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Summary

This paper proposes an Economic Model Predictive Control (EMPC) approach for
Linear Parameter Varying (LPV) systems. An efficient implementation of the associ-
ated MPC optimization problem is introduced based on transforming the LPVmodel
into a linear time-varying one by using an estimation of the scheduling variables
along the prediction horizon. This estimation is based on the optimal states/inputs
determined from the solution of the previous optimization problemwhile running the
receding horizon strategy. Using this approach, the solution of the proposed LPV-
based EMPC schemewould be possible by solving a series of quadratic programming
problems at each time instant. This approach allows reducing the computational bur-
den compared to the solution of a nonlinear optimization problem that would result
naturally from the LPV-based formulation. The stability of the proposed approach is
guaranteed by forcing the terminal state to converge towards the optimal equilibri-
um/working point of the system.Moreover, the terminal constraint is relaxed by using
a constraint set around the terminal state instead of a constraint value and adding
a penalty on the terminal state into the cost function. Besides, strict dissipativity is
established as a sufficient condition to prove stability. Finally, the effectiveness of
the LPV-based EMPC strategy is shown by controlling a small-scale pasteurization
system in simulation. The comparison between the proposed control approach and
standardMPC approaches is performed. Results show the advantages of the proposed
LPV-based EMPC controller in terms of economic cost minimization.
KEYWORDS:
model predictive control, linear parameter varying models, nonlinear systems, economic optimization,
stability

1 INTRODUCTION

Model predictive control (MPC) has been an active area of research over the last decade and has had significant impact on
industrial control engineering because of its ability to deal with multivariable control problems, delays and constraints on system
variables and actuators1,2. Moreover, the robustness problem can be addressed regarding model uncertainty and disturbances
while still optimizing the established control objectives3.
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MPC based on linear time invariant (LTI) models is typically used in process control when systems are operated around a
particular set-point since the on-line optimization problem can be formulated as a convex problem by either linear or quadratic
programming (QP) approaches. Specifically, in the context of tracking problems addressed through MPC, the cost to be min-
imized is regularly supposed to be a positive definite function of the state, control input and set-point or reference samples4.
Nevertheless, for several systems, the nonlinear behavior cannot be neglected. Nonlinear model predictive control (NMPC) is
the straightforward way of dealing with systems that involve nonlinear dynamics and constraints. Although efficient nonlinear
optimization algorithms have been developed in the last years, optimization problems with nonlinear constraints tend to be com-
putationally more expensive than those related to a linear MPC (LMPC) based on linear/quadratic programming. Moreover,
nonlinear programming cannot guarantee that the solution of the nonlinear optimization problem yields the global optimum due
to the lack of convexity5.
Alternatively, an efficient way of solving the NMPC-related optimization problems is by means of the on-line linearization of

the system dynamics at the current state and the control sequences determined during the previous MPC iteration as proposed
by the real-time iteration (RTI) approach reported in6. In this approach, the nonlinear optimization problem is approximately
solved by solving only one properly-formulated QP per sampling time instant. In fact, RTI can be seen as a special case of linear
time-varying (LTV) predictive control.
Another way to deal with NMPC is to represent the system behavior by means of (quasi)-linear parameter varying (LPV)

models7. Using this approach, the on-line linearization is avoided in contrast with the RTI approach. But the LPV model can
be transformed into an LTV model by using an estimation of the scheduling variables taking the current state and the control
sequence determined in the previous MPC iteration along the prediction horizon as in RTI, leading also to an LTV-based MPC-
related optimization problem able to be efficiently solved through LP/QP approaches. LPV models are a class of linear models
whose state-space matrices depend on a set of time-varying parameters8. The main advantage of LPVmodels is that they embed
the system nonlinearities in the time-varying parameters, which make the nonlinear system become a linear-like system with
time-varying parameters9. In this way, LPVmodels allow applying powerful linear design tools to complex nonlinear models10.
Conventionally, standard tracking MPC is based on an optimization problem that penalizes the tracking error2,11. Although

this method ensures that the set-point is achieved in a sensible amount of time, it does not guarantee that the transition between
set-points is achieved in an economically efficient way. To overcome this problem, MPC has been adapted to solve optimal
control problems (OCPs) with general cost functions. In this way, Economic MPC (EMPC) contributes a systematic approach
for optimizing an economic performance12,13.
EMPC has received much attraction because of its capability in integrating real-time process economic optimization and

feedback control into an optimal control framework. The optimization problem of EMPC includes three main parts: a cost
functional with a stage cost that considers the economic system operational costs to be optimized, system constraints containing
state and input constraints as well as other constraints such as stability and operational constraints, and a nonlinear dynamic
model to predict the future evolution of the system (and thus, be able to select the optimal input profile with respect to the
economic cost over a finite-time prediction horizon)14. Unlike tracking MPC, in which target-tracking controllers are calculated
by minimizing positive-definite cost functions, EMPC straightly considers general economic functions as stage costs to produce
controllers where the stage cost is not necessary positive definite with respect to the optimal steady state, set-point or reference
trajectory.
In order to highlight some of the recent theoretical works reported about EMPC, it can be mentioned some studies such

as15, which forces a terminal constraint into the EMPC formulation to achieve closed-loop stability. Moreover,16 proposes an
EMPC controller based on cyclic processes that include closed-loop stability analysis using an appropriate terminal constraint.
Lyapunov-based EMPC schemes for nonlinear systems have the ability to manage asynchronous/delayed measurements and
allowing a distributed implementation as proposed in17,18. However, most of the performed research so far has been developed
for EMPC and stability conditions based on nonlinear models (see, e.g.,19,20) and the extension to the robust case21. Moreover,
nonlinear EMPC (NEMPC) involves the statement of optimization problems with nonlinear constraints, which may be compu-
tationally expensive and, in some cases, there may not guarantee that the solution of the nonlinear optimization problem is the
global optimum. Alternatively, a way of solving the optimization problem for a nonlinear system is to transform the nonlinear
problem into a QP problem by linearizing the model at each iteration22. This method requires updating online the system matri-
ces and the equilibrium/working point when the linearization method is used in case that the operating point changes, which
increases the computational burden of the whole control scheme.
The main contribution of this paper is the extension of the (quasi)-LPV approach proposed in23,24 for the design of stan-

dard MPC controllers considering nonlinear dynamic models in the case of EMPC. Moreover, an efficient implementation of
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the associated MPC-related optimization problem is proposed based on transforming the LPV model into an LTI one along the
prediction horizon using an estimation of the scheduling variables. This estimation is based on the optimal states/inputs deter-
mined from the solution of the optimization problem obtained in the previous time instant over the simulation horizon. Using
this approach, the solution of the proposed LPV-based EMPC scheme would be possible by solving a series of QP problems at
each time instant. This approach allows reducing the computational burden compared to the solution of a nonlinear optimiza-
tion problem that would result naturally when considering an LPV model. The stability of the proposed approach is guaranteed
by pushing the state to the optimum equilibrium point of the system. Moreover, the terminal constraint is relaxed by using a
constraint set for the terminal state instead of a point constraint and adding a penalty on the terminal state in the cost function
of the related optimization problem. Besides, strict dissipativity is established as a sufficient condition to prove the stability of
the whole close-loop scheme. Finally, the effectiveness of the proposed LPV-based EMPC strategy is shown by controlling a
small-scale pasteurization system in simulation. The comparison between the LPV-based EMPC and standard MPC approaches
is properly discussed. Results show the advantages of the proposed control approach in terms of economic cost minimization.
The remainder of the paper is organized as follows. The problem statement is presented in Section 2. In Section 3, the for-

mulation of EMPC based on LPV models and iterative prediction scheme are introduced. Then, the stability analysis for EMPC
is presented in Section 4. Section 5 describes a pasteurization plant as the case study and states the LPV model and economic
control objective of such case study. Then, results of applying the proposed control strategy to the pasteurization system are
summarized. Finally, in Section 6, the conclusions of this work are drawn and some research lines for future work are proposed.

