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Abstract

Efficiency, reliability and lifetime of polymer electrolyte membrane fuel cells (PEMFCs) are significantly limited by inadequate
water management. High-performance water active control algorithms cannot be implemented due to the absence of adequate online
sensors that can measure the internal liquid water saturation. A promising technique that can be applied in this context is the state
observer. However, fuel cell models present strong nonlinearities, model uncertainty, unmatched unknown parameters and sensor
noise, which are major difficulties in observer design. The algorithm proposed in this work is based on a time-varying adaptive
observer, that offers an estimation of the liquid water state and behaviour in the cathode catalyst layer of a PEMFC, coupled with a
low-power peaking-free observer with dynamic dead-zone filtering that is used as a high-performance soft sensor. The algorithm is
shown to provide an accurate estimation of the liquid water saturation and the liquid water transport parameters even in the presence
of sensor noise and model inaccuracies. The results are validated through numerical simulations and in a real experimental prototype.

Keywords: Proton exchange membrane fuel cell (PEMFC), Catalyst layer, Liquid water, State estimation, Parameter estimation,
Noise

1. Introduction

Hydrogen has been established as a key element to tackle
the present critical energy challenges. However, to make a
significant contribution to a clean energy transition, it is crucial
that hydrogen is incorporated in strategic sectors as transport,
buildings and stationary power generation. A promising device
to promote such introduction are fuel cells. A hydrogen fuel cell
is an electrochemical device that converts the chemical energy
of hydrogen in DC current without relying on moving parts and
emission of pollutants, which makes it a promising alternative
to traditional internal combustion engines.

Among the different types of fuel cell, polymer electrolyte
membrane fuel cells (PEMFC) have been established as the
most promising fuel cell candidate in transport and stationary
backup power applications, due to is low-operating temperature,
high-energy density, quick start-up and zero to low emissions
[1].

Nevertheless, degradation problems limit the economical and
technological viability of PEMFCs [2]. Transport applications
require variable operating conditions, which induces significant
fluctuations in the fuel cell’s internal states. Inadequate operat-
ing conditions and dynamics will eventually lead to performance
and components degradation [3]. Some crucial internal variables
are the ones related to the fuel cell’s water content [4]. Water
flooding and drying are adverse phenomena that have significant
effects on the fuel cell output voltage, performance and degra-
dation [5]. In order to avoid such conditions, it is required to
develop external humidification active control algorithms that
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ensure adequate hydration, which presents a challenging prob-
lem. First, external humidifiers usually present slow dynamic
response attributed to the temperature exchange process of the
humidified gas and dry gas; thus, poor designed control algo-
rithms will lead to over/under humidification. Second, fuel cell
systems are related to highly nonlinear, delayed and uncertain
processes. As a consequence, hydration control requires the de-
velopment of advanced high-performance controllers, e.g. slid-
ing mode controllers [6], nonlinear output-feedback linearization
[7] or backstepping designs for time delayed systems [8], be-
tween others, which rely on having an accurate measurement of
the PEMFC’s water sate. Therefore, a limiting factor in PEMFC
water management is the existence of feasible internal humidity
sensors.

External relative humidity sensors can only measure the
vapour pressure of the inlet and outlet gases, which is not di-
rectly related to the fuel cell’s water content and cannot measure
liquid water. More complex measuring techniques as the cur-
rent distribution method [9], neutron radiography [10] or x-ray
radiography [11], are far too expensive, slow and intrusive to
be a viable option for feedback loops in transport applications.
The membrane water content can be estimated by analyzing the
high-frequency components of the fuel cell spectral impedance
[12]. However, such study requires the use of the electrochem-
ical impedance spectroscopy technique or the feedback relay
technique [13], which significantly modifies the operation of the
fuel cell during the parameter estimation.

In such conflict, a viable approach is to develop online esti-
mation algorithms of the liquid water content inside the fuel cell.
In the context of feedback control, a useful estimation method
is the state observer. The main reason is that the stability of the
controller and observer coupling can be proved applying well-
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understood dynamic systems theory. This property may not hold
for alternative types of estimators. Moreover, such alternative
estimators may present long computation times, which reduces
the bandwidth of the estimator dynamics [14]. Therefore, the
design of fuel cell observers is a central topic for fuel cell water
active control and fuel cell optimal management.

The aim of this work is to develop an observer algorithm to
estimate the liquid water content of a PEMFC. The objective
is simple but its execution presents significant issues that have
to be addressed. First, fuel cell dynamics are highly nonlinear.
A simple solution to such issue is to approximate the system
by taking the first order elements of the Taylor expansion, and
then, implementing a linear observer in the resulting dynamics.
A prominent example of such technique is the Extended Kalman
Filter (EKF). However, such approach assumes that the higher
order terms of the Taylor expansion obeys a Gaussian distribu-
tion. In doing so, additional model errors are being introduced,
as this assumption is not satisfied in the entire PEMFC model’s
uncertainty domain. This fact explains the low accuracy and
reduced stability of EKFs in electrochemical systems [15]. As a
consequence, higher performance can be obtained through the
design of a nonlinear observer. Second, fuel cell models present
significant uncertainty. There are still significant unknowns in
the field of control-oriented fuel cell modelling and identifica-
tion. Therefore, unavoidable discrepancy between the model
and reality is expected to be found. This fact has motivated the
implementation of robust observers in the PEMFC field [16–18].
Nonetheless, such approach provides limited information of the
model uncertainty, which could be useful for diagnostics pur-
poses. Third, due to technological and economical constraints,
fuel cell temperature and pressure sensors present significant un-
known high-frequency noise. It is well-known that the presence
of sensor noise limits the robustness and convergence rate of an
observer [19]. Thus, observers should be designed taking into
account the noise presence.

