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Abstract

Using dual quaternions, the closure equations of a kinematic loop can be expressed as a system

of multiaffine equations. In this paper, this property is leveraged to introduce a branch-and-prune

method specially tailored for solving such systems of equations. The new method is objectively

simpler (in the sense that it is easier to understand and to implement) than previous approaches

relying on general techniques such as interval Newton methods or methods based on Bernstein

polynomials or linear relaxations. Moreover, it relies on two basic operations — linear interpola-

tion and projection onto coordinate planes— that can be efficiently computed. The generality of

the proposed method is evaluated on position analysis problems with 0-, 1-, and 2-dimensional

solution sets, including the inverse kinematics of serial robots and the forward kinematics of

parallel ones. The results obtained on these problems show that the efficiency of the method

compares favorably to state-of-the-art alternatives.

Keywords: Position analysis, dual quaternions, multiaffine polynomials, branch-and-prune

methods.

1. Introduction

The position analysis problem entails determining the valid poses of a set of rigid links given

joint constraints between them. This is a fundamental issue that underlies many problems such

as the inverse kinematics of serial robots [1], the forward kinematics of parallel robots [2], the

coordinated manipulation of objects [3], the generation of valid grasps [4], the constrained object

positioning [5], the simultaneous localization and map building [6], the analysis of complex

deployable structures [7], and also problems in other fields such as the conformational analysis

of biomolecules [8].

The position analysis of mechanisms can be decomposed into two equally important sub-

problems: obtaining closure equations and solving them. The first problem is usually solved

by fixing suitable reference frames to each link, then obtaining the transformation between the
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frames at neighboring links as a function of the corresponding joint variables, and, finally, com-

posing the transformations along each independent loop. This procedure is straightforward, but,

as the complexity of the mechanism increases, the simplicity of the formulation becomes an is-

sue of paramount importance. An alternative is to abandon the standard loop-based paradigm

and use, for instance, distance-based closure conditions, which provide important simplifications

when the analyzed mechanisms contain spherical joints [9, 10]. This is so because their com-

plexity is not related to the number of loops in the mechanism, but to its coupling number [11].

Unfortunately, deciding beforehand when these formulations are superior to the standard loop-

based formulations is an open problem. If one still adheres to the loop-based approach, the com-

plexity of the formulation can only be reduced by simplifying the equations. In this context, dual

quaternions emerged as an elegant alternative to vector-, matrix- and quaternion-based formu-

lations, because they compactly encapsulate both translations and rotations [12, 13]. Moreover,

contrary to what happens with other formulations, the use of dual quaternions leads to a minimal

set of multiaffine equations. This property was first identified in [14] where it was exploited

to reduce the system of equations to a generalized eigenproblem. Unfortunately and despite its

relevance, this work received little attention. As we will show in this paper, the multiaffinity has

far-reaching consequences when using interval-based methods.

Different variants of dual quaternions can be found in the literature [15, 16, 17, 18, 19, 20].

Some authors use unit dual quaternions where the sine and cosine of each joint angle appear in

the formulation [16]. The natural exponential function substitution is then used to avoid treating

such expressions as independent terms, which would duplicate the number of variables in the

problem [21]. However, this substitution introduces extraneous roots and the new variables must

be considered in the complex domain. As an alternative, the normalization of the real term of

the dual quaternions to one significantly simplifies the formulation [22], but it suffers from the

drawback associated with the tangent half-angle substitution (i.e., it is singular for joint angles

equal to π). Nevertheless, as we will show later, when using a branch-and-prune method this

drawback can be elegantly overcome.

Concerning the second sub-problem —that of solving the system of closure equations— three

main global methods (i.e., those able to obtain all possible solutions) have been proposed in the

literature: methods based on elimination theory, continuation methods, and interval methods. As

a general rule, we can say that elimination methods [23, 24] often require intuition-guided steps

and are unsuitable for large problems. Continuation methods [25, 26] determine all complex

solutions, which substantially slows down the process on problems with a small fraction of real

solutions. In contrast, interval methods are not affected by these limitations. Moreover, when the

system has a continuous set of solutions, interval methods can provide an approximation of this

set, independently of its dimension.

Interval methods [27, 28] apply a branch-and-prune approach. Therefore, they reduce an

initial box, defined as the Cartesian product of the ranges of the input variables, ruling out regions

that are proven to contain no solution. If the resulting box is not small enough to be considered as

a solution, it is bisected into two sub-boxes and the reduce and bisect procedures are recursively

applied to the two of them. The result is a set of boxes that necessarily contains all the solutions

of the system within the initial box. The key element of these methods is how to reduce the

boxes. Different techniques have been proposed to this end.

Interval Newton methods, described in detail in [29], have been applied to solve the position

analysis of serial [27] and parallel [28] robots. These methods require the inversion of an interval

Jacobian matrix. This is a complex operation, only feasible for systems where the Jacobian is

full-rank all over the considered domain. Expressing the polynomial system in the Bernstein
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basis permits avoiding interval Jacobian inversions [30]. Under this approach, the problem is

fully represented in terms of the so-called control points whose convex hull necessarily contains

the sought solutions. As a result, the box reduction process has an elegant and simple geometric

interpretation. Unfortunately, the size of the linear programs used to implicitly define the convex

hull rapidly grows with the number of variables in the problem. To address this issue one can

resort to the use of linear relaxations [31] which, instead of relying on control points, explicitly

represent the half-planes bounding the considered polynomials. This defines smaller linear pro-

grams that can be solved faster, but requires the input polynomials to include only linear, bilinear,

or quadratic monomials. The transformations to reduce any polynomial system to this simplified

form introduce many extra variables, reducing the efficiency of the method.

In this paper, we show that solving a multiaffine system of closure equations in dual quater-

nions via a branch-and-prune method becomes remarkably simple. This is because the conver-

sion to the Bernstein basis becomes unnecessary as the evaluation of each function at the corners

of the considered box directly gives the control points. The result is a simple and yet efficient

method that can be easily parallelized. A preliminary version of these ideas were applied to the

position analysis of spherical mechanism in [32]. Here, we extend the approach to general spatial

mechanisms including cases with continuous sets of solutions. This allows us to obtain the input-

output curves of complicated spatial mechanisms, or even an approximation of the self-motion

manifold of kinematotropic mechanisms, in a remarkably simple way.

