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Abstract Given an unordered list of 2D or 3D point tra-
jectories corrupted by noise and partial observations, in this
paper we introduce a framework to simultaneously recover
the incomplete motion tracks and group the points into spa-
tially and temporally coherent clusters. This advances exist-
ing work, which only addresses partial problems and with-
out considering a unified and unsupervised solution. We cast
this problem as a matrix completion one, in which point
tracks are arranged into a matrix with the missing entries
set as zeros. In order to perform the double clustering, the
measurement matrix is assumed to be drawn from a dual
union of spatio-temporal subspaces. The bases and the di-
mensionality for these subspaces, the affinity matrices used
to encode the temporal and spatial clusters to which each
point belongs, and the non-visible tracks, are then jointly es-
timated via Augmented Lagrange Multipliers in polynomial
time. A thorough evaluation on incomplete motion tracks
for multiple object typologies shows that the accuracy of the
matrix we recover compares favorably to that obtained with
existing low-rank matrix completion methods, specially un-
der noisy measurements. In addition, besides recovering the
incomplete tracks, the point trajectories are directly grouped
into different object instances, and a number of semantically
meaningful temporal primitive actions are automatically dis-
covered.
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1 Introduction

Motion visual tracking is an important and essential com-
ponent of perception that has been an active research area
in computer vision for past two decades. The developments
of 2D and 3D visual tracking algorithms have shown rapid
progress thanks to the explosive growth of video data which
in turn creates high demand for accuracy and speed of track-
ing methods. Current approaches are motivated to design
faster and better methods in spite of the challenges that exist
in this topic, especially robustness to large occlusions, dras-
tic scale change, accurate localization, multi-object track-
ing, and recovery from failure (Hare et al. 2011; Jia et al.
2012). Despite the success in addressing numerous chal-
lenges under a wide range of scenarios, a number of core
problems still remain unsolved. A major challenge in real
scenarios is handling missing entries of the data, due to ad-
hoc data collection, presence of outliers, sensor failure, or
partial knowledge of relationships in a dataset. For instance,
to recover object motions and deformations from video, the
tracking algorithm may lose the track of features in some
image frames due to lack of visibility or mismatches. In
a similar manner, for 3D tracking, multi-camera systems
(such as motion capture systems) (Van der Aa et al. 2011;
Ionescu et al. 2014) are applied to obtain the time-varying
evolution of a scenario. While these systems are now ca-
pable of recovering most of the observations, they can fail
on real-world scenarios, such as those formed by multiple
objects while are performing different activities, deforming,
moving, and even interacting between them. In these cases,
missing tracks continually appear, either as self-occlusions
or occlusions between objects. It is worth mentioning that
this is especially relevant in outdoors scenarios, where cur-
rent algorithms to estimate motion tracks often produce par-
tial solutions with a wide amount of missing entries.
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In many fields, an underlying tenet is that the data may
contain certain type of structure that enables intelligent pro-
cessing and representation, and they can be characterized by
using parametric models. Assuming that, the visual track-
ing completion problem can be addressed as a matrix com-
pletion one. To this end, one can use the well-known linear
subspaces since they are easy to estimate, and often effective
in many real-world applications. For instance, these models
have been successfully used to characterize several types of
visual data, such as motion (Yan and Pollefeys 2006; Rao
et al. 2010a), shape (Liu and Yan 2011) and texture (Ma
et al. 2007). Maybe, the most common choice it is to use
the principal-component-analysis method, that is based on
the hypothesis that the data are approximately drawn from
a low-rank subspace. Unfortunately, real data from complex
scenarios can rarely be well described by a single low-rank
subspace. For these cases, a more reasonable model is to as-
sume data are lying near several subspaces, i.e., the data are
considered as samples approximately drawn from a union
of several low-rank subspaces. The generality and impor-
tance of subspaces naturally leads to a challenging problem
of subspace clustering, whose goal is to group data into clus-
ters with every cluster corresponding to a different subspace.
Solving clustering and finding low-dimensional represen-
tations of data are important unsupervised learning prob-
lems in machine learning with numerous applications, in-
cluding image segmentation, system identification, data vi-
sualization and collaborative filtering to name just a few.
The problem becomes even more complex if the data are
partially observed, either due to sensor failure or visual oc-
clusions (Agudo and Moreno-Noguer 2017a, 2015, 2018;
Gotardo and Martinez 2011).

In this paper we propose, to the best of our knowledge,
the first attempt to approximate high-dimensional data using
a dual union of low-dimensional subspaces, accounting for
two distinct criteria. Additionally, input data are assumed to
be corrupted by partial observations and noise. We apply our
approach to the specific case in which the input data encode
2D or 3D point trajectories of multiple dynamic objects with
large percentages of missing entries, and we aim at hallu-
cinating these missing tracks while simultaneously approx-
imating the data using spatial and temporal subspaces, as
well as filtering the noisy measurements.

