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ABSTRACT Vanadium redox flow batteries are very promising technologies for large-scale, inter-seasonal
energy storage. Tuning models from experimental data and estimating the state of charge is an important
challenge for this type of devices.
This work proposes a non-linear lumped parameter concentration model to describe the state of charge that
differentiates the species concentrations in the different system components and allows to compute the effect
of the most relevant over-potentials. Additionally, a scheme, based on the particle swarm global optimization
methodology, to tune the model taking into account real experiments is proposed and validated.
Finally, a novel state of charge estimation algorithm is proposed and validated. This algorithm uses a
simplified version of previous models and a sliding mode control feedback law.
All developments are analytically formulated and formally validated. Additionally, they have been exper-
imentally validated in a home-made single vanadium redox flow battery cell. Proposed methods offer a
constructive methodology to improve previous results in this field.

INDEX TERMS Vanadium Redox Flow Battery Modelling, State of Charge Estimation, Non-linear Model
Tuning from Experimental Data, Particle Swarm Optimization, Sliding Mode Observer.

I. INTRODUCTION

REDOX flow batteries (RFBs) are electrochemical en-
ergy storage systems that have certain peculiarities

compared to other equivalents such as rechargeable batteries
or supercapacitors. This technology has been known since
the 19th century, although it was not until the 70s of the
last century that NASA and the Exxon company began to
investigate these devices. Like a traditional battery, they
consist of an anode and a cathode separated by a membrane
that isolates the two electrolytes. This membrane prevents
the redox species from mixing and facilitates the crossover
of ions to maintain the electroneutrality of the system. The

main difference from other types of batteries is that the active
materials are stored in the form of dissolved electrolytes in
reservoirs external to the device. It permits the independent
sizing of the device’s power (stack size) and its storage capac-
ity (which depends on the nature, volume and concentration
of electrolytes). This independence of the power supplied and
the energy stored provides greater flexibility both to scale
the installations according to the storage time needed, and to
update their size based on the energy demand, nature, volume
and concentration.

The first RFBs used aqueous solutions of iron and
chromium salts as positive and negative electrolyte, respec-
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tively. The presence of Fe and Cr ionic species in solutions
separated by an ion exchange material was a great problem
due to the cross contamination caused by the crossover of
ions of different chemical nature through the ion exchanger.
In the mid-1980s, the research group of Prof. Maria Skyllas-
Kazacos, from the University of New South Wales, devel-
oped a redox system based on vanadium salts in aqueous
solution [1]. After various improvements throughout the first
decade of the 21st century, the all-vanadium redox flow
battery (VRFB) has become the most widely used system
and has aroused growing interest among researchers and
companies in the energy sector [2]. In contrast to solid-state
batteries, VRFBs can provide multiple services, such as peak
control, frequency and voltage regulation, or its use as backup
systems in electric vehicle fast charging stations. In addition,
they present a unique combination of advantages added to
the possibility of independent scaling of the energy and
power units, such as their high energy efficiency, low envi-
ronmental impact, tolerance to deep discharges and their long
life cycle (>20,000 cycles). Currently, there are numerous
studies related to cell design and performance improvements
using new components such as electrodes or membranes, but
fewer are proposing systems for managing energy in a more
efficient way [3] [4].

Unlike other battery types, RFB are active elements and
automatic control plays a very important role [5], [6]. Deter-
mining the appropriate electrolyte flow [7] and estimating the
state of charge are the two main issues from the automatic
control point of view. At present, the most widely used
methods to estimate the state of charge (SOC) are based
on measurements of the open circuit potential (OCP) [8]
[9], conductivity [10], viscosity [11] or the colour of the
electrolytes [12]. However, these estimates are conditioned
by the temperature dependence and the imbalance of elec-
trolytes, so the precision decreases as they are degraded and
the battery capacity fades. Moreover, due to their inaccuracy
and intrusivity, these techniques are not the best solution for
the purpose presented.

