
if the actuator is one of two states {Unvailable, Available}
(or {0, 1}) defined as follows:

ζi(k) =

{
1, Ri(k) > 0

0, Ri(k) = 0.
(16)

where Ri(k) is the actuator reliability. In case that ζi(k) = 1
the input ui(k) associated to the i-th actuator is bounded by
(2b), otherwise an additional constraint setting ui(k) = 0
should be included. Furthermore, to determine the reliability
associated to the system that associates a probability to
the system model constraint (1), the joint-chance constraint
probability calculation (14) should be used leading to the
following probabilistic formulation for the MPC optimization
problem (7)

min
u(k),x(k),ξ(k)

J(u(k),x(k), ξ(k)), (17a)

subject to:

P
[
Ax(l|k) +B(ζi)u(l|k) +Bddm(l|k), (17b)

Eu(ζi)u(l|k) + Eddm(k)

]
≥ 1− δ, l = 0, · · · , Np − 1 (17c)

x(l|k) ≥ xs − ξ(l|k), l = 0, · · · , Np (17d)
u(l|k) ∈ U, x(l|k),∈ X (17e)
ξ(l|k) ≥ 0, x(0|k) = x(k). (17f)

The main difficulty in solving this stochastic problem
using chance constraints is that at each time iteration, the
probabilities associated to the system reliability should be
updated taking into account the value of the optimal control
actions ui.

IV. AUGMENTING NETWORK MODEL WITH THE
RELIABILITY MODEL

A. Reliability Model

The general explanation of failure rate, indicated by λ
is presented as the fraction of the density of the stochastic
lifetime to the remainder function (i.e., conditional probabil-
ity). In this paper, failure rates are determined from actuators
under various levels of load respect to the applied control
input. The regular used relationship is based on assuming that
actuator fault rates varied through the load by the following
exponential law

λi = λ0
i exp

(
βiui(k)

)
, i = 1, 2, ...,m (18)



where λ0
i represents the baseline failure rate (nominal failure

rate) and ui(k) is the control action a time k for the i-
th actuator. βi is a constant parameter that depends on the
actuator characteristics. Reliability R(t) is the probability
that a system will be successful in the intervening period
from time 0 to time t. Besides, The unreliability F (t) is
determined as the probability that the component or system
encounters the first failure or has failed one or more times
among the time interval 0 to time t. Considering the system
(or component) is always in one of the two states introduced
in (16), relationship F (t) +R(t) = 1 is provided.

In the useful life period, the component can be specified at
a certain time t by a starting point reliability measure R0(t).
Accordingly, R0,i(t) will denote the reliability of the i-th
actuator determined under nominal operating conditions

R0,i(t) = exp
(
− λ0

i t
)
, i = 1, 2, ...,m (19)

Hence, the components reliability of a system with the i-th
components in discrete-time can be computed by exploiting
the exponential function and the baseline reliability level
R0,j as follows

Ri(k + 1) = R0,i(k) + exp

(
− Ts

k+1∑
s=0

λi(s)

)
, i = 1, 2, ...,m

(20)
where λi(s) is the failure rate that is acquired from the i-
th component under varying levels of load ui and Ts is the
sampling time.

B. Overall Reliability

The lifespan of a system can be determined by the overall
system reliability that indicated as Rg(k). Therefore, Rg(k)
is influenced by the configuration of the actuator that can
generally be computed from parallel and/or series combi-
nations of subsystems (or components) [9]. To manage the
more complex situation, a graph network model can be used
which by determining the existence of a successful path in
the system it can be identified the system whether is working
correctly. A minimal path Ps is a set of components that
relates to it, but the elimination any one of the components
will create the set not to be a successful path [9]. Therefore,
the overall system reliability Rg(k) can be counted as

Rg(k) = 1−
s∏
j=1

(
1−

∏
i∈Ps,j

Ri(k)

)
, (21)

where j = 1, .., s is minimal paths number. As mentioned
in previous section, there is indirect relationship between
conservatism of probability and the overall system reliability.
In fact, the formula obtained for overall reliability system
(21) can be obtained from (14).