We will formulate the problem as a matrix completion
one. Input data will be arranged into a matrix with the miss-
ing entries set to zero. To encode data similarities, we intro-
duce two affinity matrices to be learned. We will then devise
an optimization scheme based on Augmented Lagrangian
Multipliers (ALM) to simultaneously and efficiently esti-
mate the missing entries, and the bases and dimensionality
for of each low-rank subspace. The proposed algorithm is
unsupervised, does not depend on the initialization nor relies
on training data at all, and can be solved in polynomial time.

An important corollary of our approach is that applying off-
the-shelf state-of-the-art spectral clustering on the estimated
affinity matrices, results in consistent temporal and spatial
segmentations of the input data.

We evaluate the proposed algorithm on 2D and 3D in-
complete motion-capture and real sequences of several ob-
jects performing complex actions and interacting with each
other. We will show that the accuracy of the completed tracks
we obtain improves that of state-of-the-art methods by a
considerable margin, while we additionally provide a spatio-
temporal clustering of the data, which in most cases has a di-
rect physical interpretation (either the object identity or the
type of motion it is performing).

2 Related Work

The most standard approach to perform matrix completion is
to assume the underlying data lies in a single low-dimensional
subspace. Early works (Knott and Bartholomew 1999; Tip-
ping and Bishop 1999a) enforced this constraint based on
expectation-maximization strategies to optimize non-convex
functions of the model parameters and the missing entries.
Other attempts constrain the solution space using trajectory (Go-
tardo and Martinez 2011), or spatio-temporal models (Akhter
et al. 2012). Nevertheless, all these methods require a good
initialization, and most importantly, they need to set the rank
of the subspace a priori, performing poorly when the di-
mension of the subspace increases. Additionally, trajectory-
based methods normally use a pre-defined basis, making
them very problem specific. To address these limitations, an-
other family of low-rank matrix-completion techniques has
been recently proposed (Bhojanapalli and Jain 2013; Cai
et al. 2010; Candès and Plan 2010; Chen et al. 2011; Cabral
et al. 2013; Chiang et al. 2015). These methods estimate
missing entries by optimizing the convex surrogate of the
rank, i.e., by they enforce the nuclear norm of the complete
matrix. These ideas were also applied in problems where the
matrix directly includes visual tracking information, impos-
ing smooth (Sui et al. 2015, 2016; Zhang et al. 2012) and
sparse (Wang et al. 2013) representations. When the under-
lying subspace is not consistent with standard basis com-
ponents and missing track locations are spread uniformly at
random, these approaches are guaranteed to recover missing
entries.

Unfortunately, matrix-completion techniques based on a
single low-rank subspace cannot handle the challenging and
more general scenario in which input data lie in a union of
low-rank subspaces (e.g., when dealing with simultaneous
and incomplete tracks of multiple objects performing com-
plex motions). Data segmentation from full annotations was
proposed by assuming a union of subspaces by means of a
subspace clustering based on sparse representation (Elhami-
far and Vidal 2013) or seeking the lowest rank one (Liu et al.
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Approaches Missing Automatic Temporal Spatial Unified
entries rank clustering clustering framework

Category #1 X X
Category #2 X X
Category #3 X X X
Category #4 X X X X
Ours X X X X X

Table 1 Qualitative comparison of our approach against compet-
ing techniques. We split the methods into four incremental categories,
depending on a number of desirable properties, namely: robustness to
missing entries, automatic estimation of rank, computation of tempo-
ral/spatial clusters, and unified formulation. Note that the method pro-
posed in this paper is the only that can simultaneously offers all these
properties. Some examples for every category are: #1 methods to solve
completion using a single low-rank formulation Bhojanapalli and Jain
2013; Cai et al. 2010; Candès and Plan 2010; Chen et al. 2011; Cabral
et al. 2013; Chiang et al. 2015; Sui et al. 2016, #2 methods to solve
completion by means of multiple subspaces where the rank is known
a priori Tipping and Bishop 1999b; Balzano et al. 2012, #3 methods
able to automatically retrieve the matrix rank, such as Ma et al. 2008;
Rao et al. 2010b; Yang et al. 2015, and finally #4, methods that can
solve the problem in a unified manner Elhamifar 2016; Fan and Chow
2017. It is worth noting that (Agudo and Moreno-Noguer 2017b) used
a spatio-temporal constraint for shape reconstruction, but not for shape
completion as we do in this paper. Self-expressive models (Elhamifar
and Vidal 2013; Liu et al. 2013) solved for one type of clustering but
considering full data.