Notation
Throughout this paper, ℝ,ℝn,ℝm×n,ℝ+ denote the field of real numbers, the set of column real vectors of length n, the set of m
by n real matrices and the set of non-negative real numbers, respectively. Similarly, I+ denotes the set of non-negative integer
numbers including zero. Define I[a,b] ∶= {x ∈ I+|a ≤ x ≤ b} for some a, b ∈ I+ and I≥c ∶= {x ∈ I+|x ≥ c} for some c ∈ I+.
The operator⊕ is direct sum of matrices (block diagonal concatenation). Moreover, ‖.‖ denotes the spectral norm for matrices.
The superscript T represents the transpose and operators <,≤,=, >,≥ denote element-wise relations of vectors. Additionally,
[

a ∗
b c

]

∶=
[

a b⊤
b c

]

.

2 PROBLEM STATEMENT

2.1 LPV representation of the nonlinear system
Consider a system with nonlinear dynamics represented by the following discrete-time state-space realization:

x(k + 1) = f (x(k), u(k)), (1a)
y(k) = g(x(k), u(k)), (1b)

where the discrete-time variable is denoted as k ∈ I≥0, the state vector by x ∈ ℝnx , the control input vector by u ∈ ℝnu , the
output vector by y ∈ ℝny , and state-transition maps by f ∶ ℝnx × ℝnu ←→ ℝnx and g ∶ ℝnx × ℝnu ←→ ℝny . The system is subject
to state and control constraints

(x(k), u(k)) ∈ ℤ, k ∈ I≥0, (2)
where ℤ ∶= {(x, u) ∈ ℝnx×nu , x ∈ ℝnx , u ∈ ℝnu ∣ aj,x + bju ≤ ℎj ,∀j ∈ I[1,nr]}, where ℎj ∈ ℝ is a known bound, nr ∈ I≥1 is the
number of constraints and aj ∈ ℝ1×nx and bj ∈ ℝ1×nu , ∀ j ∈ I[1,r]. Denote by X ⊆ ℝnx and U ⊂ ℝnu the projections of ℤ on the
state and input domains, respectively.
It is assumed that the system has an equilibrium point (xs, us) such that xs = f (xs, us), and the function model f (x, u) is

continuous with respect to the states x and control inputs u. The solution of the system for a given sequence of control inputs u
and initial state x0 is denoted as x(k) = �(k; x0, u), k ∈ I≥0.
As discussed in the introduction, instead of directly using the model (1) for designing the EMPC controller, the idea is

to transform such a model in a (quasi-)LPV model following the nonlinear embedding approach proposed in9 without any
linearization process involved. Then, that LPV model is written as

x(k + 1) = A(�(k))x(k) + B(�(k))u(k), (3a)
y(k) = C(�(k))x(k) +D(�(k))u(k), (3b)
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FIGURE1Descriptive scheme of the transformation of the systemmodel (1) into themodel (3) following the procedure reported
in9. In this figure and without lost of generality, x+ denotes the successor step in the evolution of the system state.

where system matrices A(�(k)) ∈ ℝnx×nx , B(�(k)) ∈ ℝnx×nu , C(�(k)) ∈ ℝny×nx and D(�(k)) ∈ ℝny×nu are assumed to depend
linearly on the parameter vector �(k) ∶= [�1(k), �2(k), ..., �n� ]

T ∈ ℝn� , where n� is the number of time-varying parameters. For
control design purposes, the LPV model (3) may be used as a bridge between nonlinear system (1) and differential inclusions
(DIs) (see25 for more details). The way the system (1) turns into the form in (3) is depicted in Figure 1.
In order to derive the proposed EMPC based on LPV systems, Assumptions 1 and 2 are required.

Assumption 1. It is stated that �(k) = �(x(k), u(k)) ∈ ℝn� and �(k) ∈ �, k ≥ 0, where � is a compact set and �(x, u) ∶
ℝnx × ℝnu ←→ ℝ is the scheduling function that embeds the nonlinearieties of the time-varying parameters in function of the
states and control inputs.
Assumption 2. The pair (A(�), B(�)) is structurally stabilizable for all � ∈ �.
In order to prove the stability of the proposed LPV-based EMPC scheme, the LPV model (3) is represented in a polytopic

LPV fashion that provides a linear differential inclusion (LDI) of the nonlinear system (1). To do so, consider that the vector �
belongs to a convex polytope

� ∶=

{

�(k) ∈ ℝn�
|�(k) =

N
∑

j=1
�j(�(k))�j ,

N
∑

j=1
�j(k) = 1, �j(k) ≥ 0

}

(4)

defined by N vertices, where �j are the vertices of the polytope and �j(�(k)) are polytopic interpolation functions. Hence, as
�(k) varies inside the convex polytope �, the matrices of the system (3) vary inside a corresponding polytope � , which is
defined by the convex hull (Co) ofN local matrix vertices [Aj , Bj], j ∈ [1, .., N], i.e.,

� ∶= Co
{[

A1 B1
]

,
[

A2 B2
]

,⋯ ,
[

AN BN
]}

, (5)
while the system matrices in (3) can be rewritten as

A(�(k)) =
N
∑

j=1
�j(k)Aj , B(�(k)) =

N
∑

j=1
�j(k)Bj . (6)
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2.2 EMPC problem formulation
The considered EMPC-related optimization problem implies the design of a control law that minimizes a specific economic cost
index defined here as

L(x̃(k), ũ(k)) =
Hp−1
∑

i=0
l(x(i), u(i)), (7)

where l(x, u) ∶ X × U ←→ ℝ represents an economic stage cost, and x̃ and ũ are sequences of states and control inputs along a
prediction horizonHp, i.e.1,

ũ(k) = [u(0|k) … u(1|k) … u(Hp − 1|k)]T ,
x̃(k) = [x(1|k) … x(1|k) … x(Hp|k)]T ,

whose optimal versions are determined by solving the following open-loop OCP at time instant k:
min

x̃(k),ũ(k)
Lk(x̃(k).ũ(k)) (8a)

subject to
x(i + 1|k) = f (x(i|k), u(i|k), i ∈ [0,Hp − 1], (8b)
u(i|k),∈ U i ∈ [0,Hp − 1], (8c)
x(i|k),∈ X i ∈ [1,Hp], (8d)
x(0|k) = x(k), (8e)
x(Hp) = x∗s . (8f)