V. ECONOMIC RELIABILITY-AWARE MPC-LPV USING
CHANCE-CONSTRAINTS

A. Economic reliability aware MPC-LPV

In this section, the integration of reliability model in the
MPC controller augmenting the DWN model is proposed.
A new objective can be included in the MPC controller

that aims to preserve the system reliability additionally to
consider the reliability model (21). The augmented MPC
model can be formulated as follows

xg(k + 1) = Agxr(k) +Bgu(k) +Bd,gdm(k),

yg(k) = Cgx(k),
(22)

where the state and output vector are given by xg =
[x, log(Qg), log(R1), ..., log(Ri)]

T and yg = [y, log(Qg)]
T ,

respectively. The augmented matrices are defined as

Ag =



A 0nx×ni+1

01×nx 1
∑s
i∈ps,j βj(k)

0ni×nx Ini×ni


, Bd,g =



Bd,nu×nu

0ni+1×nBd


,

Bg =



Bnu×nu

0

−λi × Ini×ni


, Cg =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(23)

Considering the control action ui(k) as the scheduling
variable related to each actuator and state in the augmented
MPC model, it can be considered (22) as an LPV model.
In this way, by following MPC-LPV approach in [10], the
MPC optimization problem (7) can be formulated as a QP
problem by using an estimation of scheduling variables. That
means the scheduling variables in the prediction horizon
are estimated using the values from the previous MPC
interation and applied to update the model matrices of the
MPC controller. Indeed, the sequence of the control input is
utilized to change the model matrices used in the prediction
horizon. Therefore, according to [10], the cost function (6)
with the new additional objective that aims to increase the
system reliability can be revised in vector form as follows

min
u(k),x(k),ξ(k),Qg

Np∑
l=0

[`e(k) + `s(k) + `∆u(k)− `Rg(k)], (24a)

subject to:

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (24b)
0 = Euu(l|k) + Eddm(k), (24c)
x(l + 1|k) ≥ xs − ξ(l|k) (24d)
logQg(l + 1|k) = x̃nx+1(l|k) (24e)
u(l|k) ∈ U, x(l|k),∈ X (24f)
ξ(l|k) ≥ 0, x(0|k) = x(k). (24g)

where `Rg(k) , Q>g w3Qg is additional objective with the
corresponding weight w3 into the EMPC-LPV cost function
to maximize the system reliability.The optimization problem
is solved as a QP problem according to that the predicted
states Θ(k) are linear.



B. Including demand uncertainty using chance constraints

The constraints satisfaction (7) can not be guaranteed
unless uncertainty it is not explicitly considering in some
way. Hence, the original constraints that include stochastic
elements (2a) will formulated by means of probabilistic
statements using the chance constraints framework (8). Then,
form of a state joint chance constraint is described as

P[G(r)x ≤ g(r),∀r ∈ Z[1,mx]] ≥ 1− δx, (25)

where δx ∈ (0, 1) is the risk acceptability level of constraint
violation for the states, G(r) and g(r) indicate the r-th row
of G and g, respectively. This entails that all rows r have
to be jointly satisfied with the probability 1− δx. Also, the
form of a state individual chance constraint is described as

P[G(r)x ≤ g(r), ] ≥ 1− δx, ∀r ∈ Z[1,mx] (26)

which requires that each r-th row of the inequality has to
be satisfied individually with the respective probability 1 −
δx,r, where δx,j ∈ (0, 1). Then, according to (13), the state
constraints can be described as follows:

P[G(r)x ≤ g(r)] ≥ 1− δx,r, ∀r ∈ Z[1,mx] (27a)
mx∑
r=1

δx,r ≤ δx, 0 ≤ δx,r ≤ 1, (27b)

and, as recommended in [11], specifying a constant and equal
value of risk to each individual constraint, that is δx,r =
δx/mx for all r ∈ Z[1,mx], then (27b) is obtained.