This paper is organized as follows. Section 2 describes how to use non-unit dual quaternions

to formalize position analysis problems as the solution set of multiaffine closure equations. Then,

Section 3 presents a rigorous proof of two important properties of multiaffine equations, namely

the interpolation and convex-hull properties. These properties are exploited in Section 4 to derive

a general and efficient branch-and-prune resolution method. Section 5 illustrates the performance

of this method on problems with 0-, 1-, and 2-dimensional solution sets and, finally, Section 6

summarizes the contributions of this paper and identifies points deserving further attention.

2. Deriving closure equations using dual quaternions

2.1. Basics on dual quaternions

We next include the basic facts on dual quaternions needed in our analysis. A complete

treatment of the subject can be found, for example, in [17].

Using quaternions, a rotation through an angle θ about the axis defined by the unit vector

p = (px, py, pz)
T can be expressed as

rp(θ) = cos

(

θ

2

)

+ sin

(

θ

2

)

p̂. (1)

where p̂ = pxi+ pyj+ pzk, i, j, and k being imaginary units that satisfy the relationships i2 = j2 =

k2 = ijk = −1.

Since rp(θ) and r−p(−θ) represent the same rotation, we can projectivize this representation

so that a rotation is identified with a point in the three dimensional projective space. Thus, the

rotation represented by the quaternion in Eq. (1) is also represented by the following non-unit

quaternion

rp(t) = 1 + t p̂, (2)

where t = tan(θ/2). This representation is singular at θ = π.
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A translation d in the direction also given by p can be seen as a rotation in the dual magnitude

ε d, where ε2 = 0 [33]. That is,

tp(d) = cos

(

ε
d

2

)

+ sin

(

ε
d

2

)

p̂. (3)

Then, expanding the trigonometric functions using Maclaurin series, we have that

tp(d) = 1 + ε
d

2
p̂. (4)

With this representation for rotations and translations, we have the essential building blocks

to derive loop equations. Nevertheless, it is interesting to consider the screw displacement con-

sisting of a rotation through an angle θ about the axis defined by p and a translation d in the

direction also given by p. This displacement can be expressed as:

sp(t, d) = rp(t) tp(d) = 1 + t p̂ + ε
d

2
(−t + p̂) . (5)

Notice that this does not represent a general screw displacement as the axis of rotation passes

through the origin. The general form can be found, for example, in [18, 34].

A general dual quaternion can be written as g = q1 + ε q2, where q1 and q2 are ordinary

quaternions. When representing spatial displacements using unit dual quaternions, it is not diffi-

cult to prove that

‖q1‖ = 1 (6)

and

q1 · q2 = 0. (7)

In our case, while Eq. (7) is satisfied, Eq. (6) is not because q1 is not necessarily a unit quaternion.

As a consequence, in our case, gg∗ with g∗ = q̄1 + ε q̄2 and q̄i the quaternion conjugate, is

a pure real magnitude not necessarily equal to 1. In this way, rigid-body displacements are

simply identified with points in the six-dimensional quadric defined by Eq. (7), called the Study

quadric [35].

2.2. Loop equations

Using the Denavit-Hartenberg (DH) convention, the reference frame of link i can be obtained

from that of link i − 1 by first rotating about its axis Z with angle θi and translating di along

the same axis, and then rotating the new reference frame about its axis X with angle αi and

translating it ai along the same axis. Thus, the 4-tuple (θi, di, αi, ai) includes the DH parameters

of link i. Using Eq. (5), and denoting ti = tan(θi/2) and ui = tan(αi/2), this displacement can be

compactly expressed as

sz(ti, di) sx(ui, ai) =

(

1 + ti k + ε
di

2
(−ti + k)

)

(

1 + ui i + ε
ai

2
(−ui + i)

)

, (8)

where z and x are unit vectors along the Z and X axes, respectively. Since we do not adhere to

the unity condition, the above expression is simpler than those appearing, for example, in [16]

and [36].
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θ1 θ2

θ3

θ4

θ5

θ6

θi di αi ai

θ1 0 π/2 1

θ2 0 −π/2 1

θ3 0 π/2 1

θ4 0 −π/2 1

θ5 0 π/2 1

θ6 0 −π/2 1

Figure 1: The overconstrained 6R closed-loop mechanism described by Bricard and its DH parameters. All joint angles

in the shown configuration are π/2.

We can derive the closure equations for any closed-loop mechanism expressed in terms of

its DH parameters simply composing terms as the one in Eq. (8). This composition leads to

expressions of the form

sz(t1, d1) sx(u1, a1) . . . sz(tn, dn) sx(un, an) = c, (9)

where c is a real scalar. This means that the components in i, j, k, ε, ε i, ε j, and εk resulting from

expanding the left hand side of Eq. (9) necessarily vanish. As a result, we obtain seven scalar

equations from which only six are independent due to the constraint in Eq. (7). As it is done, for

example, in [20], we simply discard the one corresponding to the term in ε and keep the rest of

equations, which have a direct interpretation in terms of translations and rotations. The relevance

of these equations is that they are multiaffine in terms of ti and di, for i = 1, . . . , n. This is better

understood through an example.
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2.3. Formulation example

Let us consider the 6R mechanism depicted in Fig. 1 described by Bricard in [37]. According

to Grübler-Kutzbach formula, it should be rigid, but it is mobile because of the special choice

of its design parameters. This kind of exceptional mechanisms are called overconstrained (see,

for example, [38] and the references therein for details on this kind of 6R mechanisms). In

general, 6R closed-loop mechanisms can have up to 16 possible rigid configurations [39], but

this overconstrained mechanism has a 1-dimensional configuration space, which is technically

referred to as a 1-dimensional self-motion manifold.