For this reason, this work will present a new observer struc-
ture that can deal with nonlinearities, uncertainty and noise. The
observer will be based on techniques for Lipschitz systems [20],
which can deal efficiently with PEMFC model nonlinearities.
The observer is coupled with a gradient-descent like parameter
estimator to achieve an estimation of the unknown liquid water
dynamics’ parameters, following well-known adaptive observer
ideas [21]. It is shown that such observer can only be imple-
mented under a restrictive parameter/output matching condition,
which is not satisfied in the considered system. To circumvent
this limitation, the proposed adaptive observer is coupled with
a high-gain observer that is used as a soft sensor to estimate an
auxiliary signal, z, that satisfies the matching condition. Finally,
the high-gain observer is modified by combining the ideas of the
peaking-free observer [22] and dynamic dead-zone filtering [23]
in order to out-perform classic high-gain techniques and reduce
its noise sensitivity. A general scheme of the proposed strategy
is depicted in Fig. 1.

The specific contributions of this work are:

• Propose a nonlinear adaptive observer that achieves an
accurate estimation of the liquid water saturation in the

Figure 1: Scheme of the proposed observer for PEMFC

cathode catalyst layer (CCL) of a PEMFC, taking into ac-
count model uncertainty, unmatched unknown parameters
and sensor noise.

• Couple the observer with a parameter estimation dynam-
ics that achieves an estimation of the unknown absorp-
tion/desorption coefficient, liquid water evaporation rate
and liquid water diffusion coefficient.

• Propose a whole observer scheme that, by means of a
soft sensor, is able to fulfil the parameter/output match-
ing condition, which is ubiquitous in adaptive observer
problems.

• Validate the proposed estimation scheme through numeri-
cal simulations and experimental validation, where sensor
noise and uncertainty are taken into account.

The remaining of this paper is organized as follows. Section
2 introduces a PEMFC model that will be used to design the
observer. Section 3 formulates the estimation problem. Section
4 introduces an adaptive observer for the estimation of the liquid
water saturation and the unknown parameters related to the
liquid water dynamics. Section 5 validates the observer in a
numerical simulation. Section 6 validates the technique in a real
experimental prototype. Finally, some conclusions are drawn in
Section 7.

2. PEMFC state space model

In the literature, there are plenty of PEMFC physical models,
the accuracy and computational complexity of which depends on
the desired application [4]. This work considers a two-phase flow
non-isothermal lumped parameter model of an air-feed open-
cathode PEMFC’s CCL [24][25]. The model solves the heat
equation, in the whole fuel cell stack and assumes a uniform
temperature distribution to solve for the CCL’s temperature,
T f c. Furthermore, the model solves the liquid water dynamics
equation in the CCL, taking the membrane and the gas diffusion
layer as boundaries. Specifically, the model considers the liquid
water saturation in the CCL, s, which is defined as the volume
fraction of liquid water in the pores. This allows to write the
system equations in the following lumped parameter state-space
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form

ẋ = fs(x, I) + g(x)vair (1)
y = T f c + v.

The state vector, x, is defined as: x = [T f c, s]ᵀ; and the control
inputs are the load current and the cathode air velocity, u =

[I, vair]ᵀ.
Moreover, the vector functions fs, g are:

fs(x, I) =

 K1(Ethncell − V f c)I
1
Ks

(K3I −
Kevap

Apore
K4 fp(T f c, s)) − K5 fd(s)


g(x) =

[
K2(Tamb − T f c)

0

]
with Eth [V] being the theoretical potential, ncell the number of
cells in the stack, V f c [V] is the stack voltage computed through
(2), Ks [Kg m−2] is the ionomer sorption/desorption coefficient,
Kevap [m3 s−1] is the evaporation time constant, Apore [m2 m−3]
is the effective pore surface area per unit volume.

The constants K1, ..,K5 are defined as:

K1 =
1

m f cCp, f c
, K2 =

ρairAinletCp,air

m f cCp, f c
,

K3 =
MH2O

2FAgeo
, K4 =

MH2O

R
,

K5 = σ cos Θ
√
εKe f f

ρl

KsµlδCL,c
,

where m f c [kg] is the stack’s mass, Cp, f c [J kg−1 K−1] is the
fuel cell averaged heat capacity, ρair [kg m−3] is the cathode air
density, Ainlet [m2] is the cathode housing cross-sectional area,
Cp,air [J kg−1 K−1] is the cathode’s air heat capacity, the factor
ρCp [J K−1 m−3] is the specific heat capacity of the fuel cell
stack, MH2O [kg mol−1] is the molar mass of water, F [C mol−1]
is the Faraday constant, R [J K−1 mol−1] is the ideal gas constant,
σ [N m−1] is water’s surface tension, Θ [◦] is the effective contact
angle in the diffusive media, ρl [kg m−3] is the liquid water
density, µl [kg m−1 s−1] is the water dynamic viscosity and
δCL,c [m] is the CCL’s width.