By considering a known (or approximated) quasi-concave
probabilistic distribution function for the stochastic distur-
bance in the dynamic model (1), it yields to

P[G(r)x(k + 1) ≤ g(r)] ≥ 1− δx,r ⇔ FG(r)Bddm(k)(g(r)

−G(r)(Ax(k) +Bu(k))) ≥ 1− δx,r
⇔ G(r)(Ax(k) +Bu(k)) ≤ g(r)− F−1

G(r)Bddm(k)
(1− δx,r),

(28)

for all r ∈ Z[1,mx], where FG(r)Bddm(k)(.) and
F−1
G(r)Bddm(k)(.) are the cumulative distribution and the left-

quantile function of G(r)Bddm(k), respectively. In this way,
according to (27a), the safety stocks are optimally assigned
and designed by the constraint back-off effect due to the
term FG(r)Bddm(k)(1− δx,r) in (25). Therefore, the original
state constraint set X is adjusted by the effect of the mx

deterministic equivalents in (28) and substituted by the
stochastic feasibility set provided by

Xs(k) := {x(k) ∈ Rnx |∃ u(k) ∈ U, such that

G(r)(Ax(k) +Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)

(1− δx,r)

and Euu(k) + Edd̄(k) = 0}, ∀r ∈ Z1,mx
(29)

where d̄(k) = E[dm] is the first moment of dm for all k ∈
Z0≥0. The set Xs(k) is convex when non-empty for all δx,r ∈
(0, 1) in most distribution functions, due to the convexity of
G(r)x(k+1) ≤ g(r) and the log-concavity assumption of the
distribution. For some particular distributions, e.g., Gaussian,
convexity is preserved for δx,r ∈ (0, 0.5] [7].

C. Enhancing system reliability using chance constraints

According to the Section V-A, component and system
reliability model can be included in the EMPC controller
model. Besides, (29) provides a new constraint set according
to the deterministic equivalent (28). However, (29) does not
consider the states related to the component and system
reliability. Hence, it is necessary to modify the constraint set
(29) with probabilistic statements based on the component
and system reliability. In this way, the system reliability is
formulated in terms of probabilistic constraints as follows

xRg(k) ∈ {xRg ∈ RnR |P[GRgxRg ≥ gRg] ≥ (1− δRg)} (30)

where xRg(k) ∈ RnRg is system reliability state defined in
(22), δRg ∈ (0, 1) is the corresponding risk acceptability
level of constraint violation. According to the above discus-
sion and the effect of stochastic reliability in the model (22),
(30) can be rewritten as

P[GRgxRg(k + 1) ≥ gRg ] ≥ (1− δRg)⇔ FGRgη(gRg

−GRgxRg(k + 1)) ≥ 1− δRg ⇔ GRgxRg(k + 1)

≥ gRg + F−1
GRgη

(1− δRg),

(31)

where η is a random vector whose components follow a nor-
mal distribution, FGRgη(.) and F−1

GRgη
(.) are the cumulative

distribution and the left-quantile functions involved in the
state-and actuator-health deterministic equivalent constraints,
respectively. Hence, a preventive strategy can be performed
to increase overall system reliability by guaranteeing that the
system reliability at each time instant to remain above a safe
threshold until a predefined maintenance horizon is reached.
Then, the (31) can be formulated

GRgxRg(k +Np|k) ≥ gRg(k) + F−1
GRgη

(1− δRg), (32a)

gRg(k) = xRg, min(k) := xRg(k) +Np
Rtresh − xRg(k)

kM +Np + k
, (32b)

where xRg, min(k) ∈ RnRg is the vector of minimum
reliability of the system allowed for time instant k and
Rtresh ∈ RnRg is the vector of threshold for the terminal
system reliability at a maintenance horizon kM ∈ Z≥0. The
right-hand side of (32b) is an identical restricting of the
remaining allowable system reliability (Rtresh−xRg(k)) that
is updated at each time step according to the applied control
actions and guarantees that xRg(k) ≥ Rtresh for k = kM .