By solving (8) at every time instant k, the economic predictive controller should drive the system towards the optimal reachable
steady state, which is determined by using the implicit form of the optimization problem introduced in Definition 1.
Definition 1. The optimal reachable steady state and input, (x∗s , u∗s ), of the system (1) satisfy

(x∗s , u
∗
s ) = argmin

(x,u)
l(x, u) (9a)

subject to
x = f (x, u), (9b)
x ∈ X, (9c)
u ∈ U. (9d)

□

In the case of tracking MPC (TMPC), l(x, u) is typically designed as a positive definite function with regard to (x∗s , u
∗
s ),i.e., l(x, u) ≥ 0 for all (x, u) ∈ X × U and l(x, u) = 0 if and only if (x, u) = (x∗s , u

∗
s ). Hence, the optimal operation often

guarantees closed-loop stability of x∗s by using the standard MPC stability scheme26. On the other hand, in EMPC, l(x, u) is
formulated taking into account economic criteria such as production costs, energy savings and efficiency, among others. These
economic criteria should be either minimized or maximized in terms of profits and environmental issues. Therefore, l(x, u)
is not necessarily positive definite with regards to (x∗s , u

∗
s ). Accordingly, stability properties and convergence in the optimal

economic operation are not guaranteed by using the standard MPC stability analysis since these features belong to the positive
definiteness of l(x, u).
In this paper, the OCP (8) is transformed into the problem presented in Definition 2 by using the LPV representation (3) of

the nonlinear system (1).
Definition 2. At each time instant k, the following optimization problem should be solved considering that the state x and the
vector of parameters � are known at the beginning ofHp:

min
x̃(k),ũ(k)

Lk(x̃(k).ũ(k)) (10a)

1Here, m(k + i|k) denotes the prediction of the variable m at time k + i performed at k. For instance, x(k + i|k) denotes the prediction of the system state, starting
from its initial condition x(0|k) = x(k).
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subject to
x(i + 1|k) = A(�(i|k))x(i|k) + B(�(i|k))u(i|k), i ∈ [0,Hp − 1], (10b)
�(i + 1|k) = �(x(i|k), u(i|k)), i ∈ [0,Hp − 1], (10c)
u(i|k),∈ U i ∈ [0,Hp − 1], (10d)
x(i|k),∈ X i ∈ [0,Hp], (10e)
�(0|k) = �(k), (10f)
x(0|k) = x(k), (10g)
x(Hp) = x∗s , (10h)

yielding the optimal sequences
ũ∗(k) = [u∗(0|k) … u∗(1|k) … u∗(Hp − 1|k)]T , (10i)
x̃∗(k) = [x∗(1|k) … x∗(1|k) … x∗(Hp|k)]T . (10j)

□

The corresponding EMPC law is obtained by applying a receding horizon strategy, i.e., at time instant k, only the first element
of the optimal control sequence (10i), namely uEMPC(k)

▵
= u∗(0|k), is applied to the considered system. Then, at time instant

k + 1, a new optimization problem as in (10) is solved.
Remark 1. In case that cost index (7) is not a quadratic function, the resulting optimization problemwould not lead to a quadratic
optimization problem. To overcome this difficulty, the non-linear function should be transformed into a quadratic form with
varying parameters.
Remark 2. Average cost. As discussed in27, by the defining the average asymptotic cost of the EMPC law

L̄ = lim sup
Hp→∞

Hp−1
∑

i=0
l(x(i), u(i))

Hp
, (11)

any feasible trajectory of (10) with terminal constraint (10h) (i.e., the optimal reachable steady state x∗s , see Definition 1 will
lead to a cost L satisfying

L̄ ≤ L. (12)
This result shows that a standard tracking MPC law having as set-point the optimal reachable steady state and input, (x∗s , u∗s ),will never produce better results at the EMPC law.

3 PROPOSED LPV-BASED EMPC APPROACH

Note that the use of (3) into the problem (10) yields in a nonlinear optimization problem. This fact is given since the value
of the time-varying parameters �(k) along Hp depends on the control input and state sequences according to (10c), which are
unknown and should be determined by the controller. Indeed, the predicted states depend not only on the future control inputs
u(k), u(k+1),… , u(k+Hp−1) (decision variables), but also on the future values of the scheduling parameters �(k), which for a
pure LPVmodel are not assumed to be known a priori but only to be measurable online. On the contrary, for a quasi-LPVmodel,
where the scheduling parameters �(k) are determined knowing x(k) and u(k) according to Assumption 1, the state trajectory can
be predicted using Lemma 1 in28, which will be used as the basis for introducing the proposed LPV-based EMPC approach.
Lemma 1. 28. In the quasi-LPV model (10b), the predicted varying parameter vector �(i + 1|k) in (10c) can be determined for
each i in the prediction horizonHp knowing some estimation of x(i|k) and u(i|k), fact that states �̂(i|k) = �(x̂(i|k), û(i|k)).
For estimating x(i|k) and u(i|k) along Hp, the same strategy used into the RTI approach proposed by6 will be considered

here. That is, since at every MPC iteration the optimal sequences of control inputs and states are quite similar to those obtained
at the previous iteration, i.e., the estimated sequences will be obtained from the previous iteration by time-shifting. Thus, instead
of solving the optimization problem (10) by using (10b), which will provide the same solution than the EMPC using model (1),
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the proposed solution is to use an approximation based on the �̂ estimation instead of � in (10b)2. This procedure means that
the time-varying parameters alongHp are estimated and the LPV-based MPC-related optimization problem can be transformed
into an LTV-based MPC one. Then, by defining

�(k) = [�̂(0|k) �̂(i + 1|k) … �̂(Hp − 1|k)]T ∈ ℝHpṅ� , (13)
which contains the sequence of estimated time-varying parameters alongHp, the sequence of predicted states in function of the
sequence of control inputs (10i) can be expressed as follows:

x̃(k) = (�(k))x(k) + (�(k))ũ(k), (14)
where

(�(k)) =

⎡

⎢

⎢

⎢

⎢

⎣

A(�̂(k)
A(�̂(k + 1))A(�̂(k))

⋮
A(�̂(k +Hp − 1))A(�̂(k +Hp − 2))…A(�̂(k))

⎤

⎥

⎥

⎥

⎥

⎦

(15a)

and

(�k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 … 0
B(�̂(k)) 0 0 … 0

A(�̂(k + 1))B(�̂(k)) B(�̂(k + 1)) 0 … 0
⋮ ⋮ ⋱ ⋱ ⋮

A(�̂(k +Hp − 1))…A(�̂(k + 1))B(�̂k) A(�̂(k +Hp − 1))…A(�̂(k + 2))B(�̂(k + 1)) … B(�̂(k +Hp − 1)) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(15b)
Hence, using (14) the EMPC optimization problem (10) can be rewritten as

min
ũ(k)

Lk((�(k))x(k) + (�(k)), ũ(k)) (16a)
subject to

u(i|k) ∈ U, i ∈ [0,Hp − 1], (16b)
x(i|k) ∈ X, i ∈ [0,Hp], (16c)
�(0|k) = �(k), (16d)
x(0|k) = x(k), (16e)
x(Hp) ∈ Xf . (16f)

where the calculation of the terminal set Xf will be presented later in the paper.
In this way, the online EMPC-related optimization problem can be solved as a QP problem, which is significantly more

efficient than solving a nonlinear optimization problem. The parameter varying estimation will be done bymeans of the following
approach at each discrete time k:

• In the first iteration (k = 0), the optimization problem (10) is solved as a linear problem since the LPV model (10c) is
replaced by the LTI model that is obtained considering �(0|k) = �(1|k) = �(2|k) = ... = �(Hp −1|i) alongHp and where
�(0|k) = �(x(0), u(0)) and u(0) = 0.