The nonlinear functions fp and fd are computed as:

fp(T f c, s) =
s

T f c
(p0e−Ea/(kbT f c) − pv),

fd(s) = s3(1.42(1 − s) − 2.12(1 − s)2 + 1.26(1 − s)3)

where Ea [eV] is the activation energy of the evaporation, the
factor kb [eV K−1] is the Boltzmann parameter, p0 [Pa] is a
pre-exponential factor and pv [atm] is the water vapour pressure
in the CCL.

The model also includes a static relation between the system
states, x, and the fuel cell output voltage, V f c, where activation
and ohmic losses are considered. Specifically, the voltage is
computed as:

V f c = ncell(Eth − ηact − ηohm). (2)

The factor ηohm depicts the ohmic losses which are computed
through the ohm’s law,

ηohm = RohmI

where Rohm accounts for the ionic conductivity of the membrane
and the resistance of the fuel cell’s electric conductive compo-
nents.

The factor ηact accounts for the activation losses which is
computed as:

ηact =
RT f c

2αF
ln

( I
Ageo j0

)
where α is the transfer coefficient. The factor j0 depicts the
exchange current density which is corrected taking into account
the effect of the temperature and liquid water saturation in the
CCL with respect to the reference conditions [24],

j0 = 0.21 jre f
0 ac

(
1 −

( sopt − s
sopt

)1/3
)
e

(
−∆G∗

RT f c

[
1−

T f c

Tre f

])

where jre f
0 [A m−2], ac [−] and Tre f [K] are the reference ex-

change current, electrode rugosity and stack temperature, respec-
tively, at a reference operating conditions. sopt [−] is the liquid
water saturation in which the effective ECS A is maximum.

It should be remarked that, in the following sections, the sig-
nal that is going to be used to estimate the states, is the fuel cell
stack temperature, y = T f c + v, where v depicts high-frequency
sensor noise. An alternative option is to use the stack voltage,
V f c, as the measured variable. However, there are some reasons
that discourages such choice. First, the observability map from
the stack voltage present singularities, i.e. there are operating
points where the state cannot be reconstructed from V f c. Second,
PEMFCs that operate in dead-end mode have to periodically
purge the anode due to the accumulation of inert gases or water
[12], which induces some unmodelled perturbations on the stack
voltage and can significantly affect the estimation performance.
On the contrary, these purges do not have a significant effect on
the fuel cell temperature, T f c.

3. Problem formulation and observer objectives

The main objective is to design an estimator that might
be used in a feedback loop, in which, depending on the type
of application, different observer’s performances are required.
This work does not focus on the control application; thus, some
generic performance objectives will be established.

First, the main objective of the observer is to achieve an
accurate estimation of the liquid water saturation, ŝ, despite the
presence of sensor noise and model uncertainty. In this work,
an estimation is going to be accepted as accurate if the relative
error converges, after some time, to a value below the 5%1.

Second, there exist methodologies to accurately measure or
estimate the parameters K1, ...,K4 [24]. However, the estimation

1The relative error [%] between x and x̂ is computed as
‖x − x̂‖
‖x‖

· 100
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of K5 (liquid water diffusion coefficient), Kevap (evaporation time
constant) and Ks (absorption/desorption coefficient) is still and
open problem, which introduces significant uncertainty in the
liquid water equation. Moreover, these parameters are strongly
dependent on the operating conditions [4]. Therefore, another
objective of the observer will be to achieve an accurate esti-
mation of the unknown parameters, K̂5, K̂evap and K̂s for an
arbitrary operating point. For the rest of the document, the
unknown parameter vector will be referred as

θ =

[
1
Ks
,

Kevap

KsApore
, K5

]ᵀ
.

Remark 3.1. The parameter θ1 is defined as
1
Ks

instead of the

natural Ks. The motivation behind such parameterization is that
the resulting model is linear with respect to the parameter vector
θ, which eases the adaptive observer design. Furthermore, the
parameter θ2 depends on Apore, which is assumed to be known.
This definition avoids the numerical ill covariance matrix that is
obtained if Apore is not included in the parameter vector.

As a final objective, the observer needs to be fast enough so
the observer and the future feedback controller can be designed
separately. Fuel cell’s water dynamics require around between
400 and 1000 seconds to reach an equilibrium point [4]. It
will be assumed that the observer is adequate if it can reach
an accurate estimation within the first 200 seconds. No time
performance is required for the parameter estimation.

4. High-gain based Adaptive Observer

The whole observer scheme is based on the following adap-
tive observer result.

4.1. Adaptive observer
Define the auxiliary signal z , T f c + s = hᵀx, and consider

the following state estimation dynamics,

˙̂x = A(u)x̂ + f(x̂,u) + Bφ(x̂,u)θ̂ + k(z − hᵀx̂) (3)

Ṗ = −σP − A(u)ᵀP − PA(u) + hhᵀ (4)

where x̂ is the estimation of the states x, σ is a positive design
parameter and

k = P−1h. (5)

Moreover,

φ(x,u) =
[
φ1(u), φ2(x), φ3(x)

]
f(x,u) =

[
f1(x,u)

0

]

A(u) =

[
−K2vair 0

0 0

]
; B =

[
0
1

]
where

f1(x,u) = K1(Ethncell − V f c)I + K2Tambvair

φ1(u) = K3I, φ2(x) = −K4 fp(T f c), φ3(x) = − fd(s).