2013). Going back to the completion problem, the objec-
tive would extend to recovering the missing entries together
with the clustering of the data according to the subspaces.
Mixture of factor analyzers (Ghahramani and Hinton 1996),
mixture of probabilistic principal component analysis (Tip-
ping and Bishop 1999b) and incremental matrix comple-
tion algorithms with K-subspaces (Balzano et al. 2012), are
some early methods used to address grouping and comple-
tion of multi-subspace data. Again, the performance of these
methods highly depends on the initialization and degrades
for large subspace ranks. A polynomial number of data points
in the ambient space dimension is required in (Eriksson et al.
2012) which often cannot be met in high-dimensional datasets.
Ma et al. (2008) proposed an algebraic approach to model
data drawn from a union of subspaces based on generalized
principal component analysis. Yet, due to the difficulty of es-
timating the polynomials from data, the method is sensitive
to noise and is computationally very demanding. This strat-
egy was extended in (Rao et al. 2010b), yielding more ro-
bust solutions but only for low dimensional input data and a
reduced number of subspaces. A Lipschitz monotonic func-
tion was assumed to model the low-rank matrix in (Ganti
et al. 2015), even though this cannot cover the case of mul-
tiple subspaces. Another family of solutions proposed solv-
ing completion and clustering as a two-stage problem (Yang
et al. 2015), by first obtaining a similarity graph for cluster-
ing and then applying low-rank matrix completion to each
cluster. While this is an interesting direction, the solution
proposed in (Yang et al. 2015) is prone to fail when sub-

spaces intersect or when the initial grouping is incorrect. To
solve this limitation, Elhamifar (2016) has proposed self-
expressive models for simultaneous clustering and comple-
tion of incomplete data. Along the same line, Fan and Chow
(2017) have recently presented a sparse representation to
solve the problem. However, these approaches can only clus-
ter the data based on one single criterion. In parallel, some
works have relied on neural networks to learn temporal clus-
tering (Yang et al. 2016) and infer missing entries (Nguyen
et al. 2019; Zheng et al. 2016), but solving just a single
problem. In all cases, these approaches propose to exploit
a loss function as we do in this paper, but they require a
large amount of training data to learn the model and demand
a specific hardware to complete the training step. Unfortu-
nately, this cannot be assumed for generic scenarios, where
an unknown number of unknown object typologies can de-
form, move, and even interact between them, doing the pro-
cess of simultaneously obtaining training data for track com-
pletion, spatial groups and temporal ones very hard and ex-
pensive in practice. In contrast, our formulation can solve
the problem in just few seconds in a commodity computer,
without requiring sophisticated hardware, nor prior knowl-
edge about the scenario to be solved. Moreover, none of
them simultaneously solve multiple clustering and comple-
tion as we propose in this paper.

Our Contributions. We go beyond previous works by propos-
ing an efficient and robust method that does not require ini-
tialization, and it can jointly perform two types of clustering
(spatial and temporal), while recovering missing entries and
filtering the rest. To the best of our knowledge, no previous
approach has jointly addressed the three problems in a uni-
fied and unsupervised framework. To this end, we assume
the input data to lie in a dual union of low-rank subspaces,
where no a priori knowledge about the dimensionality of the
subspaces or which data points belong to which subspace is
required. It is worth noting that our approach does not re-
quire any training data at all. Additionally, the proposed so-
lution can handle situations with complex motion patterns,
affected by large degrees of overlapping and percentage of
missing entries, in a completely unsupervised manner.

Table 1 summarizes a qualitative comparison of our ap-
proach and the aforementioned techniques to jointly solve
completion and clustering.

3 Preliminaries and Problem Statement

Notation. Matrices are represented with boldface uppercase
letters, e.g., X. In particular, IA is used to denote the identity
matrix of size A × A, and 1A a column-vector of ones of
size A × 1. The entries of matrices are denoted by means
of subscripts [·]. For instance, X[:j] corresponds to the j-th
column of the matrix X, X[i:] is the i-th row of the matrix
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X, and X[ij] indicates its (i, j)-th entry. We also define two
types of products: X ⊗ Z to denote the Kronecker product,
and X � Z to denote the Hadamard (or element-wise) one.
The negative of a binary matrix X is denoted as X̄. We also
define several norms on matrices: the l∞-norm is defined as
‖X‖∞ = max(i,j) |X[ij]|, and the l2,1-norm as ‖X‖2,1 =

Σj‖X[:j]‖2, where the l2-norm of a vector is denoted by
‖X[:j]‖2. The Frobenius and nuclear norms are represented
as ‖X‖F and ‖X‖∗ = Σiσi(X), respectively, with σi(X)

being the i-th singular value of the matrix X. Finally, the
Euclidean inner product between two matrices is denoted
as 〈X,Z〉 = tr(X>Z), where tr(·) represents the trace of a
matrix.