State observers [13]–[15] have been efficiently used to
estimate relevant variables in dynamic systems; in recent
years they have been proposed to determine the VRFB
SOC [6]. For SOC monitoring, the most commonly used
are the electrochemical models that give a formulation for
the chemical species involved in this type of systems. In
this scenario, Skyllas-Kazacos proposed a lumped param-
eter model to monitor the evolution of vanadium species
inside the battery [16] based on a non-linear system; other
approximations consider an equivalent electrical circuit to
simplify the model [17] [18]. The main issue is that their
precision depends on the quantity and quality of the measured
data, so the predicted SOC can lead to large errors. Other
models are based on analysing different variables, such as
the pressure, conductivity or temperature of the electrolytes
[12]. Although equivalent circuits offer a simple and more
intuitive representation, their accuracy is only local (i.e. the
circuit parameters might change form one operation point to

another).
One of the main difficulties when using electrochemical

models, which offer a more global description, is that they
can not be easily tuned from experimental data. This model
calibration can be performed online, in real-time, or offline
by means of collected data. [5] presents an offline estimation
of the standard electrode potential and ohmic resistance
parameters. Offline global optimization methods, such as Par-
ticle Swarm Optimization (PSO) have already been proposed
[19].

Observers combine a given VRFB model, some measure-
ments, system variables and a feedback law to force the
convergence between the model and the data. Most VRFB
observers are based on the measure of the OCP or tempera-
ture, that are easy variables to monitor.

Most popular feedback laws are the Extended Kalman
Filter (EKF) and non-linear observers. EKF requires linearis-
ing the model around an operation point, consequently it is
difficult to guarantee that the observer will work in every
operation point. On the contrary, non-linear observers offer a
global behaviour with an increase of the mathematical com-
plexity. VRFB pioneer, Prof. Skyllas-Kazacos, developed an
EKF observer by means of an electrochemical model and the
OCP measure [20]. The same technique was used by means
of an equivalent electrical model in [21] or a thermal model
with the measure of the electrolyte temperature in [22].
Non-linear observers have also been proposed for VRFB. A
Sliding Mode Observer (SMO) is presented in [23] using a
dynamic electrical equivalent circuit while a Neural Network
(NN) approach is presented in [24] using a multilayer feed-
forward network that is trained using the error between open
circuit voltage and estimation, with an output layer that
computes the SOC. SMOs have the capability to directly deal
with non-linear models and handle uncertainty robustly [25].

In order to overcome the limitations of equivalent circuit
based observers such as [26], in this work an electrochemical
model combined with a SMO is proposed. Although the basic
model is taken from the literature [27], it has been improved
to take into account the different over-potentials existing in
VRFB. Moreover, this concentration model allows cell and
tank concentrations to be different, so there is not a direct re-
lationship between the cell voltage and the SOC. Differently
from equivalent circuit based observers, the usage of a non-
linear model in the observer allows to describe the system
behaviour in a global manner without the requirement to be
close the equilibrium points [28]. The model is calibrated
using experimental data, coming from a home made VRFB,
and global optimization methods.
In order to limit the mathematical complexity and the re-
quired computational burden required to implement the ob-
server a simplified model is proposed. This simplified model
is used to design a SMO which guarantees global perfor-
mance.

The observer design is based on two steps. Firstly, the sim-
plified system is transformed into a canonical control form,
latter a sliding mode controller is included. The variable
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change which allows to transform the original system into the
control canonical form is well-posed, consequently the two
spaces are equivalent and the observer can be rewritten in the
original coordinates. This methodology formally guarantees
sliding mode existence and performance. [13] Finally, all the-
oretical developments have been experimentally validated.

The main contributions of this work are the following:
• Improvement of an existing electrochemical model to

take into account over-potentials.
• A methodology based on global optimization and exper-

imental data to tune the electrochemical model.
• Formulation of a state of charge estimator based on a

simplified nonlinear electrochemical model and sliding
mode feedback law.

• Experimental validation of the proposed methodology.
The work is organized as follows: section II describes

the proposed VRFB model, section III describes the exper-
imental setup, section IV describes the methodology used to
tune the model, section V contains the observer formulation,
section VI shows the experimental results and section VII
presents the conclusions of the work.