The closure equation of this mechanism can be expressed as

(1 + t1 k)(1 + i + ε (−1 + i)/2) (1 + t2 k)(1 − i + ε (−1 + i)/2)

(1 + t3 k)(1 + i + ε (−1 + i)/2) (1 + t4 k)(1 − i + ε (−1 + i)/2)

(1 + t5 k)(1 + i + ε (−1 + i)/2) (1 + t6 k)(1 − i + ε (−1 + i)/2) = c. (10)

After expanding the left hand side in Eq. (10) and grouping the terms in i, j, and k, we obtain the

following three equations:

t2t3 − t1t4 − t1t2 − t1t6 + t2t5 − t3t4 − t3t6 + t4t5 − t5t6 + t1t2t3t5 + t1t2t4t6

−t1t3t4t5 + t1t3t5t6 − t2t3t4t6 + t2t4t5t6 + t1t2t3t4t5t6 = 0, (11)

−t4 − t6 − t2 + t1t3t4 − t1t2t3 − t1t2t5 + t1t3t6 − t1t4t5 + t2t3t5 + t1t5t6

+t2t4t6 − t3t4t5 + t3t5t6 + t1t2t3t4t6 − t1t2t4t5t6 + t2t3t4t5t6 = 0, (12)

−t3 − t5 − t1 + t1t2t4 + t1t2t6 + t1t3t5 − t2t3t4 + t1t4t6 − t2t3t6 + t2t4t5 − t2t5t6

+t3t4t6 − t4t5t6 + t1t2t3t4t5 − t1t2t3t5t6 + t1t3t4t5t6 = 0. (13)

Likewise, repeating the same process for the terms multiplying ε i, ε j, and ε k, we obtain the

following equations:

t1t3 − t1t5 + t2t4 − t2t6 + t3t5 + t4t6 + t1t2t3t4 − t1t2t3t6 − t1t2t4t5 + t1t2t5t6

+t1t3t4t6 + t2t3t4t5 − t1t4t5t6 − t2t3t5t6 + t3t4t5t6 − 3 = 0, (14)

t5 − t3 − 3t1 + t1t2t4 − t1t2t6 + t1t3t5 − t2t3t4 + t1t4t6 + t2t3t6 + t2t4t5 − t2t5t6

−t3t4t6 + t4t5t6 + t1t2t3t4t5 − t1t2t3t5t6 + t1t3t4t5t6 = 0, (15)

t2 − t6 + t1t2t3 − t1t3t4 + t1t4t5 − t1t5t6 = 0. (16)

Equations (11)-(13) actually correspond to the closure conditions for the spherical indicatrix

of the mechanism, and Eqs. (14)-(16) can be seen as a condition in the tangent space of the

configuration space of this spherical indicatrix [40]. It can be verified that all these equations are

multiaffine. That is, all of them can be expressed as hi ti + ki = 0, for i = 1, . . . , 6, where hi and ki

depend on all the variables except ti. We next investigate the properties of this type of equations.

3. Two important properties of multiaffine maps

A multivariate polynomial f (x) is usually expressed in terms of monomials as

f (x) =

m
∑

p=0

ap xp, (17)
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where the sum expands over the multi-index combination up to m = (m1, . . . ,mn), i.e., all

p = (p1, . . . , pn) such that 0 ≤ pi ≤ mi for i = 1, . . . , n, where ap are scalar coefficients,

x = (x1, . . . , xn), and xp denotes the product x
p1

1
. . . x

pn

n . For our purposes, however, it is more

convenient to express the polynomial using the multivariate Bernstein basis [41], which includes

the polynomials of the form

bp,m(x) = bp1,m1
(x1) . . . bpn,mn

(xn), (18)

where

bmi,pi
(xi) =

(

mi

pi

)

x
pi

i
(1 − xi)

mi−pi . (19)

Using this basis

f (x) =

m
∑

p=0

cp bp,m(x), (20)

where

cp =

p
∑

j=0

(

p

j

)

(

m

j

) aj (21)

are the so-called control points and where

(

p

j

)

=

(

p1

j1

)

. . .

(

pn

jn

)

and
(

m

j

)

=

(

m1

j1

)

. . .

(

mn

jn

)

.

Since the formulation for the closure conditions derived in the previous section involves only

multiaffine equations, we are interested in the particular case where m = (1, . . . , 1) and where pi

is either 0 or 1. In this case,

bpi,1(xi) =















(1 − xi) pi = 0

xi pi = 1
(22)

and it can be seen that the control points simplify to

cp = f (p), (23)

which correspond to the evaluation of f on the corners of the unitary box

B1 = [0, 1]1 × [0, 1]2 × · · · × [0, 1]n. (24)

Using Eqs. (22) and (23), f can be expressed as

f (x) =

(1,...,1)
∑

p=0

f (p)

n
∏

i=1

bpi,1(xi). (25)

This result can be generalized to any boxB in R
n , i.e., any axis-aligned n−rectangle (also known

as an orthotope) defined as

B = [xl
1, x

u
1] × [xl

2, x
u
2] × · · · × [xl

n, x
u
n], (26)
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where xl
i
, xu

i
∈ R, xl

i
≤ xu

i
and where the set of 2n vertices of B is

V(B) =
{

(v1, . . . , vn) ∈ Rn | vi ∈
{

xl
i, x

u
i

}}

. (27)

Then, it can be seen that

f (x) =

(1,...,1)
∑

p=0

f (vp)

n
∏

i=1

bpi,1(s(xi)), (28)

where vp is the element ofV(B) with vi = xl
i
if pi = 0, and vi = xu

i
otherwise, and with

s(xi) =
xi − xl

i

xu
i
− xl

i

a variable substitution so that Bernstein polynomials are still evaluated in the [0, 1] interval.

Two important properties of multiaffine maps directly follow from the previous considera-

tions (alternative presentations can be found, for instance, in [42]). The first one is the interpo-

lation property. The expression in Eq. (28) can be rewritten taking into account Eq. (22) as the

following linear interpolation between two functions of n − 1 variables

f (x) = (1 − s(x1)) fl(x2, . . . , xn) + s(x1) fu(x2, . . . , xn) (29)

where

fl(x2, . . . , xn) =

(0,1,...,1)
∑

p=(0,0,...,0)

f (vp)

n
∏

i=2

bpi,1(s(xi)),

and

fu(x2, . . . , xn) =

(1,1,...,1)
∑

p=(1,0,...,0)

f (vp)

n
∏

i=2

bpi,1(s(xi)).