• In the sequel and according to Lemma 1, the sequence of the estimated time-varying parameters �(k) in (13) is obtained
by using �̂(i|k) = �(x̂(i|k), û(i|k)), where the estimated states and control inputs are obtained from the optimal state and
control input sequences, x̃∗(k − 1) and ũ∗(k − 1), obtained from solving (16) in the previous iteration and conveniently
shifting them in time.

2Note that in the literature there are other approaches for forecasting the scheduling variables, as e.g., in 29, and ARX model is proposed.
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4 STABILITY AND CONVERGENCE ANALYSES

In27, conditions for feasibility, performance and stability of EMPC for nonlinear systems are revisited. Here, the particular
conditions for the LPV-based EMPC approach will be derived.

4.1 Stability analysis
In Section 3, the proposed EMPC approach is provided by considering the terminal equality constraint x(Hp) = x∗s . However,this constraint cannot guarantee the stability of EMPC based on the LPV models since that constraint is defined just around a
single point. In this section, it will be shown that, by considering the terminal state belongs to a compact set, the stability of the
closed-loop scheme can be ensured.
By following30,4, stability of NEMPC schemes requires imposing a constraint region on the terminal state instead of a point

constraint (16f) and adding a penalty on the terminal state in the cost function (7). Hence, the economic objective function is
defined as

L(x̃(k), ũ(k)) ∶=
Hp−1
∑

i=0
l(x(i), u(i)) + Vf (x(Hp)), (17)

where Vf ∶ Xf ←→ ℝ is the penalty on the terminal state set, andXf ⊆ X is a compressed terminal region including the steady-
state optimal operating point x∗s in its interior. As in31, for the proof stability of the proposed EMPC, Definition 3 and some
assumptions are next introduced.
Definition 3. System (3) is dissipative with respect to the stock rate s ∶ X×U ←→ ℝ, whereas there exists a function 
 ∶ X ←→ ℝ


(A(�(k))x(k) + B(�(k))u(k)) − 
(x) ≤ s(x, u), (18)
for all (x, u) ∈ ℤ ⊆ X × U. Additionally, if � ∶ X ←→ ℝ≥0 is definite positive3 then


(A(�k)x(k) + B(�(k))u(k)) − 
(x) ≤ −�(x − x∗s ) + s(x, u), (19)
and it can be said the system is strictly dissipative.

□

Assumption 3. (Strict dissipativity) System (3) is strictly dissipative with respect to the stock rate s(x, u) ∶= l(x, u)−l(x∗s , u
∗
s ).

Assumption 4. The stage cost l and model (3) are continuous on ℤ. The terminal cost function Vf (.) is continuous in Xf .
Assumption 5. The storage function 
(k) is continuous in ℤ.
Assumption 6. (Stability assumption) Given a compact terminal region Xf ⊆ X, containing the point x∗s in its interior, there
exists a control law Kf (�(k)) ∶ Xf ←→ U such that the following condition holds:

Vf
(

(A(�(k)) + B(�(k))Kf (�(k)))x(k)
)

≤ Vf (x) − l(x,Kf (�(k))x(k)) + l(x∗s , u
∗
s ). (20)

Remark 3. Assumption 6 implies that the setXf for all k ∈ I≥0 is invariant under the control law defined by u(k) = Kf (�(k))x(k).
♢

Remark 4. Considering Assumption 6 is the only condition on Vf , it can be assumed without loss of generality that Vf (x∗s ) = 0
for all k ∈ I≥0. It should be remarked that unlike the standard MPC problem, Vf (x) is not necessarily positive definite with
respect to x∗s . ♢

In order to analyse the asymptotic stability of the EMPC-based closed-loop system, the following rotated cost function with
terminal costs is considered:

(x, u) ∶= l(x, u) − l(x∗s , u
∗
s ) + 
(x) − 
(A(�(k))x(k) + B(�(k))u(k)), (21a)

V̄f (x) ∶= Vf (x) − Vf (xs) + 
(x) − 
(xs). (21b)

3A function is positive definite according to some points x∗s ∈ X if it is of continuous nature, �(x∗s ) = 0 and �(x) ≥ 0 for all x ≠ x∗s .
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With the costs V̄f and , the following auxiliary OCP is introduced:

min
x̃(k),ũ(k)

L̄(x̃(k), ũ(k)) ∶=
Hp−1
∑

i=0
(x(i), u(i)) + V̄f (x(Hp)), (22)

subject to (16b)-(16f).
Since constraints in problem (22) are the same as in problem (16), both problems have an identical feasible set for all k ∈ I≥0.

And, consequently, solutions exist for both problems for x ∈ X(Hp).
Remark 5. According to Assumption 6, it can be assumed that 
(x∗s ) = 0 for all k ∈ I≥0 without loss of generality. ♢

Lemma 2. Consider Assumptions 4, 5 and 6 hold. The solution of the auxiliary problem (22) is identical to the solution of the
original problem (16).
Proof . By considering that both problems only differ in the cost function, expanding the rotated cost function yields

L̄(x̃(k), ũ(k)) =
Hp−1
∑

i=0
(x(i), u(i)) + V̄f (xHp

)

=
Hp−1
∑

i=0
l(x(i), u(i)) − l(x∗s , u

∗
s ) + 
(x) − 
(A(�(i))xi + B(�(i))u(i)) + Vf (xHp

) − Vf (x∗s ) + 
(xHp
) − 
(x∗s )

= L(x̃(k), ũ(k)) − Vf (x∗s ) + 
(xHp
)) − 
(x∗s ) + 
(x) − 
(xHp

) −
Hp−1
∑

i=0
l(x∗s , u

∗
s ).