II. VRFB MODEL FORMULATION
This section describes the VRFB model. Firstly, the different
concentrations evolution is analyzed. After that, there is a
description of how the output voltage and the state of charge
(SOC) are computed based on the concentrations.

A. CONCENTRATION EVOLUTION
Skyllas Kazacos [29] introduced a model which allows to de-
scribe the evolution of the different concentration vanadium
species existing in a VRFB. This model can be written in
state-space form as

ẋ = Ax+ B1x · q1 + B2x · q2 + cj (1)

where q1 and q2 the flow rates of the anolyte and the catholyte
parts, j is the VRFB current density and the state vector, x, is
defined as x=[cc2, c

c
3, c

c
4, c

c
5, c

t
2, c

t
3, c

t
4, c

t
5]T ; where cki stands

for the concentration of vanadium species i in the k, with
k = {c, t} meaning concentration in the cell and the tank
respectively. The sub-index i = 2 corresponds to V 2+, i = 3
to V 3+, i = 4 to V 4+ (which exists as V O2+) and i = 5 to
V 5+ (which exists as V O+

2 ). Matrix A describes the effect
of diffusion, matrices B1,B2 ∈ R8×8 and vector c ∈ R8

describe the effect of the flows and the current over the
concentrations respectively. Appendix for Models contains
the detailed expression of these elements.

B. STATE OF CHARGE COMPUTATION
The state of charge (SOC) of the VRFB can be understood as
the amount of energy stored in the tanks, which can be linked
to the amount of V 2+, x5, and V 5+, x8, in the tanks. This
amount is usually computed in a per unit manner.

Although in an ideally equilibrated system the SOC would
be the same in both reservoirs in practice it might be slightly

different in the two tanks (ie. catholyte and anolyte), conse-
quently there are two different ways to compute it

SOC− =

(
ct2

ct2 + ct3

)
(2)

SOC+ =

(
ct5

ct4 + ct5

)
. (3)

FIGURE 1. Single-cell VRFB designed and built at LIFTEC used in the
experiments.

C. CELL VOLTAGE EXPRESSION
The cell voltage (V ) is a very important parameter in a
VRFB. Jointly with the current it determines the gener-
ated/consumed electrical power. Apart from the vanadium
concentration in the cell, it depends on the acidity of the
medium and several potential loss caused by electrochem-
ical, mass-transfer or charge mobility processes. It can be
expressed in terms of the Nerst equation (V nerst), and the
existing overpotentials (η).

V = V 0 + V nerst + ηact + ηohm (4)

where V 0 is the standard electrode potential, ηact is the
activation overpotential, and ηohm the ohmic overpotential.
.

The Nerst term can be computed as

V nerst =
RT

nF
· ln

[(
cc5 · c2H+

cc4

)
catholyte

(
cc2
cc3

)
anolyte

]
,

(5)
where R and F are respectively, the gas and Faraday con-
stants, T is the temperature inside the stack, n the number
of electrons involved in the redox reaction (n=1 for VRFB)
and cH+ is the concentration of protons that can be obtained
from the initial concentration (cH+(0)) that exists due to the
sulphuric acid and the evolution of the V5+ concentration:

cH+ = cH+(0) + cc5. (6)

The activation overpotential, ηact, can be computed from
the Butler-Volmer equation considering no mass-transfer ef-
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(a) Current density of 160 mA·cm−2
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(b) Current density of 200 mA·cm−2

FIGURE 2. Comparison between real and estimated voltages using the
calibrated model.

fect (electrode surface concentrations do not differ from bulk
values) [30]:

j0,+ =
1

se
·
(
F · k0+ · (cc5)1−α+ · (cc4)

α+
)

(7)

j = j0,+

(
e

(1−α+)·n·F
R·T η+ − e−

α+·n·F
R·T η+

)
(8)

j0,− =
1

se
·
(
F · k0− · (cc3)1−α− · (cc2)

α−
)

(9)

j = j0,−

(
e

(1−α−)·n·F
R·T η− − e−

α−·n·F
R·T η−

)
(10)

ηact = η+ − η− (11)

where se is the electrode surface, j0 are the exchange current
densities at equilibrium, kθ are the rate constants and α are
the change transfer coefficients for the catholyte (+) and
anolyte (-) parts of the system. These relationships define
a smooth implicit function ηact (j,x) which provides the
activation overpotential.