The same decomposition can be applied recursively to fl and fu until the resulting functions

only involve one variable. Therefore, the evaluation of f can be merely computed as a linear

interpolation of its control points. Actually this can be seen as a specialization for multiaffine

polynomials of the De Casteljau’s algorithm [43], which is a robust and efficient way to evaluate

polynomials in Bernstein form.

The second property of multiaffine maps is the convex hull property. Although it also applies

to f , this property is more useful when applied to

g(x) = (x, f (x)), (30)

which defines a function in R
n+1. Finding the roots of f is equivalent to determining the points

in the form (x, 0)T in the graph of g. This function is represented in Bernstein form as

g(x) =

(1,...,1)
∑

p=0

dp

n
∏

i=1

bpi,1(s(xi)), (31)

where dp is the element corresponding to vp in the set

D(B) = {(v, f (v)) ∈ Rn+1|v ∈ V(B)}. (32)
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Since the values of the Bernstein polynomials in the range [0, 1] are non-negative and form a

partition of the unity [43], Eq. (31) is a particular convex combination of the points in D(B) for

each x. Thus, the value of g in x ∈ B is fully included in the convex hull of the points inD(B)

H =



















(1,...,1)
∑

p=0

dp λp |
∑

λp = 1, 0 ≤ λp ≤ 1



















. (33)

Observe that, since the dp points are fixed, H is fully-defined by linear constraints and, thus, it

can be readily included in a linear program.

4. The proposed branch-and-prune method

Let us define the system of equations

f(x) = 0, (34)

where f = ( f1(x), . . . , fm(x)) and each f j for j = 1, . . . ,m, is a multiaffine polynomial in x =

(x1, . . . , xn). The proposed algorithm identifies arbitrarily small boxes containing solution candi-

dates of System (34) within a given box B ⊂ R
n using a branch-and-prune scheme which iterates

two operations, box reduction and box bisection. Using box reduction, portions of B containing

no solution are ruled out by narrowing some of its defining intervals. This process is iterated

until either (a) the box is reduced to an empty set, in which case it contains no solution, or (b) the

longest side of the box is under a specified threshold σ, in which case it is considered a solution

box, or (c) the decrease of the box volume between two consecutive iterations is below a given

ratio ρ, in which case the box is bisected along its largest side. If the later occurs, the whole

process is repeated for the newly created sub-boxes, and for the sub-boxes recursively created

thereafter, until the process ends up with a collection of solution boxes whose size is under σ.

Thus, this algorithm returns a collection of boxes, with all their side lengths below σ, containing

all the solutions. If the solution space is an algebraic variety of dimension greater than zero, the

algorithm returns a collection of boxes bounding the portions of this variety contained in B. The

algorithm is complete, in the sense that no solution is missed, and conservative, in the sense that

some boxes might contain no solution.

Since the box bisection operation is trivial, we next focus on the description of a box re-

duction procedure, which can be seen as a simplification of a method presented in [30]. The

simplification is possible thanks to the multiaffinity of the closure equations derived using dual

quaternions and the associated properties described in the previous section.

For the sake of clarity, we describe the procedure when System (34) consists of just one

equation in two variables, and we latter describe how it applies to the general case.

Assume that we want to find all solutions of a multiaffine equation f (x) = 0, with x = (x1, x2),

in B = [xl
1
, xu

1
] × [xl

2
, xu

2
] ∈ R

2 (Fig. 2-top). Since (x, f (x)) must lie within the convex hull H

of the 22 points of R3 {(x, f (x))| x ∈ {xl
1
, xu

1
} × {xl

2
, xu

2
}}, we simply project H onto each xi- f (x)

coordinate plane, as depicted in Fig. 2-bottom. This projection defines a trapezoid whose vertices
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f (x) f (x)

f (x)

x2

x2x1

x1

f l
1
(B)

f l
1
(B)

f u
1

(B)

f u
1

(B)

f l
2
(B)

f l
2
(B)

f u
2

(B)

f u
2

(B)

xl
2

xu
2xl

1
xu

1

xl
2

xu
2

xu
1

xl
1

Figure 2: The image of the points in the box [xl
1
, xu

1
] × [xl

2
, xu

2
] (shown in red) for any multiaffine function f (x1, x2)

necessarily lies inside a tetrahedron. The vertices of the tetrahedron (shown in green) are obtained by evaluating f in the

corners of the box. Then, from the projections of the tetrahedron onto the coordinate planes (shown in blue), the initial

ranges for the variables can be reduced to the regions where these projections intersect the line f = 0. The reduction in

both x1 and x2 defines a new box (shown in black) better bounding the sought-after solution set.

have xl
i
and xu

i
as horizontal coordinates and where the vertical coordinates are defined as

f l
i (B) = min{ f (v)|v ∈ V(B), xi = xl

i},

f l
i
(B) = max{ f (v)|v ∈ V(B), xi = xl

i},

f u
i (B) = min{ f (v)|v ∈ V(B), xi = xu

i },

f u
i

(B) = max{ f (v)|v ∈ V(B), xi = xu
i },

with i ∈ {1, 2}. Clearly, we can prune the ranges of xi for which the trapezoid does not intersect

the line defined by f (x) = 0. These trapezoid-line clippings usually reduce the ranges of some

variables giving a smaller box that still bounds the sought solutions. If the trapezoid and the line

do not intersect, the considered box includes no solution and is discarded. This strategy typically
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produces less pruning than alternative methods, but the results reported in Section 5 show that it

is advantageous due to its low computational cost.

Note that the same pruning strategy can be applied to a multiaffine equation in n > 2 variables

because the convex hull of the then involved 2n points will also yield a trapezoid when projected

to a plane defined by the xi and f (x) axes, for i = 1, . . . , n. Finally, if we have several equations

in the system, the process can be iterated for all of them to obtain the intersection of the reduction

obtained with each equation in each variable range.