The first elements of (3) can be interpreted as a copy of the
original system (1) plus a linear injection term, k(z − hx̂), that
is going to correct the state estimation according to the estima-
tion error, z − hx̂. The gain, k, of this injection term is adapted
according to the second dynamics (4) through expression (5),
which allows to prove the stability of the estimation even with
time-varying cathode air velocity, vair, provided that σ is suf-
ficiently large. This property may not hold for other observer
gains [26]. Moreover, it achieves better performance in terms of
robustness and noise rejection than constant gain estimators.

The factor θ̂ depicts the estimation of the unknown parame-
ters. This estimation is achieved through the following gradient
descent-like dynamics

˙̂θ = γφ(x̂,u)ᵀBᵀk†(z − hᵀx̂), (6)

where γ > 0 and k† is the left Moore-Penrose pseudoinverse
computed as:

k† = (kᵀk)−1kᵀ.

Fig. 2 depicts an scheme of the proposed adaptive observer.

Figure 2: Adaptive observer for the PEMFC general scheme.

Now it is possible to stablish the following.

Lemma 4.1. Consider system (1) and define vair,max as the max-
imum cathode air velocity. Then, there exists a positive value
σ∗ such that, for σ > max{2vair,max, σ

∗}, the state estimation, x̂,
of system (3)-(4) converges to the true value, x provided that
vair > 0. Moreover, the parameter estimation, θ̂, of (6) converges
to the true value provided that the original system satisfies the
following excitation condition for all t > 0

µ1I ≥
∫ t+T0

t
φ(τ)ᵀBᵀBφ(τ)dτ ≥ µ2I. (7)

where µ1, µ2 and T0 are some positive constants

Intuitively, Lemma 4.1 establishes that, for a high enough
term σ, the adaptive observer (3)-(6) achieves an exact esti-
mation of the liquid water saturation, s, independently of the
knowledge of the absorption/desorption, evaporation and diffu-
sion coefficients. This is a stronger result than the one obtained
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through robust observers as the high-gain observer [27] and/or
the sliding mode observer [18]. Such observers can only reduce
(not cancel) the effect of parameter uncertainty, and its accu-
racy relies on increasing the gain or the switching frequency of
the injection term, which significantly increases the observer’s
sensitivity to sensor noise.

Remark 4.1. The exact reconstruction property requires a non-
zero cathode air velocity, as this condition is required for the
observability of the system. Nonetheless, this condition is gener-
ally satisfied as some cathode air velocity is always required in
order to deliver the necessary reactants to the CCL.

Furthermore, Lemma 4.1 establishes a second result. If the
regressor vector, φ, satisfies the excitation condition (7), i.e. the
system trajectories are rich enough so that the gradient-descent
algorithm (6) correctly interpolates the true system dynamics,
the parameter estimation also converges to the true value. Notice
that this excitation condition is not required for the exact state
estimation. Nonetheless, the knowledge of the true model pa-
rameters could be used to assess the system performance and/or
for diagnostics purposes, between others.

An interesting element in the adaptive observer structure is
the use of the auxiliary signal z. In classic adaptive observers,
the common approach is to implement a linear injection term
that depends on the measured output error, i.e. y − cᵀx̂ [21],
which in the considered problem would be T f c − x̂1. Neverthe-
less, this output error-based adaptive observer is stable only if
all the unknown model parameters appear in the first derivative
of the output equation [21]. This assumption is referred as the
matching condition, and is not satisfied in the concerned prob-
lem, as all the water dynamics’ unknown parameters appear
in the second derivative of the temperature function. For this
reason, the proposed adaptive observer is coupled with a soft
sensor to compute an auxiliary signal, z, that satisfies the match-
ing condition in addition to all the required assumptions for the
stability of the observer, as it is depicted in Fig. 1.

Notice that the auxiliary signal, z, cannot be directly com-
puted, as the liquid water saturation, s, is an unknown variable.
Thus, the main concern is to design an algorithm that can ac-
curately estimate the auxiliary signal, ẑ. A high performance
computation of ẑ can be achieved through a low-power observer
with dynamic dead-zone filtering.

4.2. Low-power dead-zone observer

It is crucial to select the proper algorithm in order to build the
proposed soft sensor. Not all algorithms that achieve an accurate
auxiliary signal estimation can be implemented in the proposed
estimation scheme. Indeed, there may be some algorithm that,
in its own, achieves an estimation ẑ such that ‖z − ẑ‖ → 0, but
induces unstable dynamics once it is coupled with the adaptive
observer (3)-(6).

In the concerned problem, the states that are required for the
computation of the auxiliary signal z can be robustly estimated
through a high-gain observer [27]. Moreover, it is possible
to proof the stability of the whole estimation scheme through
Lyapunov arguments [26]. Hence, the high-gain observer is

a good candidate for the soft sensor of the estimation scheme.
However, the performance of high-gain observers is significantly
affected by the peaking phenomena and the sensor noise, which
is the main reason that discourages the implementation of high-
gain observers in PEMFC systems [28]. Nevertheless, there
has been some recent results in high-gain observation which
have practically solved the peaking phenomena problem and
has drastically reduced the effect of measurement noise. The
combination of these results not only allows to reliably compute
the auxiliary signal, z, in the presence of model uncertainty
and sensor noise; but allows the implementation of high-gain
observer based control techniques in fuel cells.