D. Chance-constraints reliability-aware EMPC-LPV refor-
mulation

After the inclusion system reliability in the control law as
an additional state of the control model the setting of the
proposed economic reliability-aware MPC-LPV controller
including deterministic equivalent constraints is presented.
In this way, for given sequence of demands d, predicted
system reliability Rg , acceptable risk levels δx and δRg ,
the optimization problem associated with the deterministic
equivalent for considered transportation DWN at each time
step k is expressed as follows:

min
u(k),ξ(k),x(k)xRg(k)

Np∑
k=0

[`e(k) + `s(k) + `∆u(k)− `Rg(k)], (33a)



Fig. 1: Barcelona drinking water network.

subject to:

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (33b)
0 = Euu(l|k) + Eddm(k), (33c)
x(k + l + 1|k) ≤ xmax(r)− Φxk,r(δx), (33d)

x(k + l + 1|k) ≥ xmin(r) + Φxk,r(δx) (33e)

GRgxRg(k +Np|k) ≥ xRg, min(k) + Φ
xRg
k,η (δRg), (33f)

x(k + l + 1|k) ≥ xs − ξ(k + l|k), (33g)
ξ(k + l|k) ≥ 0, xRg(l + 1|k) = Rg(k), (33h)

u(l|k) ∈ U, x(k|k), d̄m(k|k)) = (x(k), dm(k)), (33i)

for all l ∈ Z[0,Np−1] and all r ∈ Z[0,mr], where the terms
Φxk,r(δx) = F−1

G(r)Bddm(k)

(
1 − δx

nxNp

)
and Φ

xRg
k,η (δRg) =

F−1
GRgη

(
1 − δx

Np

)
are the quantile functions involved in the

states and system reliability deterministic equivalent con-
straints.

VI. APPLICATION

The part of the Barcelona water transport network consists
of 9 sources, 17 tanks and 61 actuators (valves and pumps),
12 nodes and 25 demands (see Figure 1). According to the
DWN reliability study, demands, sources, pipelines and tanks
are considered completely reliable whereas active elements
such as valves and pumps are recognized not completely
reliable [10]. According to the reliability analysis, it could
be determined which states are structurally controllable since
the path computation analysis gives all possible paths from
a source to a target node. Furthermore, an approximate
operational cost (according to the electricity cost of each
element) and a maximal water flow (according to the physical
constraints of the actuators) can be obtained for each path.

The objective of the MPC as has been explained before
is to minimize the multi-objective cost function (33). The
prediction horizon is 24 hours because the demand and the
electrical tariff have periodicity of 1 day. The analysis is
carried for a time period of 11 day (264 hours) with sampling
time of 1 hour. The weights of the cost function (33a) are
We = 100, Ws = 1, W∆u

= 1 and WRg = 10.
In order to analyze and assess the benefits of the proposed

economic readability-aware MPC-LPV approach, a compar-
ison with respect to baseline control strategies that earlier
proposed for the same case study is considered. In particular,
the considered methods are the following:
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Fig. 2: Evaluation of the control actions results.

• Reliability-Aware Chance-constrained Economic MPC-
LPV (RACCEMPC-LPV): This is the approach proposed
in this paper that is based on solving the optimization
problem (33). This approach allows to conisder non-
stationary stochastic demand uncertainty and stochastic
whole reliability of the system.

• Economic MPC-LPV (EMPC-LPV): This approach is
based the optimization problem (33) without including
the reliability objective. It is not considering the stochas-
tic demand uncertainty, chance-constraints and terminal
constraint of the system reliability of the network.

• Reliability-aware economic MPC-LPV (RAEMPC-
LPV): This approach relies on solving problem (24a).
In this approach, an additional goal is included to the
controller in order to extend the components and system
reliability.