3.1 Problem Formulation

Let us consider F temporal subspaces {Sf}Ff=1 of dimen-
sion {df > 0}Ff=1 in a C-dimensional space, and G spa-
tial subspaces {Sg}Gg=1 of dimension {dg > 0}Gg=1 in a H-
dimensional space. Let Y ∈ RC×T be a matrix of T data
points lying on the union of the temporal subspaces, and
Ŷ ∈ RH×N a matrix of N data points lying on the union
of spatial subspaces. If we assume that both dimensions can
be factorized by a factor D (i.e., C = DN and H = DT ),
the two matrices Y and Ŷ can then contain exactly the same
number of values but in a different arrangement. Addition-
ally, we will assume that only some entries of these matrices
are observed, i.e., some locations can include null values. To
denote this, we include the matrix Ỹ, a sparse version of Y,
in which non-observed entries are set to zero.

Our problem consists in, given an incomplete and noisy
matrix Ỹ of data points from motion tracking, retrieving the
full matrix, Y or Ŷ, and clustering the data into the under-
lying temporal and spatial subspaces. To this end, we will
encode the spatial and temporal subspaces using affinity ma-
trices. It is worth noting that both the bases ({Sf}Ff=1 and
{Sg}Gg=1) and dimensions of each subspace (df and dg , re-
spectively) are not known a priori, nor to which cluster each
data point belongs to. The incomplete and noisy input matrix
can be provided by any tracking algorithm, by considering,
for instance, optimization (Hare et al. 2011; Jia et al. 2012)
or deep-learning approaches (Joo et al. (2018)). We next de-
scribe our unsupervised and unified approach that can solve
the problem without requiring any training data at all.

4 Spatio-Temporal Subspace Clustering

Drawing inspiration on the ideas of (Agudo and Moreno-
Noguer 2017b) for reconstructing non-rigid shapes, we next
generalize a spatio-temporal constraint for joint motion-track
matrix completion and clustering. Note that this constraint

was not used previously in the literature for completing miss-
ing entries as we present here. We first introduce the two
types of interpretations of the tracking matrices we shall use.
After that, and considering the previous interpretations, we
will introduce the temporal and spatial constraints, extend-
ing our formulation to handle missing tracks.

4.1 Motion Tracking Matrix Interpretations

Let us consider a dynamic set of N D-dimensional points
tracked along T time instances. For the particular case of
D = 3, i.e., a tridimensional space, we shall denote by xti =

[xti, y
t
i , z

t
i ]
> the spatial coordinates of the i-th point at time

instant t. All acquired point coordinates can be collected into
the matrix Y ∈ RDN×T in an unordered manner in terms of
any type of grouping, that stores the x, y, and z coordinates
in a block matrix form as:

Y =

x
1
1 . . . x

1
N y11 . . . y

1
N z11 . . . z

1
N

...
. . .

...
...

. . .
...

...
. . .

...
xT1 . . . xTN yT1 . . . yTN zT1 . . . zTN


>

.

We could assume the previous motion tracking matrix
admits a low-rank decomposition of rank K (K = 1 for
rigid objects), where K represents the number of bases in a
single subspace. We know from the structure from motion
theory this matrix is low-rank (Dai et al. (2012); Xiao et al.
(2006)), but since no information about the motion is as-
sumed, only a low-rank constraint can be considered. How-
ever, as discussed above, the single low-rank assumption
may not have sufficient expressiveness power to model com-
plex motion patterns of multi-object tracks. It is worth men-
tioning that if we know some kind of clustering or grouping
of the T data points, we might handle this situation by en-
forcing the low-rank assumption to every particular cluster.
In this work, however, the number and type of clusters is not
known a priori, making the problem more challenging and
generic. Consequently, we need to jointly solve for comple-
tion and clustering, without assuming any information about
the dimensionality of the subspaces.

Since each column of the matrix Y encodes all points at
a time instant, this matrix cannot be directly used to retrieve
spatial similarities. To address this limitation, we consider
a new DT × N matrix Ŷ, for which each column stores
the point tracks. Following the previous case of D = 3, this
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matrix can be written as1:

Ŷ =



x11 x12 . . . x
1
N

y11 y12 . . . y
1
N

z11 z12 . . . z1N
...

...
. . .

...
xT1 xT2 . . . xTN
yT1 yT2 . . . yTN
zT1 zT2 . . . zTN


,

that is also low-rank as Y but differing in value.
Both matrices use two different matrix arrangements of

the data points, but they include exactly the same informa-
tion. We can map from Y matrix to Ŷ using the relation:

Ŷ = (ID ⊗Y>)A, (1)

where A is a (DDN)×N binary matrix. The inverse map-
ping can be written as:

Y = (Ŷ> ⊗ ID)B, (2)

where B is also a (DDT )×T binary matrix. Both A and B

matrices are known a priori, and they can be easily obtained
by considering the data structure in data matrices Ŷ and Y.