Finally, the ohmic overpotential can be computed using a

constant r that represents the stack resistance:

ηohm = r · j · se

III. EXPERIMENTAL PLATFORM
At LIFTEC research facilities a homemade single-cell VRFB
with an active area of 3 cm × 3 cm was assembled sand-
wiching a Nafion 212 membrane between two electrodes of
GFD4.6 EA felt thermally activated (Sigracell). It consists in
two flowframes manufactured in PVC and two plain graphite
bipolar plates. The nafion membrane was pretreated inH2O2

3% for 1 h, and in 0.5 M H2SO4 for 1 h, followed by
rinsing with water after each step. Electrodes were placed in
the PVC flow frames using a symmetric configuration and
compressed up to 3 mm (35%). Viton gaskets were used to
avoid electrolyte leakage. To close the VRFB, stainless steel
end-plates were employed. The single-cell was connected to
two reservoirs containing 100 ml of negolyte and posolyte
each.
To establish the suitable flow rate for each electrolyte, a 2-
channel peristaltic pump (Dinko D-25V2i) was used. The
negative reservoir was continuously purged with nitrogen
during the experiments to avoid the oxidation of the active
species by the atmospheric oxygen. The assembled single-
cell can be observed in Fig. 1.

Negolyte and posolyte were prepared from 0.4 M V OSO4,
2.0 M H2SO4 and 0.05 M H3PO4 solutions by electrolysis
in the single-cell in two steps. In the first step, two equal
volumes of V 4+ solutions are transformed in V 3+ (negolyte)
and V 5+ (posolyte) by charging the cell at a constant volt-
age of 1.6 V until the current density dropped down to 5
mA · cm−2. In the second one, 100 ml of the generated
V 3+ solution are mixed with the same volume of V 4+ initial
solution. Following the same procedure described in the first
step, two equal volumes of V 3.5+ solution are subjected to
electrolysis at 1.6 V until the colour of the solutions has
changed to purple (negolyte) and yellow (posolyte).

Charge/discharge cycling was carried out at room tempera-
ture with current densities between 100 and 200 mA · cm−2.
Negolyte reservoir contained the 100 ml of 0.4 M V 2+ +
V 3+ while posolyte reservoir contained the 100 ml of 0.4 M
V 4+ + V 5+ solution. During this procedure, the flow rate
for each electrolyte was set to 50 ml ·min−1. The upper and
lower cell potential cutoff limits were set to 2.0 V and 0.6
V, respectively. Electrolyte generation and charge/discharge
experiments were performed using a Metrohm Autolab PG-
STAT302 Potentiostat/Galvanostat, which allowed to moni-
tor the current and voltage with a sampling period of 1 second
(Ts = 1s).

Two charging and discharging processes have been carried
out seeking to reach the energy limits of the system, going
from a level of total discharge (SOC ≈ 0) to that of total
charge (SOC ≈ 1). Fig. 2 shows the evolution of the mea-
sured voltage along these experiments.
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TABLE 1. System parameters