Subsequently, according to Remark 3, it is obtained that

L̄(x̃(k), ũ(k)) = L(x̃(k), ũ(k)) + 
(x) −
Hp−1
∑

i=0
l(xs, us). (24)

Since
Hp−1
∑

i=0
l(x∗s , u

∗
s ) and 
(x) are independent of the decision variable ũ for a given initial state x ∈ X, functions L̄(x̃(k), ũ(k))

and L(x̃(k), ũ(k)) differ only by a constant. Therefore, the optimization problems in (16) and (22) have the same identical
solutions for all time steps k ∈ I+. □

Lemma 3. The modified costs  and V̄f satisfy the property
V̄f

(

(A(�(k)) + B(�(k))Kf (�(k)))x(k)
)

≤ V̄f (x) − (x,Kf (�(k))x) (25)
if and only if Vf (k) and l(k) satisfy Assumption 6.
Proof . The proof follows from the results presented in30 by considering Remarks 2 and 3 and performing the proper

manipulation of (21b) by adding the term 
(x) + 
((A(�(k)) + B(�(k))Kf (�(k)))x(k)) to both sides. □

Lemma 4. 32 Let �(x) ∶  ←→ ℝ≥0 be a positive definite function that is defined on the compact set . Then, there exists a class
 function � (.) such that

�(x) ≥ � (|x|), ∀x ∈ . (26)
Lemma 5. Let Assumptions 3 to 6 hold. The terminal cost V̄f and rotated stage cost  satisfy the following inequalities:

(x, u) ≥ � (‖x − x∗s‖) ≥ 0, ∀(x, u) ∈ ℤ (27)
� (‖x − x∗s‖) ≤ V̄f ≤ �̂ (‖x − x∗s‖), ∀(x) ∈ Xf (28)

where functions � (.) and �̂ (.) are of class .
Proof . From (19), (21a) and Assumption 3, it holds that (x, u) ≥ �(‖x−x∗s‖) for all (x, u) ∈ ℤ, which according to Lemma

4, leads to (27). By following30, it can be shown from (25) and (27) that V̄f (x) ≥
∞
∑

i=0
(x(i), Kf (�(k))x(i)). Moreover, from

Assumption 4, V̄f (x(k)) is bounded and by V̄f (x∗s ) = 0, thus, it can be upperbounded by a class  function, i.e., V̄f (x) ≤
�̂ (‖x − x∗s‖) for all x ∈ Xf . □
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Theorem 1. Let Assumptions 3 to 6 hold. Then, the optimal state trajectory of (3) is asymptotically stable for all feasible initial
states. The candidate Lyapunov function is L̄0(x(k)), and satisfies

L̄0(x(k)) ≤ � (‖x − x∗s‖), (29)
L̄0(x(k + 1)) − L̄0(x(k)) ≤ −� (‖x − x∗s‖), (30)

for all x ∈ Xf , where � (.) being a class  function.
Proof . The lower and upper bounds imposed by inequality (29) follow from Lemma 5. Condition (30) can be proved by

considering the following optimal modified cost function:

L̄(x̃(k), ũ(k)) =
Hp−1
∑

i=0
(x(i), u(i)) + V̄f (x(Hp))), x ∈ Xf . (31)

There is a feasible solution for the current state that gives optimal input and state sequences denoted as in (10i) and (10j). A
candidate input sequence and an associated state sequence for the next time step are chosen as follows:

ū(k + 1) = {u∗(1|k), ..., u∗(Hp|k), Kf (x∗(Hp|k))},
x̄(k + 1) = {x∗(1|k), ..., x∗(Hp|k), x∗(Hp + 1|k)},

where x∗(Hp + 1|k) = ((A(�k) + B(�k)Kf (�k)))x∗(Hp|k). Due to the terminal constraint and Assumption 6, it holds x∗(Hp +
1|k) ∈ Xf . Furthermore, the cost is given by

L̄(x̄(k + 1), ū(k + 1)) =
Hp−1
∑

l=1
(x∗(i|k), u∗(i|k)) + (x∗(Hp|k), Kf (x∗(Hp|k))) + V̄f (x∗(Hp + 1|k))

= L̄0(x(k)) − (x(k), u∗(k|k)) + (x∗(Hp|k), Kf (x∗(Hp|k))) − V̄f (x∗(Hp|k)) + V̄f (x∗(Hp + 1|k)).

From Assumption 6 and Lemma 3, it follows that
L̄(x̄(k + 1), ū(k + 1)) ≤ L̄0(x(k)) − (x(k), u∗(0|k)). (33)

Since L̄0(x(k + 1)) ≤ L̄(x̄(k + 1), ū(k + 1)), hence, from (33) and Lemma 5, it follows that
L̄0(x(k + 1)) − L̄0(x(k)) ≤ −� (‖x − x∗s‖), (34)

which completes the proof. ■

4.2 Computation of the terminal components
For completely establishing the stability of the proposed EMPC approach, it is necessary to compute the terminal components
that provide recursive feasibility.
Recursive feasibility is the property that for any initial condition x(0|k) ∈ X solutions of (16) fulfill x(i|k) ∈ X, i ∈ [1,Hp].

Indeed, due to the presence of hard constraints in (16) , feasible solutions may fail to exist. The property of recursive feasibility
then ensures that, provided the system’s state is updated according to its nominal dynamics, feasibility is preserved at all times.
This fact is normally shown by induction. According to27, there are several ways of guaranteeing recursive feasibility, as e.g.,
using terminal equality constraints or using terminal sets. In this paper, the second option has been chosen.
By following30, a systematic procedure is presented where a fixed terminal region around the optimal steady state was used.

Then, terminal sets and quadratic cost functions are computed based on the LPV model (3).
Assumption 7. There exist a state-feedback controller K(�(k)), such that the closed-loop system

Ã(�(k)) ∶= A(�(k)) + B(�(k))K(�(k))

is stable for all � ∈ �.
The computation of the terminal components of (10) requires in addition a terminal control law, which is determined as

follows:
Kf (�(k)) = K(�(k))(x − x∗s ) + u

∗
s , (35)
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where K(�(k)) is the feedback gain satisfying Assumption 7, and the pair (x∗s , u∗s ) are elements of the optimal steady state and
input trajectories. The terminal penalty is introduced based on the ellipsoidal level sets correlated to quadratic functions of the
form

Vf (x) ∶=
1
2
(x − x∗s )

⊤P (x − x∗s ). (36)
Therefore, the terminal regions are centered around the optimal state state pair (x∗s , u∗s ) and defined as

Xf ∶= {x ∈ ℝ|(x − x∗s )
⊤P (x − x∗s ) ≤ �}, (37)

where � ∈ ℝ+. The scalar � must ensure that the state and input constraints are perpetually satisfied under the use of terminal
controller (35), i.e., x(k) ∈ Xf ⊂ X and Kf (�(k))x(k) ∈ U for all k ∈ I+. To derive an appropriate terminal function Vf
for the economic cost based on the LPV model in (3), the procedure in30 is suitably modified. First, assume that the economic
costs l(.) are twice continuously differentiable and let l̄(x(k)) ∶= l(x(k), Kf (�(k))x(k)) − l(x∗s , u

∗
s ). Then, from30, for all

x ∈ X, (x∗s , u
∗
s ) ∈ ℤ and k ∈ I[0,Hp−1], there exists a matrixQ such thatQ− l̄(x(k)) ≥ 0. Moreover, the quadratic cost functional

is defined as
lq(x) ∶=

1
2
(x − x∗s )

⊤Q(x − x∗s ) + q
⊤(x − x∗s ), (38)

where q ∶= l̄(x∗s (k), u
∗
s (k)) such that for all x ∈ X the inequality lq(x) ≥ l̄(x(k)) + (1∕2)(x − x∗s )

⊤(x − x∗s ) holds. Hence, thecandidate terminal function is defined as
Vf ∶=

∞
∑

i=0
lq(x(i)), (39)

where x(i + 1) = A(�(i))x(i) + B(i)
(

K(�(i))(x − x∗s ) + u
∗
s

) for all i ∈ I+.
Let obtain an explicit definition of (39). From Assumption 7 and (35), the error dynamics are given by