4.2 Dual Union of Spatio-Temporal Subspaces

The arrangement of the point tracks through the matrices Y
or Ŷ gives two different interpretations, and each of it can
be associated to a distinct subspace clustering process. For
instance, when analyzing the temporal domain using Y, we
can define an affinity matrix to capture the temporal similar-
ities between instances at different time steps. This relation
can be written as:

Y = YT + Et, (3)

where T encodes a temporal affinity T × T matrix, and Et
is a DN × T residual noise. In this context, the tempo-
ral affinity matrix T measures the similarities between D-
dimensional poses along time. Using this relation, we en-
force Y to lie in a union of Sf temporal subspaces, each of
them with rank df . We could say that the matrix T is the
lowest-rank representation of the data Y with respect to it-
self. It is worth noting that T will be block-diagonal when
the data samples have been grouped together in Y according
to the subspace memberships. This block pattern is lost for
random entries, obtaining null entries when no affinities are
provided. This type of self-expressive model was previously

1 Note that other dimensions could be used, such as 2D motion
tracking whereD = 2. In this case we only need to eliminate the rows
of the matrices Y and Ŷ corresponding to the z component. Theoreti-
cally, other dimensions can be also used, such as 1D image sensors.

used by (Elhamifar and Vidal 2013; Liu et al. 2013) in the
context of subspace clustering.

Similarly, we can analyze the spatial domain through the
matrix Ŷ, by introducing an affinity matrix associated with
a union of spatial subspaces in the presence of noise. In this
case, we can write:

Ŷ = ŶS + Es, (4)

where S encodes a spatial affinity N ×N matrix, and Es is
a DT × N residual noise. In this case, we are enforcing Ŷ

to lie in a union of Sg spatial subspaces of rank dg , respec-
tively, measuring the similarities betweenD-dimensional points
in a same time instant. Basically, S and T are made of low-
rank coefficients that define the union of subspaces in ev-
ery domain, respectively. Once these affinity matrices are
learned from data, off-the-shelf spectral clustering algorithms
like (Chen et al. 2010) can be applied on each of them to
discover the grouping in every domain. The temporal clus-
tering splits the data into motion primitives, and the spatial
one into different object instances.

Nevertheless, the previous formulation requires full mea-
surements on the tracking matrices Y or Ŷ, which is not of-
ten the case in real applications. Previous subspace cluster-
ing algorithms assume the observation matrices to be com-
plete (Agudo and Moreno-Noguer 2017b; Elhamifar and Vi-
dal 2013; Kanatani 2001; Liu et al. 2013; Zhu et al. 2014).
As mentioned above, other approaches (Elhamifar 2016; Fan
and Chow 2017) proposed an algorithm to jointly estimate
missing entries and build a similarity graph for clustering,
when considering a single union of temporal subspaces. The
algorithm we present in the following section, goes beyond
these approaches, and allows solving the matrix comple-
tion problem when considering the data to be spanned by
two different union of subspaces. Our approach can handle
high levels of missing entries and noisy measurements, and
solve the problem by means of a one-stage optimization al-
gorithm. This means our approach can produce more accu-
rate solutions than competing techniques, while being more
general.

5 Motion Tracking Completion and Spatio-Temporal
Subspace Clustering

We next present our algorithm to simultaneously recover
missing entries and estimate two similarity matrices for com-
puting the spatial and temporal grouping. Note that no prior
information nor training data is used at all. The input to our
algorithm are incomplete motion tracks ofN D-dimensional
points observed along T time instances, that are arranged
into the matrix Ỹ. In addition, we also introduce an obser-
vation matrix O ∈ RN×T with binary entries that indicate
whether the coordinates of a point at a specific time instant
are observed or not.



6 A. Agudo, V. Lepetit and F. Moreno-Noguer

5.1 Proposed Formulation

Let us denote by Θ ≡ {Y, Ŷ,T,S,Et,Es} the set of model
parameters we have to learn from the input data Γ ≡ {Ỹ,O}.
We introduce an optimization framework ruled by a cost
function that accounts for the spatio-temporal clustering con-
straints of Eqs. (3)-(4), and enforces the similarity matri-
ces T and S to be spanned by low-rank subspaces. Conse-
quently, the combination of both constraints, enforces the
data in order to lie in a dual union of subspaces. Indeed, the
single union of subspaces model can be seen as a degenerate
case of our model (see Remark 1 below).