The mentioned results are twofold. First, the development
of low-power peaking free observers [22], which eliminates
the peaking phenomena and reduces the noise sensitivity while
maintaining the convergence rate and robustness properties of
classic high-gain observers. Second, the inclusion of dynamic
dead-zones in the observer error injection terms [23], which
allows filtering part of the sensor noise while achieving higher
transient performances compared to observers that implements
simple low-pass filters [27]. This work proposes combining both
ideas in order to significantly out-perform the classic high-gain
observer.

The low-power dead-zone observer is going to be adapted to
the estimation of the unknown parameters. This is referred to as
the "coupling factor" in Fig. 1. The coupling between the soft
sensor and the adaptive observer allows the state and parameter
estimation error to converge to an unbiased value, which is not
accomplished in similar strategies for output-feedback design
[26]. Specifically, the proposed soft sensor is computed through
the following dynamics,

˙̂ξ1 = η1 + ψ1(ξ̂1,u) +
α1

ε
dz√σ1 (e1)

˙̂ξ2 = ψ2(x̂,u, θ̂, İ) +
α2

ε
dz√σ2 (e2) (8)

η̇1 = ψ2(x̂,u, θ̂, İ) +
β1

ε2 dz√σ1 (e1)

where α1, α2, β1 and ε are parameters to be tuned [22], x̂ is the
state estimation generated by the adaptive observer (3), and

e1 , y − ξ̂1,

e2 , satr2 (η1) − ξ̂2.

The nonlinear functions ψ1 and ψ2 are Lipschitz functions and
defined as follows:

ψ1(ξ̂1,u)1 = K2(Tamb − ξ̂)vair

ψ2(x̂,u, θ̂, İ) = −IK1
∂V f c

∂x
fs(x̂, θ̂, I) − K1V f c İ.

The factor dz√σ(·) is the dead-zone function computed as

dz√σ(a) = a − sat√σ(a)

where sat√σ(a) is the saturation function with amplitude
√
σ,

which satisfies

satk(s) = s ∀|s| ≤ k, satk(s) = k ∀|s| ≥ k. (9)
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This amplitude is dynamically adapted through the following
expression

σ̇i = −
qi

ε2σi + pi‖ei‖
2, i = 1, 2. (10)

where qi and pi are positive parameters to be tuned [23].
The inclusion of this dead-zone with dynamic amplitude

ensures the stability of the observer and adapts the non-linear
filter to the value of the noise.

Finally, the auxiliary signal is estimated through the follow-
ing expression,

ẑ = Φ(ξ̂,u)−1 , ξ̂1 + sopt

(
1

−

[
1 −

IA−1
geo

0.21 jre f
0 acexp

(
ηactnαF

Rξ̂1
−

∆G∗

Rξ̂1
(1 −

ξ̂1

Tre f
)
) ]3)

where the activation overpotential, ηact, is estimated as

ηact =
ξ̂2

K1I
− ηohm.

In Fig. 3 it is depicted a general scheme of the auxiliary signal
estimation.

Figure 3: Scheme of the auxiliary signal estimation through a low-power peaking-
free observer with dynamic dead-zone modification.

5. Numerical Simulations

In a numerical simulation, the model (1) is going to be ex-
cited with changes in the current signal, I, which will induce a
stack temperature profile, T f c, that will be used by the proposed
observer scheme in order to estimate the liquid water saturation,
s and the unknown parameters, θ. The model will use the param-
eters fitted in a real PEMFC with the values of Ks,Kevap and K5
reported in [25]. The values of the parameters are summarized
in Table A.4.

Nevertheless, from the observer point of view, it is assumed
that there is no prior information of the unknown states and
parameters. Therefore, the parameter estimation is initialized at
zero, θ̂ = [0, 0, 0]ᵀ and the state estimation is initialized at an
arbitrary feasible operating condition T̂ f c = 300 and ŝ = 0.01.

In reference to the current profile, the signal has been de-
signed to be exciting enough so the system modes are active (in

Figure 4: Simulation general scheme. The PI controller box depicts the tempera-
ture controller, the fuel cell model box depicts the model (1) with the parameters
summarized in Table A.4 and the modified low-power observer+Adaptive ob-
server scheme box depicts the proposed observer structure.

the sense of (7)) and not being to harsh that accelerates the degra-
dation of the fuel cell. Moreover, the signal has been designed
to be persistently exciting but, with lower excitation level (in the
sense of having a lower µ2 in (7)) than common PEMFC current
profiles, which ensures that the proposed parameter estimation
strategy can be replicated in a commercial PEMFC system dur-
ing a real operation. Specifically, the current profile consists on
a set of ramp functions between 3.8 A and 5 A with a slope of
0.006 A s−1.