Table I exhibits the numeric assessment of the above-
mentioned controllers through different key performance
indicators (KPIs), which are detailed below:

KPIe :=
1

ns + 1

ns∑
k=0

α>(k)uk∆t, (34a)

KPI∆u :=
1

ns + 1

nu∑
i=1

ns∑
k=0

(∆u(i, k))2, (34b)

KPIs :=

nx∑
i=1

ns∑
k=0

max{0, xs(i, k)− x(i, k)}, (34c)

KPIR := xRg(k), (34d)
KPIt := topt(k), (34e)

where KPIe denotes the average economic performance
of the water network, KPI∆u

evaluates the smoothness of
the control actions, KPIs comprises the quantity of water
utilized from safety stocks, KPIR denotes the value of the
whole system reliability of the DWN and KPIt defines the
difficulty to solve the optimization tasks associated with each
approach accounting topt(k) as the average time that gets
to solve the corresponding FHOP. In KPIe,KPI∆u

,KPIs
and KPIt lower values and KPIR higher value signify
better performance results.

Figures 2 and 3 shows respectively the evolution of the
valves and pumps commands and tank volumes for compar-
ison of different considered MPC approaches for DWN. Fig-
ure 2 shows that pumps always try to operate at the minimum



cost, i.e., when the electrical tariff is cheaper. Figure 3 shows
the proper replenishment planning that the predictive con-
troller dictates according to the cyclic behavior of demands.
Although the behavior of the control inputs (valve and pump
commands) (see Figure 2) and selected storage tanks (see
Figure 3) are very similar in all the approaches, Figure 4
shows comparison of the system reliability predictions and
accumulated economic cost of the DWN that obtained from
the different MPC approaches. According to these results and
reviewing the results in Tables I and II, it can be observed
that the robustness enhancements of the RACCEMPC-LPV
approach are larger than the other controllers in terms of
reliability. The EMPC-LPV controller has lower values in
the economic index KPIe but, the guarantee of reliability,
robustness and feasibility problems are not considered. The
main disadvantage of this controller is that control actions
are computed based on economic criteria. In this cases
the controller overexploits those actuators that have lower
operational costs, quickening their damage and hazarding the
service reliability. The RAEMPC-LPV strategy reached the
lowest KPIe after the EMPC-LPV controller by including
the reliability objective in the control low. However, the
stochastic demand uncertainty and stochastic uncertainty of
the system reliability are not considered.

Generally, the proposed RACCEMPC-LPV approach leads
to a higher total closed-loop operational cost if considering
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Fig. 3: Results of the evolutions of storage tanks.
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Fig. 4: Evaluation of system reliability and accumulated
economic cost.

only the water and electric costs as signs for economic
performance. This is the price to pay for increasing the
reliability of the system.

TABLE I: Comparison of control performance.

Controller KPIe KPI∆u KPIs KPIRg KPIt Simulation Time

EMPC-LPV 3779.81 0.5271 28951.72 0.8772 1.5628 412.599
RAEMPC-LPV 3980.07 0.5317 28952.62 0.9263 1.78348 470.841
RACCEMPC-LPV 4029.19 0.4903 28955.90 0.9386 1.9664 519.147

TABLE II: Comparison of daily average costs of the MPC
approaches.

MPC Approach Water Average Cost Electric Average Cost Daily Average Cost
(e.u./day) (e.u./day) (e.u./day)

EMPC-LPV 44162.44 3053.08 47215.53
RAEMPC-LPV 44369.90 3121.84 47491.75
RACCEMPC-LPV 51438.13 3262.64 54700.77

VII. CONCLUSION

In this paper, an economic reliability-aware MPC-LPV
strategy based on chance constraints for water transport
network has been proposed to deal with the management of
flow-based networks, considering both demand uncertainty
and system reliability in a probabilistic way. By considering
chance constraints programming to compute an optimal
lreplenishment policy based on a desired risk acceptability
level, the system reliability is introduced as state variables
inside the control model, which includes nonlinear term and
it is changed in a linear-like form through the LPV structure.
The results obtained show that the system reliability of the
DWN network is maximized with the proposed controller
wile the cost increase. The level of resultant back-off volume
is variable and depend of the forecast demand uncertainty
and system reliability at each prediction step based on
probabilistic distributions employed to their modelling.
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