Since rank minimization is a non-convex NP-hard prob-
lem (Recht et al. 2010), the nuclear norm is approximated by
its convex relaxation (Chen et al. 2011; Candès and Recht
2008). Additionally, in order to be able to deal with data
corrupted by noise and outliers, we use l2,1-norm regular-
ization, as the convex relaxation of the l2,0-norm (Liu et al.
2010). The objective function can therefore be written as:

arg min
Θ

‖ (1D ⊗O)�
(
Ỹ −Y

)
‖2F + φ (‖T‖∗ + ‖S‖∗)

+ γ‖Y‖∗ + λt‖Et‖2,1 + λs‖Es‖2,1 (5)

subject to Y = YT + Et
Ŷ = ŶS + Es
(ID ⊗Y>)A = Ŷ

where {φ, γ, λt, λs} are predefined penalty term parameters.

Remark 1: When the data points are not connected in the
spatial domain, it means that the affinity matrix S becomes
the identity IN (we assume the data points are clean in this
domain, i.e., Es = 0), and hence our formulation degener-
ates to a union of temporal subspaces. On the other hand,
when this occurs in the temporal domain (T = IT and
Et = 0), our formulation degenerates to a union of spatial
subspaces.

5.2 Efficient Augmented Lagrangian Multiplier
Optimization

The optimization problem in Eq. (5) can be efficiently solved
in a unified manner via an ALM method (Lin et al. 2010;
Boyd et al. 2011). Without loss of generality, we set λ ≡
λt ≡ λs. In order to reduce the number of parameters and
the complexity of the problem while improving convergence,
we choose to bring the clustering constraints into the energy
function using several Lagrange multipliers with a unique
penalty weight β > 0. In addition, we introduce three sup-
port matrices Y ≡ M, T ≡ J, and S ≡ K, to obtain the

corresponding augmented Lagrangian function, that can be
written as:

arg min
ΘL

‖ (1D ⊗O)�
(
Ỹ −Y

)
‖2F + φ (‖J‖∗+‖K‖∗)

+γ‖M‖∗+λ (‖Et‖2,1+‖Es‖2,1)

+〈L1,Y−YT−Et〉+
β

2
‖Y−YT−Et‖2F

+〈L2, Ŷ−ŶS−Es〉+
β

2
‖Ŷ−ŶS−Es‖2F

+〈L3, (ID ⊗Y>)A−Ŷ〉+ β

2
‖(ID ⊗Y>)A−Ŷ‖2F

+〈L4,Y−M〉+
β

2
‖Y−M‖2F

+〈L5,T−J〉+
β

2
‖T−J‖2F

+〈L6,S−K〉+
β

2
‖S−K‖2F (6)

where ΘL ≡ {M,Y,J,T,K,S, Ŷ,Es,Et} includes the
tracking completion, spatio-temporal similarity parameters
and residual noises. The Lagrange multipliers are defined
as {L1,L4} ∈ RDN×T , {L2,L3} ∈ RDT×N , L5 ∈ RT×T
and L6 ∈ RN×N . Recall that we do not need to know the di-
mensions nor the bases of the temporal and spatial subspaces
a priori, since Eq. (5) automatically selects the appropriate
number of data points from every spatio-temporal subspace.

We propose to solve the problem in Eq. (6) by mini-
mizing each variable individually and in closed form, while
keeping fixed the rest of model parameters. Algorithm 1 ex-
plains the details. The expressions for estimating Y, T, S
and Ŷ (steps 4, 6, 8 and 9) are obtained by computing the
derivatives of Eq. (6) in Y, T, S and Ŷ, respectively, and
equating to zero. The subproblems to recover M, J, K, Et
and Es are convex and have closed-form solutions. Particu-
larly, for steps 2, 5 and 7, we apply a singular value thresh-
olding minimization (Cai et al. 2010) with a ‘shrinkage oper-
ator’ S ∗β (x) = max(0, x− ∗β ) where ∗ = {φ, γ}. In order to
optimize the noise terms Et and Es (steps 10 and 11, respec-
tively), we apply the Lemma 4.1 in (Yang et al. 2009). After
each iteration, the Lagrange multipliers are updated accord-
ing to standard rules as shown in lines 12-13. Additionally,
we also update the penalty weight β (step 14) to guaran-
tee the convergence of our algorithm, following the upper
bounded requirement of the alternating direction methods.
Particularly, we apply a factor of 1.1 to increase β every it-
eration.