In order to make the simulation more realistic, two more
elements have been included to the model. First, the temper-
ature of the system will be controlled through a proportional
integral controller (PI) that, through the cathode air velocity,
vair, will maintain the temperature close to a reference point,
Tre f = 304 K, despite the changes in the current profile. The
observer is not used in this feedback loop, so, this document
does not deal with the design of the controller. Second, the gen-
erated temperature profile is corrupted with random Gaussian
noise with realistic variance value of 0.011 (taken from the real
experimental set-up). The general scheme of the simulation is
depicted in Fig. 4. The implementation of these two elements
will make the stack temperature signal, which is the observer’s
main source of information, to vary very little from the refer-
ence point and this small variation will be mostly hidden by the
sensor’s noise, which is very common in PEMFC applications.

The observer’s parameters have been designed to provide a
state estimation settling time (98%) of 200 seconds and provide
adequate noise rejection. Said parameters are summarized in the
Table 1.

Moreover, it is assumed that there is no information of the
current derivative, İ, required for the computation of ψ2(ξ̂,u, θ, İ).
Therefore, the proposed observer has been implemented with
ψ2(ξ̂,u, θ, 0). This will induce some bias error in the estima-
tion. It should be remarked that this bias can be significantly
reduced by implementing a robust differentiator that estimates İ

6



Table 1: Adaptive observer parameters in numerical simulation
Parameter Value

α1 1.5
α2 0.01
β1 0.5
r2 0.16
ε 0.11
σ 0.0612
γ 0.05
qi 3
pi 300

Figure 5: Model’s liquid water saturation (orange) and adaptive observer’s
estimation (blue) in presence of measurement noise.

[29]. However, as it will be shown, the low-power peaking-free
observer is robust with respect to the unmodelled İ, making the
robust differentiator unnecessary.

The evolution of the model’s true liquid water saturation and
the observer’s estimation is depicted in Fig. 5. The estimation
error converges to a relative error below 3%, within the first
200 seconds. Therefore, the proposed scheme is capable of
estimating the fuel cell CCL’s liquid water saturation while
satisfying the proposed observer performance objectives even
in the presence of significant sensor noise. It is noticeable that
there is a small bias between the estimation and the true value.
This discrepancy is created by the absence of the factor İ in
the observer equations. Nevertheless, the robustness of the low-
power observer reduces the effect of the unknown İ, and the bias
induced by this discrepancy is negligible.

The observer’s estimation of the unknown parameters and
the true model’s values is depicted in Fig. 6. In all cases, after
200 seconds, the estimation converges to a relative error below
0.1% despite the presence of significant sensor noise and the
unmodelled factor, İ. This convergence time is of the same time-
scale as the PEMFC’s water dynamics [4]. Thus, the estimation
could be used for real-time fuel cell monitoring.

This numerical simulation shows that the proposed observer
strategy is capable of estimating the PEM fuel cell liquid water
saturation and unknown water dynamics parameters in a fast and
robust manner despite that the stack temperature measurement is

nearly hidden by the noise. The desired observer objectives are
quite generic, but the observer’s parameters could be optimized
to accommodate the observer to specific applications of control,
identification or monitoring.

6. Experimental Validation

This section focuses on studying the performance of the
proposed estimation scheme in a real experimental prototype.

6.1. Experimental set-up

This work considers a PEMFC stack H-100 of Horizon fuel
cell technologies of 20 cells and a rated power of 100 W. Due
to its small size, low weight and lack of peripherals (as a conse-
quence of the open-cathode architecture) the PEMFC H-series
are very attractive for small transport applications. The fuel
cell’s cathode is self-humidified and includes an attached fan
that delivers air to the cathode and cools down the system. The
cathode’s air velocity is measured through a hot film sensor
model EE75 of E+E Elektronik. The cathode’s fan is controlled
through a NI-9505 PWM module of National Instruments. Pure
hydrogen is delivered in the anode side by a compressed air
cylinder. In order to avoid the design of a flow controller, the
H-100 fuel cell will be operated in dead-end mode [12]. A
pressure regulator maintains the anode inlet pressure at 0.4 bar
and 500 ms purges are executed every 20 seconds. Due to the
open-cathode architecture, the PEMFC is fed with oxygen taken
directly from the ambient air, which makes the system very sen-
sible to the ambient conditions. In order to make the experiments
reproducible, the fuel cell is enclosed in a environmental cham-
ber that regulates the ambient temperature, relative humidity and
oxygen concentration.

The humidity and ambient temperature at the cathode are
measured through a sensor model HMM211 from Vaisala. More-
over, the temperature of each cell is measured, individually,
through a type K thermocouple. The average of the 20 tem-
perature measurements is taken as the averaged fuel cell stack
temperature T f c.

The experimental set-up includes a programmable load that
allows to control the demanded current and emulate a real appli-
cation. The stack voltage, V f c, is measured through an isolation
amplifier, model AD215 from Analog Devices and the exchange
current, I, through a Hall effect sensor model LTS 6 NP of LEM.

The experimental set-up and a photography of the environ-
mental chamber and the H-100 PEMFC can be seen in Fig. 7.

All the data acquisition devices are connected to a Compact
Rio embedded controller cRIO-9047 of National Instruments,
which includes a FPGA module and can be programmed in the
LabView environment. All the data is acquired in a sampling
time of two seconds, which is considered to be adequate, as the
fuel cell thermal and water dynamics time scales are an order of
magnitude larger and the observer computational cost is minimal
at this frequency.
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Figure 6: Model’s unknown parameter θ true value (orange) and adaptive observer’s estimation (blue) in presence of measurement noise.