One feature of this approach is that it leads to the so-called clustering effect. This is a well-

known effect of branch-and-prune methods that apply one necessary condition at a time instead

of a set of necessary and sufficient conditions at once. In the former case, a solution is returned

as a cluster of boxes instead of a single box containing it [44]. Increasing the resolution, i.e.,

reducing the value of the parameter σ bounding the size of the returned boxes, does not elim-

inates the clustering because the same effect is reproduced just with smaller boxes. Clustering

is exacerbated when some of the solution varieties of the individual equations in the system are

close. In practice, the size of the cluster gives an idea of the shakiness of the mechanism in the

corresponding set of configurations. Indeed, if the effect of manufacturing inaccuracies and/or

small elasticities in the kinematic chain were incorporated as ranges in the coefficients of the clo-

sure conditions, clustering-free branch-and-prune methods would also produce clusters. Thus,

although from the pure mathematical point of view clusters of boxes might be seen as a problem,

from a mechanical point of view their presence provides qualitative information on which con-

figurations of the mechanism might lead to a loss of rigidity. Having said that, we next explain

ways to mitigate the clustering effect.

4.1. Verification of Solution Boxes

The clustering effect would be avoided if necessary and sufficient conditions were avail-

able to determine whether a given box contains a solution. Unfortunately, such conditions are

not available in general. However, a variety of sufficient conditions exist. The theorems by

Kantorovich [45, 46], Moore [47] or Smale [48] are particularly tailored for interval Newton

methods. In some cases they can not only prove the existence of a solution in a given box, but

also guarantee the uniqueness of such solution. However, in practice such theorems only hold

on small boxes with low probability of including more than one solution. Moreover, all these

theorems rely on the Jacobian of the system of equations, which may be problematic, specially

when it is necessary to invert it on a given range for the input variables.

In contrast, Miranda’s theorem [49] relies only on the values of the function on the different

faces of the analyzed box. It can be stated as follows:

Let f : S ⊂ R
n → R

n and assume that B = {[xl
1
, xu

1
], . . . , [xl

n, x
u
n]} is a box included in S. Let

Li = {x ∈ B|xi = xl
i
} and Ui = {x ∈ B|xi = xu

i
} be the n pairs of opposite faces of B along

dimension i. If f j(x) · f j(y) ≤ 0 for all x ∈ Li, y ∈ Ui, for i, j = 1, . . . , n, then f has at least one

root in B.

It has been proven that there is a hierarchy in terms of generality between the different ex-

istence theorems [50]. In this hierarchy, Moore’s theorem is more general than Kantorovich’s

theorem which in turn is more general than Smale’s theorem [51]. However, Miranda’s theorem

is more general than all of them meaning that if any of them holds Miranda’s theorem also holds.

Only Borsuk’s theorem is more general than Miranda’s theorem for arbitrary norms, but when
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using the infinity norm where inclusion sets are boxes, as it is our case, they are equivalent. Thus,

it makes sense to consider Miranda’s test as the best option. This test can be incorporated in the

box reduction strategy based on the trapezoid-clipping with a negligible computational cost: if

for a given box all the trapezoids resulting from the projection of the control points on the dif-

ferent xi- f j coordinate planes have their extremes on opposites sides of the f j = 0 line, then the

theorem holds and, consequently, the box is guaranteed to include at least one solution.

None of the existence tests available in the literature, however, applies to problems with so-

lution sets of dimension greater than zero. For 1-dimensional solution sets, one can still use

Miranda’s test on the faces of the boxes returned by the algorithm. If any of them can be certified

to include an isolated solution, the box can be guaranteed to include part of the sought-after so-

lution variety. For solution sets of dimension two or higher, one should check lower-dimensional

components defining the boundary of the analyzed box.

A simpler alternative strategy that that will be used here, and that works for any dimension,

is to initiate a Newton-Raphson process in a point in the box potentially including part of the

solution and check whether it converges to a solution inside the box. In this regard, note that the

control points can also be used to efficiently evaluate the derivatives of a multiaffine function.

For instance, using Eq. (29) the derivative of f with respect to x1 is

∂ f

∂x1

=
fu(x2, . . . , xn) − fl(x2, . . . , xn)

xu
1
− xl

1

, (35)

where, as described in Section 3, fl and fu can be computed by linear interpolation of the control

points.

4.2. Implementation Details

From the geometric point of view, the change of variable ti = tan
(

θi
2

)

can be seen as the

stereographic projection of the unit circle, from x = −1, to the line y = 0. Thus, if θi=π, ti goes to

infinity. Thus, numerical problems will occur if any of the joint angles of a solution configuration

is π. Moreover, if we want to apply a branch-and-prune method to obtain the solutions of our

system of equations, it is not a good decision to start with a domain ranging from −∞ to +∞

in all variables. One workaround to this issue is to split the problem in two, one for θi ∈ [0, π],

and another one for θi ∈ [−π, 0], and shift the origin of θi by π/2 and −π/2 respectively so

that the range for ti is [−1, 1] in the two subproblems. Note that using small ranges for the

variables increases the numerical stability of the algorithm. This shift can be applied to all the

rotational variables, while the domains for non-rotational variables remain the same for all sub-

problems. In other words, if our problem has r rotation variables, we will decompose it into 2r

subproblems. Such sub-problems are independent between them and, consequently, they can be

solved in parallel.

5. Examples

The performance of the proposed method has been evaluated on the following four test-cases:

1. Two 6R loops with zero-dimensional solution sets;

2. A C5R loop with a one-dimensional solution set;

3. A 7R kinematotropic loop with a solution set with dimension up to two; and

4. A 3-PRRR parallel robot.
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The two 6R loops are classical benchmarks in the field of inverse kinematics of serial robots

and are used to compare the performance of the proposed method with standard approaches. The

rest of test cases are used to show the generality and robustness of the method in problems with

solution sets of dimension greater than zero, which can not be characterized using standard ap-

proaches based, for instance, on elimination theory or on continuation techniques. In particular,

the second test-case is a mobile linkage that includes different types of joints and shows the abil-

ity of the method to isolate one-dimensional solution sets. The third is a kinematotropic linkage

with solution subsets of different dimension and illustrates the versatility of the method even in

cases where some of the equations become dependent at particular configurations. Finally, the

last test-case is a parallel robot used to show the performance of the method in multiple-loop

mechanisms.