The theoretical convergence of our algorithms is not easy
to proof, as the method is based on nine different blocks.
However, we have empirically observed that for all exper-
iments reported in the following section, the algorithm al-
ways converged in about 190− 220 iterations. Additionally,
we observe the optimality gap obtained in every iteration to
monotonically decrease. An example of this analysis is dis-
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Algorithm 1: Algorithm for optimizing Eq. (6).
Input : Incomplete trajectories Ỹ on a D-dimensional

space. Parameters {φ, γ, λ}, and β
Output: Matrix completion Y (or Ŷ), temporal T and

spatial S affinity matrices for clustering

1 while not converged do
/* Update Model Parameters */

2 M = min γ
β
‖M‖∗ + 1

2
‖M− (Y + L4

β
)‖2F

3 D =
(
M− L4

β
+
((

(Ŷ − L3

β
)> ⊗ ID

)
B
)

+(Et−
L1

β
)(IT −T>)

)(
(IT −T)(IT −T>)+2IT

)−1

4 Y = (1D ⊗O)�
(

1
2+β

(2Ỹ + βD)
)

+
(
1D ⊗ Ō

)
�D

5 J = min φ
β
‖J‖∗ + 1

2
‖J− (T + L5

β
)‖2F

6 T = (Y>Y+IT )−1(Y>(Y−Et)+J+Y>L1−L5

β
)

7 K = min φ
β
‖K‖∗ + 1

2
‖K− (S + L6

β
)‖2F

8 S = (Ŷ>Ŷ+IN )−1(Ŷ>(Ŷ−Es)+K+Ŷ>L2−L6

β
)

9 Ŷ =
(

(Es− L2

β
)(IN − S>)+ L3

β
+ ((ID ⊗

Y>)A
) (

(IN − S)(IN − S>)+IN
)−1

10 Et = min λ
β
‖Et‖2,1+ 1

2
‖Et−(Y−YT+ L1

β
)‖2F

11 Es = min λ
β
‖Es‖2,1+ 1

2
‖Es−(Ŷ−ŶS+ L2

β
)‖2F

/* Update Lagrange Multipliers */
12 L1 = L1 + β(Y −YT−Et);

13 L2 = L2 + β(Ŷ − ŶS−Es)

14 L3 = L3 + β
(
(ID ⊗Y>)A− Ŷ

)
15 L4 = L4 + β(Y −M)
16 L5 = L5 + β(T− J)
17 L6 = L6 + β(S−K)

/* Update Penalty Weight */
18 β = min(1.1 · β, βmax)

/* Check Convergence */
19 ‖Y −YT−Et‖∞ < ε

20 ‖Ŷ − ŶS−Es‖∞ < ε

21 ‖(ID ⊗Y>)A− Ŷ‖∞ < ε
22 ‖Y −M‖∞ < ε
23 ‖T− J‖∞ < ε
24 ‖S−K‖∞ < ε

25 Setting: In our experiments, we use ε = 10−8, and
βmax = 1012 since the values in Y are normalized
within the range [-1,1].

played in Fig. 1, where both constraints and full errors in
Eq. (6) are represented for a specific case. As it can be seen,
after around 50 iterations all constraints are almost perfectly
satisfied and the overall energy converges.

5.3 Complexity Analysis

The most computationally demanding parts of Algorithm 1
are the steps 2, 5 and 7, which require computing several
SVD operations over matrices of size DN × T , T × T and
N × N , respectively. Hence, our problem can be solved in
polynomial time with a computational complexity of at most
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Fig. 1 Convergence analysis: energy reduction as a function of the
number of iterations. Evolution of the error for the six constraints
(denoted as Cc, with c = {1, . . . , 6}) and the full energy in Eq. (6) as
a function of the number of iterations until convergence (corresponding
to the Jump scenario described in the results section). Note that two
different scales are used to represent the errors of the constraints (left
axis) and the full error (right axis). For visualization purposes, we plot
the full energy scaled by a factor of 0.1.
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Fig. 2 Computation time as a function of the number of frames,
points and iterations. Computation time vs. number of iterations until
convergence on the mocap sequences described in the experimental-
results section, for two (red dots) and four (blue dots) people. Next
to each dot are indicated the number of images of the sequence. In
all cases, the number of iterations until convergence always remains
within reasonable bounds. The corresponding computation time de-
pends on the number of frames and points.

of O(N2T + T 3 + N3) (Golub and Van Loan 1996). Note
that this complexity could be easily reduced by orthogonal-
izing the columns of the matrices Y and Ŷ. The compu-
tation times (in unoptimized Matlab code) on a commodity
laptop with an Intel Core i7 processor at 2.4GHz for motion
capture sequences for two and four people are displayed in
Fig. 2. On average, the median computation time in experi-
ments with sequences between 277 − 652 frames, and two
people (N = 82 points) was of 51 seconds. Processing be-
tween 214− 432 frames, and four people (N = 164 points)
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required a median time of 44 seconds. In any case, to han-
dle larger datasets we could use current results Yao et al.
(2019) on the use of SVD operations on large datasets to ad-
dress large-scale low-rank problems. This could really help
to reduce the reported complexity. Moreover, our formula-
tion could be extended to be employed in a sequential man-
ner, being this a part of our future work.