Figure 7: (a) Environmental chamber and H-100 PEMFC. (b) H-100 experimental set-up scheme.

6.2. Methodology

The main problem in validating the proposed observer strat-
egy is the unavailability of liquid water saturation sensors. As a
consequence, one can apply the proposed observer technique to
generate an estimation of the water, ŝ, and the unknown param-
eters, but, these estimations cannot be compared with the true
values. However, there exists other measured signals that can be
used to endorse the estimation.

Specifically, the estimation of the stack temperature, T̂ f c,
the estimation of the liquid water saturation, ŝ, and the volt-
age equation (2) can be used to generate an estimation of the
stack voltage, V̂ f c. If we assume that there is sufficient air and
hydrogen and the current is low enough, the fuel cell concen-
tration losses are negligible. Thus, the accuracy of the stack
voltage computation only depends on the stack temperature and
the CCL’s liquid water saturation, as seen in equation (2). Con-
sequently, in such conditions, one can verify the accuracy of
the liquid water saturation estimation by computing the errors
‖T f c − T̂ f c‖ and ‖V f c − V̂ f c‖.

The H-100 PEMFC setup will be excited by a constant ex-
change current of 3.9 A and a step function from 0.21 m s−1

to 0.19 m s−1 in the cathode’s air velocity. As the current is
maintained constant at a medium range value, it is not expected

to be significant water generation due to the cathode reduction
reaction. However, due to the air velocity’s decrease and the
absence of temperature control, the fuel cell’s stack tempera-
ture is expected to increase, which will boost the liquid water
evaporation rates. Therefore, the CCL’s liquid water saturation
should reduce during the experiment, which should provide the
necessary system excitation (7) for the parameter estimation.

The experiment conditions are summarized in Table 2.

Table 2: Operating conditions of the experiment
Variable Value Units

Anode reactant H2 −

Cathode reactant Ambient air −

Tamb 25 ◦C
RHamb 75 %

Anode Pressure 0.4 Bar
Anode RH 0 %
Current 3.9 A

In order to asses if the system is truly persistently excited
(7), in parallel, the integral (7) has been computed numerically
as follows

Q̇ = −κQ + φ(x̂,u)ᵀBᵀBφ(x̂,u)
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where Q is a numerical computation of the integral (7), κ is the
forgetting factor constant and x̂ is the observer’s estimation of
the states, which will be presented below.

The minimal eigenvalue of Q is always positive in the exper-
imental profiles. Thus, condition (7) is satisfied and the system
is persistently excited.

6.3. System Identification

The H-100 fuel cell’s parameters have been identified in the
operating conditions depicted in Table 2 and in the correspond-
ing stack temperatures. The system identification experiment
consisted in introducing a step function in the cathode air ve-
locity and measuring the stack temperature, T f c, and voltage,
V f c. The temperature equation’s parameters, K1 and K2, have
been fitted through a linear least squares of T f c vs T̂ f c, and
the voltage equation’s parameters Rohm and α have been fitted
through a linear least squares of V vs V̂ f c. The values of j0 and
ac have been taken from [25]. Reference values of the unknown
parameters Ks,Kevap and K5 are taken from [25]. These last
three parameters will be used to asses the validity of the parame-
ter estimation accuracy, but are not considered in the observer
design and computation. The rest of the parameters are constants
that have been taken from the literature. All these parameter
values are summarized in Table A.4.

6.4. Results and discussion

The observer design parameters have been tuned to provide a
state estimation settling time of 200 seconds and sufficient noise
rejection, see Table 3. Moreover, again, it is assumed that there
is no access to the derivative of the current. Thus, ψ2(ξ̂,u, θ, İ)
is implemented as ψ2(ξ̂,u, θ, 0).

Table 3: PEMFC observer parameters
Parameter Value

α1 1.5
α2 0.01
β1 0.5
r2 0.15
ε 0.35
σ 0.219
γ 0.015
qi 3
pi 50

The constant current, the air velocity step profile and the
induced stack temperature have been introduced in the proposed
adaptive observer and, consequently, an estimation of the liq-
uid water saturation has been generated, Fig. 8 (a). As stated
before, the true value of the liquid water cannot be measured
online, so, this estimation cannot be compared with any signal.
Nevertheless, some conclusions can be drawn from this result.

In Fig. 8 (a), it can be noticed that the estimation converges
to a value around 0.4, which is coherent with the optimal value
sopt depicted in Table A.4. Moreover, after the air velocity

change in second 325, it can be seen that the liquid water satura-
tion has slowly decreased. This tendency was predicted during
the experiment design, as an increase of the temperature results
in an increase of the water evaporation rates.

Notice that the liquid water saturation estimation in Fig. 8
(a) stabilizes in the first 200 seconds, and, after the air velocity
change, it stabilizes again in 200 seconds. Moreover, the high-
frequency oscillations induced by the temperature sensor noise
presents a peak-to-peak amplitude of less than 5%. It should
be remarked that if a classic high-gain observer was applied as
the soft sensor, this error would be significantly larger, and the
estimation would be practically unusable.