Symbol Meaning Value

vc Cell volume 1· 10−9 m3

vt Tanks volume 6 ·10−5 m3

cv Total vanadium concentration 0.4 M
k2 Diffusion rate of V2+ 6.9 · 10−9 m·s−1 [31]
k3 Diffusion rate of V3+ 2.5 · 10−9 m·s−1 [31]
k4 Diffusion rate of V4+ 5.37 · 10−9 m·s−1 [31]
k5 Diffusion rate of V5+ 4.64 · 10−9 m·s−1 [31]
d Membrane thickness 0.5 mm
s Membrane surface area 9 cm2

se Electrode surface area 9 cm2

q Flow rate 100 ml·min−1

V θ Standard electrode potential 1.27 V

TABLE 2. Parameters bounds

Parameter Lower bound Upper bound

cH+(0) 0 4
r 0.1 1.0
α+ 0 1.0
α− 0 1.0
kθ+ 10−9 10−5

kθ− 10−9 10−5

IV. MODEL CALIBRATION
Although all parameters of the model described in section II
have a clear physical meaning, in practice the uncertainty is
important. Additionally, the model neglects many phenom-
ena such as the distributed nature of the VRFB. Due to this a
data-based parameter tuning has been performed. To achieve
this, the experiments performed in reality are reproduced
with the model. To compare the results, the voltage variable,
which can be easily measured has been used. Repeating this
procedure several times with a different set of parameters
the best values for the parameters can be obtained. In other
words, an offline optimization problem has been formulated
as follows:

minp

Nexp∑
j=1

1

nj

nj∑
l=1

|V (l · Ts)− V̂ (l · Ts)|

subject to
˙̂x(l · Ts) = Ax̂(l · Ts) + B1x̂ · q1(l · Ts)

+B2x̂ · q2(l · Ts) + c · j(l · Ts)
V̂ (l · Ts) = h (x̂(l · Ts), j(l · Ts))
f (p) ≤ 0.

where, Nexp is the number of available independent exper-
iments (in this work Nexp = 2), nj is the length of each
experiment, V is measured voltage while V̂ is the voltage
obtained from the simulation, p is a vector containing all
the variables which are going to be tuned, and f is a set of
constrains that the parameters need to fulfill.

TABLE 3. Tuned model parameters.

Parameter Value

cH+(0) 2.32 M
r 0.1413 Ω

α+ 0.5289
α− 0.5159
kθ+ 7.853 · 10−6 m·s−1

kθ− 3.456 · 10−6 m·s−1

-10 -8 -6 -4 -2 0 2 4 6 8
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-100

-50
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FIGURE 3. Butler-Volmer equation approximation

In this work, the tuned variables are the initial proton
concentration cH+(0), the ohmic resistance r, and the acti-
vation over-potential coefficients α+, α−, kθ+ and kθ−. The
rest of the parameters are selected directly from the material
characteristics and prototype geometry (see TABLE 1).
f has been used to define the bounds over the achiev-

able values for the tuned variable (see TABLE 2). These
bounds have been defined taking into account the literature
[5], [30]. The model, the cost function, and some of the
constraints contain non-linearities, such as exponentials. This
implies that the optimization problem may be non-convex
and therefore the use of traditional optimization mechanisms
such as the descent by minimum gradient can lead to solu-
tions that correspond to local minima. In order to avoid this
problem, global optimization methods are used. In particular,
the Particle Swarm Optimization (PSO) method [19] is used
because its efficiency in similar problems has been proven.
To improve precision and computational efficiency, the PSO
is combined with a gradient descent mechanism. This allows
to quickly obtain the minimum once the specific attraction
basin is entered. [32]. TABLE 3 shows the value of the
tuned parameters. Fig. 2 shows both the measured and the
simulated voltage values. As it can be seen, although perfect
fitting is not achieved, the discrepancies between the model
and measurements are small.
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V. OBSERVER DESIGN
Although the previously obtained model offers a good fitting,
it is not convenient to use it directly to estimate the VRFB
SOC due to the fact that it is difficult to precisely estimate
the initial value for all state variables. This, jointly with
measurement noise and the discrepancies between the model
and the experimental data would introduce big discrepancies
between the estimated value and the real one. To avoid these
discrepancies a state observer [15] [14] [13] will be used.
In the following the development of the state observer is
presented.

A. MODEL SIMPLIFICATION
Even it would be possible to design an observer for the
model introduced in section II, here the model will be sim-
plified through the introduction of some assumptions. This
will allow to obtain a simpler algorithm to estimate the
VRFB SOC. This simplification will significantly reduce the
required computational burden and consequently allow to
implement it in low-cost hardware devices.