(x(k + 1) − x∗s ) = Ã(�(k))(x(k) − x∗s ), ∀k ∈ I+. (40)
The so-called monodromy matrix of system (40) at time step k is defined as

	k ∶=
k
∏

l=0
Ã(�(l)), ∀k ∈ I+. (41)

Then, according to (38), (40) and (41), the terminal function (39) can be written as follows:

Vf = 1
2

Hp−1
∑

l=0
(x(l) − x∗s )

⊤
( ∞
∑

i=0
(	 i

l )
⊤Ql(	 i

l )
)

(x(l) − x∗s ) + l̄x(x∗s , u
∗
s )
⊤

∞
∑

i=0
(	 i

l )(x(l) − x
∗
s )

= 1
2

Hp−1
∑

l=0
(x(l) − x∗)⊤Pl(x(l) − x∗s ) + q

⊤
l (x(l) − x

∗
s ),

(42)

with x(l + 1) = A(�(l))x(l) + B(�(l))
(

K(�(l))(x(l) − x∗s ) + u∗s
) for all l ∈ I[0,Hp−1] and q⊤l = l̄(x∗s , u

∗
s )
⊤(I − 	l)−1. For the

given k and each l ∈ I[0,Hp−1], matrices Pl are the solutions to the discrete Lyapunov equations 	⊤
l Pl	l − Pl = −Ql. Through

(39), it follows that the candidate function Vf satisfies the condition in Assumption 6. In fact, from Assumption 7 and suitable
manipulation of (39)-(42), the following balance may be derived:

Vf ((A(�(k)) + B(�(k))Kf (�(k)))x(k)) − Vf (x(k))

= 1
2
(x(k) − x∗s (k))

⊤(Ã(�(k))⊤PkÃ(�(k)) − Pk)(x(k) − x∗s (k)) − l̄x(x∗s , u
∗
s )
⊤(x(k) − x∗s ).

(43)

Hence, (39) and (43) yield the following Lyapunov equation:
	⊤
k Pk	k − Pk = −Qk, ∀k ∈ I[0,Hp−1]. (44)

It is important to highlight that matrices Pk and K(�(k)) must satisfy in addition the following condition:
Ã(�(k))⊤Pk+1Ã(�(k)) − Pk ≤ 0, ∀k ∈ I[0,Hp−1]. (45)

to satisfy the positive invariant condition, i.e., if x(k) ∈ Xf then (x(k), Kf (�(k))x(k)) ∈ Xf for all k ∈ I≥0.
The main problem to do so is that the matrices in (41) lead to nonlinear matrix inequalities that cannot be solved directly.

Despite the mentioned difficulty for solving (44), it is still conceivable to obtain a set of matrices satisfying Assumption 7. To
do so, condition (44) should be relaxed and considering instead Ã(�(k))⊤Pk+1Ã(�(k)) − Pk ≤ −Qk for all k ∈ I[0,Hp−1]. Theprevious discussion is formalized by means of the result in Theorem 2.
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Theorem 2. Consider the closed loop x(k + 1) = (A(�k) + B(�k)Kf (�k))xk satisfying Assumption 4, control low (35) and the
pair (x∗s , u∗s ) ∈ ℤ. Let Xk ∈ Snx++, Yk ∈ ℝnu×nx and � ∈ ℝ+ be decision variables. By solving

max
Xk≻0,Yk∈ℝnu×nx ,�∈ℝ+

− log det(X0) (46a)
subject to

⎡

⎢

⎢

⎣

Xk ⋆ ⋆
A(�(k))Xk + B(�(k))Yk Xk+1 ⋆

Q1∕2Xk 0n×n �In

⎤

⎥

⎥

⎦

≥ 0, (46b)
[

(ℎj − (ajx∗s + bju
∗
s ))

2 ⋆
Xka⊤j + Y ⊤k b

⊤
j Xk

]

≥ 0, (46c)
for all k ∈ I[0,Hp] and j ∈ I[1,nr], the optimal decision variables (denoted byXopt,k, Yopt,k and �opt) allow to determine the controller

K(�(k)) ∶= YkX
−1
k , . (47)

and
Pk ∶= X−1

opt,k�opt. (48)
∀k ∈ I[0,Hp]. PHp

allows determining the terminal cost (36) and region (37).
If problem (46) has a feasible solution, then Assumption 6 is satisfied.
Proof . First, it should be indicated that the solution of (46) presents the terminal sets defined in (37) for system x(k + 1) =

(A(�k) + B(�k)Kf (�k))xk with Kf as defined in (35). To do so, remark that for k ∈ I+ the term x(k) ∈ Xf is equal to the
following quadratic functional condition:

F0 = (x(k) − x∗s )
⊤Pk(x(k) − x∗s ) − � ≤ 0.

Similarly, the requirement that x(k + 1) ∈ Xf is equivalent to
F1 = (x(k + 1) − x∗s )

⊤Pk+1(x(k + 1) − x∗s ) − � ≤ 0.

According to33, the term that x(k) ∈ Xf implies x(k + 1) ∈ Xf , is equal to the existence of !k ≻ 0, such that
(x(k + 1) − x∗s )

⊤Pk+1(x(k + 1) − x∗s ) − � − !k((x(k) − x
∗
s (k))

⊤Pk(x(k) − x∗s − �) ≤ 0. (49)
Therefore, following34, an equivalent linear matrix inequality condition can be established, i.e.,

[

Ã(�(k))⊤Pk+1Ã(�(k)) − !kPk 0
0 !k − �

]

≤ 0.

The above inequality can be decoupled in two inequalities: 0 ≺ !k ≤ �, and
Ã(�(k))⊤Pk+1Ã(�(k)) − !kPk ≤ 0. (50)

As reported in35, there exists a !k such that (50) is equivalent to
Ã(�(k))⊤Pk+1Ã(�(k)) − Pk ≤ −Qk. (51)

By recovering Xk and Yk according to (47) and applying the Schur complement to (46b), and pre- and post-multiplying the
result with Pk, it can be seen that (46b) is equal to (50) with k ∈ I[0,Hp−1].The terminal set satisfies state and input constraints for all k ∈ I≥0. This can be shown by retrieving Xk and Yk according to
(46) and applying the Schur complement to (46c), which gives

(aj + bjK(�(k)))(�P −1
k )(aj + bjK(�(k))⊤ ≤ (ℎj − aj x̂∗s − bj û

∗
s )

2, (52)
for all j ∈ I[1,r] and all k ∈ I≥0. This inequality satisfies the necessary condition for an ellipsoid to be contained in a polyhedron,
see36, Lemma 1. Thus, (52) guarantees that, if x(k) ∈ Xf then (x(k), Kf (�(k))x(k)) ∈ Xf for all k ∈ I≥0.
Finally, for proving (20) that guarantees the satisfaction of Assumption 6, (51) is pre- and post-multiplied by (x(k)−x∗s )⊤ and

(x(k) − x∗s ) yielding the following inequality:
(x(k) − x∗s )

⊤(Ã(�(k))⊤Pk+1Ã(�(k)) − Pk)(x(k) − x∗s ) ≤ −(x(k) − x∗s )
⊤Qk(x(k) − x∗s ), (53)
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for all k ∈ I+. By using (40), (41) and summing up (53) from k = 0 to k = Hp − 1, (53) can be rewritten as