In all these test-cases, we will examine the performance of the method described in Section 4

based on the trapezoid-line clipping, which we will refer to as the trapezoid method. This method

will be compared with the two alternative methods described respectively in [30] and [31]. The

first one is based on linear programming directly using the convex hull defined in Eq. (33) (it

will be denoted as the LP method), and the second one also uses linear programming, but on

smaller linear program derived using the linear relaxations of the equations (it will be denoted as

the LR method). Observe that while the trapezoid and the LP methods are defined in the same

space, the LR method uses a different formalization in terms of variables and equations and, thus,

the outputs of the latter cannot be directly compared with the results of the two other methods.

The LP approach does not include any box verification procedure, but the LR one incorporates

a procedure based on the Brouwer’s fixed point theorem. In both the LP and LR methods, the

linear programs are solved using the CoinOR linear programming library [52]. In contrast, and

due to the simplicity of the underlying operations, the trapezoid method does not rely on any

external library and it can be implemented in few lines of code.

All the reported results have been obtained with a computer equipped with 32Gb of RAM

and an i7 processor with 4 cores running at 4.2 GHz, where two concurrent threads can be

executed at each core. These capacities are used to execute each one of the subproblems defined

in Section 4.2 in a separate thread. In all cases we use ρ = 0.5 and either σ = 10−4, for the

problems with zero-dimensional solution sets, or σ = 10−2, for the problems with solution sets

with dimension greater than zero. The implementation of the proposed method in C and the input

files for the test-cases are available at [53].

5.1. 6R loops with zero-dimensional solution sets

The general inverse kinematics of 6R robots is a decades-old problem which still stands as

a challenging test-case [54]. The early work on this subject concentrated on particular architec-

tures and identified instances with up to 16 different solutions [55]. Later, this proved to be the

maximum number of solutions for rigid 6R loops [39]. In the 90’s, Manocha and Canny derived

the first efficient numerical technique for this problem [56]. This approach works seamlessly for

6R loops with generic parameters, but it may fail for loops where the parameters fulfill particular

conditions.

We will use as a first test-case the example appearing in [57] and also in [56]1, which has 16

real solutions. The DH parameters for this test-case appear in Table 1. Table 2 shows the perfor-

mance statistics of the compared methods.

1The version of this example given in [56] has a wrong sign in one of the entries of Ahand.
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θi di αi ai

θ1 0 π/2 0.3

θ2 0 0.017 1

θ3 0.2 π/2 0

θ4 0 0.017 1.5

θ5 0 π/2 0

θ6 0 0.017 0

Ahand =





























−0.7601 −0.6416 0.1022 −1.1401

0.1333 0 0.9910 0

−0.6359 0.7669 0.0855 0

0 0 0 1





























Table 1: DH parameters and closure condition for a 6R loop with 16 real solutions.

LP LR Trapezoid

Processed boxes 8644 10025 20270

Box reductions 13064 11149 27698

Bisected boxes 4290 5012 10103

Empty boxes 4338 4997 10149

Solution boxes 16 16 18

Verified solutions - 16 6

Execution time [s] 15 22 0.033

Table 2: Performance of the three compared methods for a 6R loop with 16 solutions.

Using the LP method, the simplex tableau has 48 rows and 320 columns (i.e., 15230 entries)

and the 16 solution boxes of this problem are identified in 15 seconds. None of them are verified

because, as said, this approach does not include any verification procedure. As a comparison,

the LR method takes 22 seconds to solve the same problem and correctly verifies all the solution

boxes. In this case, the tableau has 223 rows and 59 columns (i.e., 13157 entries), only slightly

smaller than the one used in the LR method. The proposed trapezoid method only takes 33 ms

to isolate the 16 solutions of the problem. Two of the solutions are returned as a cluster of two

boxes. However, the maximum error in the center of any of the returned boxes is below 10−3,

which means that all of them would be considered solutions if manufacturing or assembly errors

were taken into account.

Using the trapezoid method, six of the returned boxes are verified using Miranda’s theorem.

Since this theorem is the most general existence theorem none of the alternative approaches

would be able to verify more solution boxes. In any case, the sixteen boxes actually including

a solution can be readily identified with negligible computational cost using a Newton-Raphson

process initialized at the center of each of the returned boxes.

The same problem can be solved with a redundant formulation, taking into account the equa-

tion corresponding to the ǫ term in dual quaternion giving the loop-closure condition. This

reduces the number of explored boxes, but slightly increases the execution time (due to the need

to process one more equation) and it does not alleviate the clustering effect. Similar results are
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θi di αi ai

θ1 0.1875 −π/2 0.5

θ2 0.375 0 1

θ3 0.25 π/2 0.125

θ4 0.875 −π/2 0

θ5 0 π/2 0

θ6 0.125 0 0.25

Ahand =





























−1 0 0 0.41150993

0 −1 0 0.14908956

0 0 1 0.4889994

0 0 0 1





























Table 3: DH parameters and closure condition of the bad eg0 example from [58].

LP LR Trapezoid

Processed boxes 10140 7761 45802

Box reductions 16087 8842 74481

Bisected boxes 5038 3880 22869

Empty boxes 5094 3873 22277

Solution boxes 8 8 656

Verified solutions - 2 0

Execution time [s] 20 19 0.095

Table 4: Performance of the three compared methods for the bad eg0 example from [58].

obtained in the other test-cases included in this paper.

Note that the algorithm described in [56], whose implementation is available at [58], can

solve this problem in 4 ms. Unfortunately, due to an unreported bug, it fails to provide the

correct value of θ6 for one of the solutions. This method is based on an eigenproblem which

can be efficiently solved relying on highly optimized linear algebra libraries [59]. However, its

implementation is not trivial due to the numerous reasons that lead to an ill-conditioning of the

involved matrices. For example, this approach fails when applied to the problem in Table 3. In

contrast, the method presented in this paper has no problem and solves the problem in just 95 ms.