In order to simplify the model it is assumed that:
1) The two tanks are equilibrated. In other words, it is

assumed that c5 = c2, c3 = c4. This indirectly implies
that the SOC is the same in both tanks.

2) The amount of vanadium is exactly the same in both
tanks, In other words, c5 = cv − c4, c3 = cv − c2.

3) The flow of electrolytes is exactly the same in both
sides, i.e. q1 = q2 = q. This is the usual hypothesis
in most control schemes.

These assumptions are natural because they are the ones that
the designer takes into account when designing the battery.

Under these assumptions, the model can be reduced to only
one species (V 5+) as:

ẋr = Arxr + qBrxr + crj + dr (12)

xr=[cc5, c
t
5]T being the new state vector, and

Ar =
2 · s
vc · d

(
−2k2 − k5 + k3 0

0 0

)
, cr =

2se
Fvc

(
1
0

)

Br =

− 2

vc

2

vc
1

vt
− 1

vt

 ,dr =
2 · s
vc · d

(
−cv · k3

0

)
.

The voltage equation would be the one introduced in
subsection II-C but applying the introduced constraints.

Under these constrains the system equations become:

ẋr = f (xr,u) (13)
y = h (xr,u) (14)

where y = V and u = [q, j].
This model has been devised to operate inside the observer,

so any discrepancy between the simplified model and the
experimental data will be corrected by the observer control
action.

B. CONTROLLABLE CANONICAL FORM
TRANSFORMATION
Most popular observer design techniques require that the
system can be written in controllable canonical form (CCF)
[13], [33]. In this section the system defined in subsection
V-A will be written in CCF. To do so, it is assumed that q and
j are known/measurable input variables while the voltage, V ,
will be the output measurable variable.

In the CCF the new state vector, z, is defined by the output
and its derivate. In our case:

z =

[
y
ẏ

]
=

[
V

V̇

]
=

[
h(xr,u)

Lf(xr,u)h(xr,u)

]
= φ(xr,u).

where L represents the Lie derivative (directional derivative).
It can be proven that φ is a diffeomorphism relating the
original state-variables with the new ones. The new dynamics
variables can be rewritten as:

ż =

[
ż1
ż2

]
=

[
z2

L2
f(xr,u)

h(xr,u)

]
(15)

which can be rewritten as:

ż =

[
0 1
0 0

]
· z +

[
0

h̄(z,u, u̇)

]
(16)

where h̄(z,u, u̇) presents the non-linear part of the model.
As φ is a diffeomorphism, dynamics (16) is analytically
equivalent to (13)-(14). Consequently, the evolution of xr
can be reconstructed from that of z.

C. SLIDING MODE OBSERVER
In this section, following the developments in previous works
[13], [33], a SMO for (16) will be introduced. Firstly, a
control action is introduced in the system:

˙̂z =

[
0 1
0 0

]
· ẑ +

[
0

h̄(ẑ,u, u̇)

]
+

[
0
1

]
v. (17)

Secondly, to achieve that the voltage estimation, ẑ1, con-
verges to the measured voltage, y, the following switching
surface, with ey = y − ẑ1, is defined:

σ = ėy + δey = 0, (18)

where δ ∈ R+ is a parameter to be tuned. To achieve this,
a second-order quasi-continuous term v is chosen as the
corrective signal [34]:

v = −γ ·
(
σ̇ + |σ|1/2·sign(σ)

|σ̇|+|σ|1/2

)
, (19)

γ being the gain of the control action. It must be selected in
order to fit the non-linearity term h̄(z,u, u̇). As discussed in
[13], [33], control law (19), combined with switching surface
(18) guarantees that (17) will track the evolution of measured
voltage in a stable and robust manner.

Using the diffeomorphism φ, it is possible to write the
observer in the original coordinates as:

˙̂xr = Arx̂r + qBrx̂r + crI + dr + [dφ]
−1
v

ŷ = h(x̂r,u)

where dφ stands for the jacobian matrix ofφ (i.e dφ = ∂φ
∂xr

).
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FIGURE 4. Comparison between measured and estimated voltage.