(x(k) − x∗s )
⊤(	⊤

k Pk+1	k − Pk)(x(k) − x
∗
s ) ≤ −

Hp−1
∑

k=0
(x(k) − x∗s (k))

⊤Qk(x(k) − x∗s ). (54)

Then, multiplying (53) by 0.5 and adding −l̄(x∗s , u∗s )⊤(x(k) − x∗s ) to both sides lead to
1
2
(x(k) − x∗s )

⊤(	⊤
k Pk+1	k − Pk)(x(k) − x

∗
s ) − l̄(x∗s (k), u

∗
s )
⊤(x(k) − x∗s )

≤ −1
2

Hp−1
∑

k=0
(x(k) − x∗s )

⊤Qk(x(k) − x∗s ) − l̄(x∗s , u
∗
s )
⊤(x(k) − x∗s )

≤ −1
2
(x(k) − x∗s (k))

⊤Qk(x(k) − x∗s (k)) − l̄(x∗s , u
∗
s )
⊤(x(k) − x∗s )

≤ l̄(x(k), u(k)) = l(x(k), Kfx(k)) − l(x∗s , u
∗
s ),

(55)

for all k ∈ I≥0. The second inequality comes from the positive definiteness of Qk, and the last inequality is obtained from the
description of lq(x) in (38). Hence, according to (42) and (55), condition (20) is satisfied. Consequently, Theorem 2 is proved
and the solution of (46) allows to obtain terminal components satisfying Assumption 6. ■

Remark 6. Note that the controller in (47) is computed on-line at each iteration of the MPC controller by solving the LMI
problem in Theorem 2. [R1-1] Such a controller is purely fictive and used only for calculating the terminal ingredients required
to guarantee the EMPC stability. The scheduling variables �(k) are treated in the same way as when solving the MPC LPV
problem, i.e. by forecasting their value in the prediction horizonHp using (13). In this way, the complexity does not grow with
the number of vaying parameters �(k). Moreover, the number of LMIs in the prediction horizon Hp will kept at a reasonable
size taking into account the usual rule of selecting the sampling time to have about 10 samples in the settling time of the system.

5 APPLICATION EXAMPLE

5.1 Control-oriented model
A case study based on a lab pasteurization process is considered. It is inspired in the small-scale plant PCT-23MKII, manufac-
tured by Armfield (UK)37 (see Figure 2). The system represents an industrial High-Temperature Short-Time (HTST) process.
In this process, the goal is to heat and preserve the product, which is typically a liquid, at a predetermined temperature during a
minimum established period of time7. Figure 3 introduces a block diagram of the pasteurization simulation model, containing
the feedback loops corresponding to the hot-water flow and power of the hat-water tank.

FIGURE 2 Pasteurization plant scheme.
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To model the whole pasteurization plant, dynamic models of such subsystems are obtained and represented in terms of behav-
ioral equations. Then, dynamic equations are connected together towards stating the whole pasteurization model. Moreover, the
mathematical models of the subsystems are obtained from the experimental data that is reported in38. Subsequently, models
obtained as transfer functions are suitably stated by their equivalent controllable realizations in state space, with time-varying
parameters �(k) = [Fℎ R] where Fℎ is the hot-water flow and the hot/cold-water flow ratio, R. Collecting all the information
above, the discrete-time state-space LPV model can be written as in (3a), where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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1 + −Ts
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0 0 0 0 0 0

0 1 + −Ts
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0 0 0 0 0
TsK21(R(k))
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TsK21(R(k))
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1 + −Ts
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0 0 0 0

0 0 0 1 + −Ts
�12(Fℎ(k))

0 TsK12(R(k))
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0
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0 0

0 0 0 0 0 1 + −Ts
�f

0

0 0 0 TsKℎt

�ℎt

TsKℎt

�ℎt
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�ℎt
1 + −Ts

�ℎt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 TsK1(R(k))
�1

0
TsK2(R(k))
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0 0 0

0 0 0 0

0 0 0 0
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0 0
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⎥
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⎥

⎦

, C =

[

1 1 0 0 0 0 0

0 0 0 0 0 0 1

]

,

and, as can be seen in Figure 3, x ∈ ℝnx is the state vector composed among other of the hot-water flow, Fℎ, hot-water tank
temperature, Tow and pasteurization temperature, Tpast. u ∈ ℝnu is the vector of manipulated variables that include among other
the electrical power of the heater P and the water pump speed N . y ∈ ℝny is the vector of controlled variables that include of
the hot-water tank temperature Tow and pasteurization temperatures Tpast. Moreover, the system matrices of the pasteurization
plant model, including the time-varying parameters in function of the scheduling variables (Fℎ and R), can be expressed in the
discrete-time state-space form as (3a), where K are the static gains and the � are the time constant of the transfer functions of
the subsystems (see Figure 3).

5.2 Cost function parameters
One of the key goals of a pasteurization process is to ensure that the pasteurization temperature is attained and preserved close
to the set-point temperature for a pre-established time. However, the set-point is different for several products. Simultaneously,
the decrease of energy consumption of the system considered an economic target should be achieved by minimizing the power
of the resistor of the hot-water tank for reducing the cost of the heater. The controller minimizes a convex multiobjective stage
cost function that includes economic aspects related to energy costs and to keeping the pasteurization temperature inside the
safety bounds, while keeping smooth control input signals.
The EMPC objective function for the pasteurization process involves three operational goals: minimizing energy cost,

maintaining safety bounds for temperature, and smoothing the control input signals.

5.2.1 Minimizing the energy costs
One of the main control objective in the pasteurization process is to minimize the cost energy consumption of the system that
includes minimizing the power of the hot-water tank for reducing the energy cost of the heater. Then, the cost function related
to this objective can be formulated as

l(k) ≜ �(k)Weu(k)�t, (56)
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FIGURE 3 Control block diagram.

where �(k) is time-varying electricity cost that changes in each time instant k according to the dynamic electricity tariff. More-
over, We denotes the weighting term that indicates the prioritisation of the economic control objective and �t is the sampling
time in seconds.

lt(k) ≜ �(k)⊤Wt�(k), (57)
where � > 0 is the considered slack variable added for preserving the feasibility of the optimization problem by stating the
following soft constraint:

Cx(k + 1) ≥ yS − �(k), (58)
beingWt a diagonal positive definite matrix that determines the prioritisation of the safety objective.

5.2.2 Smoothing the control input signals
Pumps and electric heater resistor are the actuators of the pasteurization plant. The control inputs determined by the EMPC
controller should be smooth enough in order to extend the lifespan of the physical components. The cost function term for this
control objective can be written as

l�(k) ≜ �u(k)⊤W�u�u(k), (59)
where the l�(k) indicates the penalization of the slew rate �u(k) ≜ u(k) − u(k−1) andW�u is the weighting matrix of diagonal
positive definite nature.

5.2.3 Multi-objective cost function
According to the different control objectives already defined, the multi-objective cost function for the operational management
of the pasteurization plant can be written as

Lk = [l(k) + l�(k)]. (60)
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TABLE 1 Comparison of control performance.