The only relevant issue is that, due to the particularities of the mechanism, each solution is

returned as a cluster of boxes. However, the error in the center of the returned boxes is, in all

cases, below 10−2. The LP and LR methods identify the eight solution boxes, but they are about

200 times slower than the trapezoid method. If the result provided by the trapezoid method is

combined with a Newton-Raphson process, the eight boxes containing the exact solutions are

readily identified. This post-process adds less than 2 ms to the overall execution time. An

alternative strategy to limit the clustering effect is to use the LP method only for the boxes

considered as solutions by the trapezoid method. In this case, the eight solutions are identified in

just 0.69 s, still significantly faster than the LP or the LR methods alone.
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Figure 3: Top: The self-motion manifold of the analyzed C5R closed-loop mechanism obtained with the trapezoid

method projected on the subspace defined by θ1, θ2, and d. The solution boxes are represented as semitransparent spots

to better appreciate the accumulation of boxes. The only noticeable difference with respect to the solutions obtained using

the LP method is the cluster effect around the nodes, as shown on the right inset. Bottom: mechanism configurations

at the nodes of the self-motion. Some nodes are repeated at the boundaries of the represented region because this self-

motion is periodic in θ1 and θ2. The elliptic shape at d = 0 is the solution set of the Bricard’s overconstrained mechanism

shown in Fig. 1.
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LP LR Trapezoid

Processed boxes 321866 227137 926804

Box reductions 531473 268578 1408882

Bisected boxes 160901 113568 463370

Empty boxes 22081 3416 191606

Solution boxes 138884 110153 271828

Execution time [s] 1237 101 2.83

Table 5: Performance of the three compared methods for the self-motion manifold computation of the mechanism in the

C5R closed-loop mechanism.

LP LR Trapezoid

Processed boxes 706658 679935 12699530

Box reductions 1090058 733929 18397748

Bisected boxes 353265 339967 6349701

Empty boxes 115952 61423 3279112

Solution boxes 237441 278545 3070717

Execution time [s] 7000 339 57

Table 6: Performance of the three compared methods for the computation of the self-motion manifold of the 7R closed-

loop kinematotropic mechanism in Fig. 4.

5.2. A C5R loop with a singular 1-dimensional solution set

Let us consider the C5R closed-loop mechanism resulting from substituting the first revolute

joint of the Bricard’s 6R mechanism shown in Fig. 1 with a cylindrical joint. The self-motion

manifold of this mechanism is one-dimensional and includes singularities (i.e., it contains nodes).

When there is no translation in the cylindrical joint, we obviously have the standard Bricard’s

mechanism. Therefore, the solution set of the Bricard’s overconstrained mechanism would ap-

pear as a subset of the solution set of this mechanism.

Figure 3 shows the characterization of the self-motion manifold of this mechanism obtained

using the trapezoid method which includes 271828 small boxes. The characterization obtained

with the LP method avoids the cluster effect near the nodes as it only includes 138884 solution

boxes. However, as detailed in Table 5, obtaining it is about 500 times more expensive in terms

of computational time. As in the previous example, one possibility is to use the trapezoid method

first and then filter out the possible solutions using the LP method. This procedure isolates the

solution set in about 466 s. This is still about three times faster than the LP method alone. Using

the Newton-based procedure 5747 of these boxes can be verified to include a solution.

5.3. A 7R closed-loop kinematotropic mechanism

Kinematotropic mechanisms are a class of reconfigurable mechanisms whose motion modes

have a variable number of degrees of freedom [60]. The position analysis of these mechanisms is

hard since different dependencies between the equations appear depending on the configuration.

Among all possible 7R kinematotropic closed-loop mechanisms, the one studied in [20] (see

Fig. 4), which is a particular case of the one proposed in [21], has five motion modes, the

largest number of modes known to date for such a kind of mechanism. According to the results
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θ1

θ2

θ3

θ4

θ5

θ6

θ7

θi di αi ai

θ1 0 2 arctan 2 5

θ2 0 −2 arctan 2 5

θ3 0 0 12

θ4 0 0 2

θ5 0 −2 arctan 2 3

θ6 0 2 arctan 2 5

θ7 0 0 12

Figure 4: 7R closed-loop kinematotropic mechanism studied in [20], and its DH-parameters.

presented in [21], one of these modes is 2-dimensional and the other four, 1-dimensional. All

these modes are connected through ten transition configurations. Thus, this mechanism is a

challenging example in which we can check the effectiveness of our method.

Table 6 compares the performance of the LP, LR, and trapezoid methods when approximat-

ing the self-motion manifold of this mechanism. The representation of the obtained solutions

using the LP and the trapezoid methods appear in Fig. 5-top. In Fig. 5-top, we have identified the

ten transition configurations and the corresponding mechanism configurations are represented in

Fig. 5-bottom. They perfectly match those reported in [20], validating the obtained result. In this

example, while both methods provide an excellent approximation of the 2-dimensional compo-

nent, the approximation of the one-dimensional ones are much rougher for the trapezoid method.

This enforces the idea that this method is very good at characterizing the components of higher
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Figure 5: Top: Approximation of the self-motion manifold of the mechanism in Fig. 4 using the trapezoid (left) and

the LP (right) methods. The results have been projected onto the subspace defined by θ3, θ4, and θ7. Bottom: The

configurations for the transition points between the different motion modes.
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Figure 6: The set of verified solution boxes on the self-motion manifold of the mechanism in Fig. 4 obtained using the

trapezoid method and the Newton-Raphson verification procedure. The results have been projected onto the subspace

defined by θ3, θ4, and θ7.

dimension, but suffers from the clustering effect in the characterization of those of lower dimen-

sion. We can say that the lower the dimension of the component, the more relevant the clustering

effect. However, if we use the Newthon-Raphson procedure, 238261 of the solution boxes are

verified to include a solution point. This is about the same number of solution boxes returned by

the LP method and, thus, the verified boxes already offers a dense, cluster-free approximation of

the sought after configuration space. This can be appreciated in Fig. 6 that shows only the subset

of verified solution boxes obtained with the trapezoid method.