VI. OBSERVER EXPERIMENTAL VALIDATION
To implement the proposed observer with reduced compu-
tational burden, the Butler-Volmer equation is piece-wise
approximated as shown in Fig. 3 [35]. This approximation
offers small error with a simple implementation.

Additionally to codify (19), it is necessary to compute
the first and second derivative of ey . To do this, a robust
differentiator has been used [36].

Although other options are possible, in this work δ = 2,
in (18) has been used. This value guarantees a convergence
to almost null error in less than 2 s once the sliding regime
has been achieved. Finally, γ = 0.8 has been selected. This
value offers a good trade-off between the induced chattering,
the observer robustness and the time required to reach the
sliding regime.

Fig. 4 presents the evolution of both, the voltage estimation
and the measured one in the two experiments, previously
discussed in section III. As can be noticed in Fig. 6, for both
experiments the absolute error between the real data and the
estimated one is almost null, being less than 2 mV. It was
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FIGURE 5. Evolution of the SOC and concentrations estimation for the VRFB
system.

also verified that after 25 s the switching surface is almost 0,
meaning that the sliding regime has been achieved and that
the observer is properly working.

As can be seen, the observer feedback eliminates the
discrepancies seen in section III due to uncertain initial
conditions and the differences between the model and the real
system.

Fig. 5 shows the evolution of the estimated contractions
and the computed SOC in the two cases shown in Fig. 4.
As it can be seen, there exist small discrepancies between
the evolution of the concentration in the cell and the tank,
proving that the model differentiates between both concen-
trations. This difference allows to reproduce the system real
behaviour and obtain a better SOC estimation. Referring to
SOC estimation, there are not experimental data to compare
with. However, the experiments have been carried out from
a minimum to a maximum SOC, and these extremes have
been verified by the colours that the electrolytes presented in
the tanks. Therefore, the SOC estimation that is displayed for
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FIGURE 6. Absolute error of estimation.

both experiments shows a realistic behaviour.

VII. CONCLUSION
In this work an improved electrochemical model of VRFB
has been presented. The used electrochemical model has
been improved to take into account the activation overpoten-
tials and other phenomena which usually are not considered
in the Literature. Additionally, a methodology to tune the
electrochemical model based on experimental data has been
proposed.

The model has been shown to be capable of reproducing
quite accurately the behaviour of an experimental redox flow
battery. Subsequently, a simplified model has been formu-
lated from which a SOC estimator has been proposed. Unlike
previous works the designed observer is novel on the use of a
nonlinear electrochemical model. This guarantees the global
performance and a good approximation in the estimated
values in the whole operation range. Regarding the observer,
its corrective action allows to obtain an estimation of the SOC
with great efficiency, as has been verified experimentally.

Moreover, the results have shown the difference that exists
between the concentration of species in the cell and the tank,
highlighting the need for a model such as the one proposed.

Currently, the authors are working to get a more quantita-
tive validation of the SOC estimation and an online parame-
ters tuning methodology.

APPENDIX: MODELS
The values of matrices A,B1, B2 and C appearing in (1) are
defined as follows.

A =
2 · s
vc · d



−k2 0 −k4 −2k5 0 0 0 0
0 −k3 2k4 3k5 0 0 0 0

3k2 2k3 −k4 0 0 0 0 0
2k2 −k3 0 −k5 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



B1 =



− 2
vc

0 0 0 2
vc

0 0 0

0 − 2
vc

0 0 0 2
vc

0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
vt

0 0 0 − 1
vt

0 0 0

0 1
vt

0 0 0 − 1
vt

0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



B2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 2

vc
0 0 0 2

vc
0

0 0 0 − 2
vc

0 0 0 2
vc

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1

vt
0 0 0 − 1

vt
0

0 0 0 1
vt

0 0 0 − 1
vt


C =

2se
Fvc

(1,−1,−1, 1, 0, 0, 0, 0)
T
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