Controller KPIe KPI�u Simulation Time (in s)
LPV-based EMPC 1273 954 3354
NEMPC 1201 915 8717
LPV-based TMPC 2622 1243 3225

5.3 Simulation results and discussion
As mentioned before, one of the most important goals of the pasteurization process is to guarantee that the pasteurization
temperature is reached and maintained as close as possible to the desired thermal temperature margin. At the same time, the
reduction of energy consumption of the system expressed as an economic objective should be achieved by minimizing the power
of the hot-water tank for reducing the cost consumption based on the power of the heater.
For this simulation, the input temperature of hot-water tank Tiw and the temperature of cold-water Tic are maintained

constant at 40◦C and 30◦C, respectively. Moreover, the power of the electrical heater P and water pump speed N can
take values in the range [0, 1.5] kW and [0, 100] m3/s as manipulated inputs, respectively. The states are constrained to be
[0, 0, 0, 0, 0, 0, 0]⊤ ≤ x(k) ≤ [120, 120, 120, 120, 120, 800, 120]⊤. The states of the LPVmodel shall be regulated from the initial
state x0 = [25, 0, 0, 0, 0, 150, 22]⊤. The weighting matrices areWe = 0.1,Wt = [80, 0; 0, 40],W�u = 0.001 and the prediction
horizon has been selected asHp = 6.
According to (9a) and (60), the optimal steady-state values for the states of the pasteurization model (3) are obtained as

x∗s = [28.87, 48.14, 17.29, 13.485, 98.58, 56.83, 70.02]⊤ and u∗s = [264.58, 17.06]⊤. Moreover, as presented in Section
4, convergent behavior from the system to the optimal steady state (x∗s , u∗s )) can be ensured since the pasteurization system is
strictly dissipative with respect to the supply rate s(x, u) ∶= l(x, u) − l(x∗s , u

∗
s ), while the storage function is 
 = (1∕2)x. By

solving (46) at each MPC iteration, it is obtained a sub-level � = 11.3697 while matrices Pk, and the controller K(�(k)) can
be found. Besides, according to matrices P , a terminal penalty as (36) can be defined, while Vf in (20) can be satisfied for all
x ∈ Xf ⊂ X and Kf = Kk(x − x∗s ) + u

∗
s .To evaluate the advantage and economic efficiency of the proposed strategy based on the LPVmodel, a trackingMPC (TMPC)

strategy is designed by using the LPV model of the pasteurization system. Such TMPC controller is designed through solving
the following optimization problem:

min
u(k)

Hp−1
∑

l=0
‖x(l + 1|k) − x∗s‖

2
w1

+ ‖u(l + 1|k) − u∗s‖
2
w2

+ ‖�u(l|k)‖2w3
, (61)

subject to (3) and the same constraints considered by the EMPC controller. Moreover, the weighting matrices w1 ∈ ℝnx×nx ,
w2 ∈ ℝnu×nu and w3 ∈ ℝnu×nu are determined to verify the priority of the several control objectives.
All simulations have been carried out on an i7 2.40-GHz Intel core processor with 12 GB of RAM runningMATLABR2016b,

and the optimization problem is solved using YALMIP toolbox with CPLEX solver. In addition, the numeric assessment of
the above-mentioned controllers has been carried through different key performance indicators (KPIs), which are detailed as
follows:

KPIe =
1

ns + 1

ns
∑

k=0
�⊤uk �t, (62a)

KPI�u =
1

ns + 1

nu
∑

i=1

ns
∑

k=0
(�u(i, k))2, (62b)

where KPIe denotes the average economic performance of the pasteurization process and KPI�u evaluates the smoothness
of the control inputs. Moreover, ns ∈ I+ is the number of seconds considered in the simulations. It should be noted that low
values ofKPIe andKPI�u imply better performance results. The comparison results of different KPIs as well as the simulation
time between EMPC and TMPC strategies based on the LPV model are presented in Table 1. [R1-2, R1-3] Notice that the
proposed LPV-based EMPC approach requires solving the LMI problem (46) and the QP problem (16) at each iteration. Thus,
the computational time spent at each iteration includes the time required for solving both problems.
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FIGURE 4 Evolution of controlled temperature of TMPC strategy and the EMPC based on the LPV model in (3)
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FIGURE 5 Evolution of controlled hot-water tank temperature of TMPC strategy and EMPC based on the LPV model in (3)
.

Figures 4 and 5 present the evolution of the controlled output temperature including Tpast and Tow. [R2-1] Notice that, in par-
ticular, the evolution of Tpast in Figure 4 shows a slight non-minimum phase behaviour. However, the effect of such a behaviour
is here negligible. These output temperatures were obtained by using the proposed LPV-based EMPC strategy with hard con-
straints in order to save energy and avoid overheating the product. In Figure 4, it can be seen that Tpast and Tow evolve within
the expected ranges Tpast ∈ [65◦C, 74◦C] and Tow ∈ [76◦C, 83◦C], respectively.
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FIGURE 6 Evolution of control inputs of TMPC strategy and EMPC based on the LPV model in (3).

The TMPC is designed just for reaching the predefined the optimal steady state (x∗s , u∗s ). The results of the output temperature
behaviour from the TMPC controller based on the LPV model designed to achieve the references are presented in Figure 4.
From that figure, it can be seen that both Tpast and Tow track the predetermined references. However, Tpast shows overshoot in
its transient.
Figure 6 shows the simulation results of the power of the electrical heater and speed of pump based for both EMPC and TMPC

strategies. It can be seen that the optimal steady state values for Tpast and Tow are achieved by both controllers. However, by
analyzing these results from the economic point of view, the EMPC controller requires less power of the electrical heater than
the TMPC strategy, confirming the better economic performance of the first one. The economic cost in EMPC is almost reduced
by three times compared to the TMPC strategy.

6 CONCLUSIONS

This paper has proposed an EconomicModel Predictive Control (EMPC) approach for Linear Parameter Varying (LPV) systems.
An efficient implementation of the associated MPC optimization problem has been introduced based on transforming the LPV
model into an linear time-varying one by using an estimation of the scheduling variables along the prediction horizon. This
estimation is based on the optimal states/inputs determined from the solution of the previous optimization problemwhile running
the receding horizon strategy. Using this approach, the solution of the proposed LPV-based EMPC scheme is possible by solving
a series of Quadratic Programming (QP) problems at each time instant. This approach has allowed to reduce the computational
burden compared to the solution of a nonlinear optimization problem that would result naturally from the LPV formulation. The
stability of the proposed approach has been guaranteed by forcing the terminal state to vanish towards the optimal equilibrium
point of the system (according to the desired control objectives). Moreover, the terminal constraint has been relaxed by using
a constraint set around the terminal state instead of a single value and adding a penalty on the terminal state into the cost
function. Besides, strict dissipativity has been established as a sufficient condition to prove stability. Finally, the effectiveness
of the proposed LPV-based EMPC strategy has been shown by controlling a small-scale pasteurization system. The comparison
assessment between the EMPC and the standardMPC approaches is performed. Results have shown the advantages of LPV-based
EMPC in terms of economic cost minimization. As future research, the consideration of the mismatch between the predicted
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scheduling parameters based on the previously computed control sequence and the actual scheduling parameter will be addressed
using a tube-based approach.
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