In order to validate the accuracy of the estimation, the es-
timated stack temperature profile and liquid water saturation
profile have been used to generate an estimation of the output
voltage, V̂ f c, through (2). As stated before, if V̂ f c and T̂ f c are
accurate, then ŝ is also accurate. Moreover, the stack temper-
ature and the output voltage have been measured. Therefore,
addressing the accuracy of V̂ f c and T̂ f c is trivial. Specifically, the
measured temperature profile and the observer’s estimation is
depicted in Fig. 8 (b). It can be seen that, after the transient, the
relative error is below the 0.1%. The measured voltage evolution
and observer’s estimation is depicted in Figure 8 (c), where it
can be seen that the voltage estimation converges to a relative
error below the 0.4%. Following the reasoning presented in
the methodology sub-section, as the temperature and voltage
estimation converges to a relative error below the 0.4%, it can
be concluded that the CCL’s liquid water saturation estimation
is also accurate.

In parallel to the liquid water saturation estimation, the adap-
tive observer has generated an estimation of the water dynamic’s
unknown parameters, θ. The accuracy of the observer’s esti-
mation has been assessed by direct comparison to the values
reported in [25][24] for an H-100 fuel cell in similar operating
conditions. It should be remarked that the values reported in
[25][24] were not directly measured, but estimated through an
off-line identification algorithm. Therefore, its validity should
be treated carefully. Indeed, it will be shown that the values
estimated through the observer proposed in this work presented
higher prediction capabilities.

The evolution of the parameter estimation is depicted in Fig.
8 (d)-(f). It is noticeable that the estimation converges to a value
of the same magnitude as the ones reported in [25][24], within
the first 1000 seconds, which is in the timescale of the liquid wa-
ter saturation dynamics [4]. It is noticeable the bias between the
estimated value and the ones reported in previous works. This
discrepancy is mainly explained by the algorithm that is used
to estimate the parameters, K5,Ks and Kevap. In [25][24], these
parameters were estimated through an off-line identification al-
gorithm. Alternatively, this work has estimated these parameters
through the on-line adaptation dynamics (6). It should be re-
marked that the values reported in [25][24], achieved a voltage
estimation error of 0.5% and a temperature estimation error of
2%, which is significantly larger than the one reported in this
work. Therefore, the parameters estimated through the proposed
algorithm significantly improves the prediction capabilities of
the model. Consequently, are closer to the optimal parameter
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Figure 8: (a) Adaptive observer’s CCL liquid water saturation estimation. (b) Measured stack temperature profile (orange) and adaptive observer’s estimation (blue).
(c) Measured stack temperature profile (orange) and adaptive observer’s estimation (blue). (d)-(f) Adaptive observer’s parameter estimation θ (blue) and parameter
value estimated in [24][25] (orange). The values reported by the adaptive observer (blue) have achieved a more accurate voltage and temperature prediction than the
ones estimated in [24][25]. Thus, are closer to the ideal parameter value in the studied experiment.

value.

7. Conclusions

This work has presented a new adaptive observer scheme for
the problem of estimating the unknown states and parameters
related to PEMFC CCL water dynamics based on a simple non-
linear model. Nonetheless, the state and parameter estimation
problem presented significant obstacles and it was required to
implement recent observer results to solve it. The proposed
observer is based on a time-varying nonlinear adaptive observer.
The relative degree assumption between the measured output
and the unknown parameters, ubiquitous in adaptive observers,
have been circumvented by coupling the adaptive observer with
a high-gain observer as a soft sensor that estimates a certain
auxiliary signal. The high-gain observer has been modified
combining the ideas of low-power peaking free observation and
dynamic dead-zone filtering which significantly improves the
performance of this soft sensor. Finally, the technique has been
validated through numerical simulations and in a real experimen-
tal set-up.

Nevertheless, this work presents some limitations that have
to be addressed in future works. From the theoretical point of
view, it could be interesting to modify the adaptive observer in
order to relax the persistence of excitation condition (7), which
may be too restrictive in certain operating points and may in-
duce parameter bias in low excitation conditions. A promising
approach is to modify the parameter adaptation dynamics with
concurrent learning adaptive control ideas [30], which achieves
an accurate parameter estimation under a weaker finite excitation
condition.

Furthermore, in future works, the proposed fuel cell observer
will be implemented in a set of control loops. A promising
problem to be solved is the combination of the observer with

a path planning algorithm in order to make a water content-
conscious control of PEM fuel cells in automotive planning
problems.
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Appendix A. Parameters of the H-100 fuel cell

Table A.4 depicts the parameters of the H-100 fuel cell in
the operating conditions depicted in table 2. The parameters
Ks,Kevap and K5 are from the study [25][24].
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Table A.4: Parameters of the fuel cell model
Parameter Value Units

K1 3.276 · 10−4 K J−1

K2 0.0255 m−1

K3 4.1457 · 10−5 Kg C−1 m−2

K4 0.0022 Kg K J−1

Eth 1.44 V
Tamb 298 K
Ageo 0.00225 m2

Apore 2.2E7 m2

p0 1.196E11 Pa
Ea 0.449 eV
pv 2380 Pa

ncell 20 −

α 0.311 −

ac 238 −

ire f
0 4.7E − 3 A m−2

∆G∗ 70000 J mol−1

Rohm 1.566 Ω

sopt 0.55 −

kb 8.6170 · 10−5 eV K−1

R 8.314 J K−1 mol−1

F 96485 C mol−1

Ks 1.746 Kg m−2

Kevap 8.6E5 m3 s−1

K5 0.2972 s−1
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