5.4. A 3-PRRR parallel robot

In principle, multiple-loop mechanisms do not offer any extra conceptual complexity for the

trapezoid method if formalized as follows. First, a graph is defined where the vertices represent

the links of the mechanism and the edges are given by the joints connecting them. Then, a set of

independent loops is obtained defining a spanning tree of the graph: each edge of the graph not

included in the tree determines an independent loop [61]. Finally, the equations for each one of

these independent loops are generated using the procedure defined in Section 2.

We use the Tripteron mechanism shown in Fig. 7 and described in [62] and [63] to illus-

trate this procedure. This is a 3-PRRR parallel robot with a moving platform linked to a fixed

based through three legs where each leg has an active prismatic joint and three passive revolute

joints. The platform has linear displacements in all directions, as a Cartesian robot, but with the

characteristic reduced inertia and increased rigidity of parallel robots. In our particular analysis,

we fix the prismatic joints of legs two and three, but we let free the variable l1 representing the
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θi di αi ai

0 lk 0 0

θ3k−2 0 0 1

θ3k−1 0 0 1

θ3k -0.2 0 0

Figure 7: A 3-PRRR parallel robot with a moving platform (in yellow) linked to a fixed based (in red) through three legs

and the DH-parameters of these legs for k ∈ {1, 2, 3}. Each leg has an active prismatic joint and three passive revolute

joints.

displacement of the slider joint of the first leg. This robot defines three loops, but only two of

them are independent.

Table 7 compares the performance of the trapezoid method with the LP and LR methods.

In contrast to what happens with the previous test-cases, the LR method is the most efficient

one in this particular case. This can be attributed to the regularity of the parameters for this

robot which results in a particularly simple set of equations using the LR formulation. Despite

its simplicity, the trapezoid method is also quite efficient. For instance, it is more than two

orders of magnitude faster than the LP method, which is based on the same formulation as the

trapezoid method. The trapezoid method bounds the solution set with 14906 small boxes. Using

the Newton-based verification procedure, 8813 of them are guaranteed to include a point of the

sought solution set. These results are obtained taking into account the independent loops formed

by legs one and two and legs one and three. As shown in Table 8, different results are obtained

using the equations derived from all the pairs of independent loops in this problem or even when

considering the three loops simultaneously, i.e., using redundant equations. Notable differences

can be observed in the execution time and, specially, in the total number of processed boxes.

Clearly if redundant equations are considered, the number of processed boxes reduces, but this
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LP LR Trapezoid

Processed boxes 1084304 14611 7875392

Box reductions 1735675 18310 8868336

Bisected boxes 541896 7305 3937440

Empty boxes 535483 20 3923046

Solution boxes 6925 7305 14906

Execution time [s] 10302 14 26

Table 7: Performance of the three compared methods for the self-motion manifold computation of the 3-PRRR parallel

robot in Fig. 7.

Loops (1, 2), (1, 3) (1, 2), (2, 3) (1, 3), (2, 3) (1, 2), (1, 3), (2, 3)

Processed boxes 7875392 9361756 10762026 6332110

Box reductions 8868336 10322872 11861654 6874236

Bisected boxes 3937440 4680622 5380757 3165799

Empty boxes 3923046 4656327 5356841 3153721

Solution boxes 14906 24807 24428 12590

Execution time [s] 26 27 30 26

Table 8: Performance of the trapezoid method considering different loops. The notation (a, b) is used to denote the loop

formed by leg a and b.

does not directly translate to a reduction in the execution time due to the burden of processing

more equations. However, significant differences in the number of processed boxes also appear

even when considering different sets of non-redundant equations. Therefore, to efficiently solve

more complex multi-loop problems, a careful analysis of the propagation of the ranges between

the variables in the loops would be necessary [64]. We leave this as a point for further research.

Figure 8 shows the self-motion manifold of this mechanism together with some representative

configurations. The configurations labeled with 1 to 4 are at extremes of the range for l1 and

configurations 5-6 and 7-8 are very close in this particular projection but, as it can be seen in the

displayed configurations, they differ in the rest of variables.

6. Conclusions

The multiaffinity of the closure equations of the kinematic loops has been exploited in this

paper to its latest consequences. As a result, we have derived an interval method for solving sys-

tems of this kind of equations —which we have named trapezoid method— which is significantly

simpler than all other interval methods used in the past for position analysis in kinematics. The

reason for this comparative simplicity is that all previous approaches apply to general systems of

algebraic equations and the one derived here is specific for multiaffine systems, i.e., to closure

equations in its simplest form.

We have presented a variety of examples including single- and multiple-loop mechanisms

and, in all of them, the trapezoid method is at least two orders of magnitude faster that the alter-

native branch-and-prune method relying on the same formulation. The obtained results for 6R

closed loops with 0-dimensional solution sets are even comparable, in terms of performance,
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Figure 8: The self-motion manifold of the 3-PRRR parallel robot and some representative configurations.

with a specialized numerical approach. To obtain even better performance, it would be inter-

esting to increment the level of parallelization via GPUs or networks of low-cost single-board

computers. In any case, the position analysis problem is NP-hard in general [65] and, thus, de-

spite the efficiency of the trapezoid method in problems of practical interest, and despite their

potential improvements, an exponential increment in computational cost has to be expected as

the number of variables in the problem grows. Regarding the quality in the approximation of the

solution, in the case of continuous solution sets, commonly known as self-motion manifolds, the

trapezoid method provides good approximations for the components of dimension larger than

one, but those of lower dimension are degraded by the clustering effect. In these cases, the trape-

zoid method has to be complemented with a final refinement step, which can be based on the use

of necessary and sufficient conditions or on solution verification procedures. Both approaches

have been evaluated in this paper.

Finally, it is worth exploring other numerical alternatives to solve multiaffine systems. For

example, as we mentioned in the introduction of this article, the method presented in [14] re-

duces the resolution of such kind of systems to a generalized eigenproblem. It would be worth

reexamining this approach in the light of results presented here.
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