6 Experimental Results

In this section we report the performance of our algorithm
to solve motion tracking completion, as well as temporal
and spatial clustering on several challenging datasets. For
all cases, we denote by ρ the fraction of missing entries in
the input data. In all experiments, we set φ = 1.0, γ = 2.0

and λ = 0.03. It is worth pointing out that we do not need
fine tuning these parameters, as the results were stable for
wide range of values for φ ∈ [0.1, 10] and γ ∈ [0.2, 20].
Regarding the competing approaches, we will compare our
algorithm, denoted as Spatio-Temporal Track Completion
(ST2C), with the Low-Rank Matrix Completion (LRMC) (Cai
et al. 2010), and the Bilinear Factorization Matrix Comple-
tion (BFMC) (Cabral et al. 2013), two approaches where the
rank is automatically estimated. We do not include (Ghahra-
mani and Hinton 1996; Balzano et al. 2012) as these meth-
ods require knowing the rank of every subspace a priori. Un-
fortunately, neither can we report the results of (Elhamifar
2016; Fan and Chow 2017) as its source code is not pub-
licly available. Recall, however, that both approaches did
only consider a single union of subspaces.

To establish a quantitative evaluation, we will compute
three types of errors: the temporal eTC and spatial eSC clus-
tering error as well as the motion tracking completion eMTC

(this error is equivalent to a matrix completion evaluation)
that are defined as:

eTC =
#Misclassified frames

#All frames
, (7)

eSC =
#Misclassified points

#All points
, (8)

eMTC =
‖Y −YGT ‖2F
‖YGT ‖2F

. (9)

where YGT and Y denote the ground true and the recovered
matrices, respectively. For the temporal clustering error, we
have obtained the ground truth segmentation over noise-free
and complete measurement matrices by applying (Liu et al.
2013) to compute the similarity matrices and (Chen et al.
2010) to obtain the clusters. Spatial ground truth were an-
notated by hand. This means the evaluation we propose for
temporal clustering is actually an implicit comparison with
respect to the competing approach (Liu et al. 2013) by as-
suming clear measurements.
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Fig. 3 Patterns of missing entries. V patterns used to simulate miss-
ing entries in the Jump sequence. White and black cells denote non-
visible and visible points, respectively. Top: ρ = 0.4 of random miss-
ing entries. Bottom: ρ = 0.4 of structured missing entries.

6.1 Real Experiments on Motion Capture Data

We evaluate the proposed approach on the CMU MoCap
dataset. We consider several scenarios with either two or
four people interacting and performing complex motions in
3D. On average, the sequences we consider are 433 frames
long, and the number of points per frame is either 82 (two
people) or 164 (four people). Specifically, we select eight se-
quences with two people: 23 16 (Jump): subjects alternating
synchronized jumping jacks; 19 05 (Pull): a subject pulls
the other by the elbow; 22 20 (Violence): a subject picks up
high stool and threatens to strike the other; 20 06 (Soldiers):
subjects follow a soldiers march; 23 19 (Stares Down): a
subject stares down the other and leans with hands on high
stool; 22 12 (Stumbles): a person stumbles into the other;
20 09 (Nursery): people follow a nursery rhyme; and 22 10
(Shelters): a person shelters the other from harm. A total
of four sequences with four people are considered, synthet-
ically generated by combining pairs of sequences with two
people.

All sequences are corrupted in three different ways: 1)
randomly removing a fraction ρ = {0.1, . . . , 0.8} of entries
of the measurement matrix Y; 2) removing a structured frac-
tion ρ = {0.1, . . . , 0.4} of entries of the measurement ma-
trix Y where we emulate temporal self-occlusions or lack of
visibility, by including patterns with 50% of structured miss-
ing entries per frame; and 3) adding noise to the observed
points, according to a Gaussian distribution with standard
deviation σnoise = τ

100ψ, where τ controls the amount of
noise, and ψ represents the maximum distance of a point to
the centroid of all the points. An example of these artifacts
is shown in Fig. 3, for both random and structured missing
entries.

Figures 4 and 5 summarize the results for two and four
people, respectively. Each graph depicts the results of all 3
methods for one specific sequence, at increasing levels or
missing data for the two types of cases we propose. Solid
and dashed lines represent results for noise-free and noisy
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Fig. 4 Motion completion errors of different algorithms as a function of the missing entries rate ρ on motion capture sequences with two
subjects. Each algorithm is evaluated under noise-free (τ = 0) and noisy (τ = {1, 2}) data. For visualization purposes, the error of LRMC has
been divided by a factor 3.5 in all graphs. Top: Random missing entries. Bottom: Structured missing entries.

measurements, respectively. Our approach and BFMC (Cabral
et al. 2013) show similar error patterns, even though ours be-
ing always consistently better. A breaking point is achieved
earlier by BFMC (Cabral et al. 2013), showing our supe-
riority in terms of robustness against this type of artifacts.
As it can be seen, our solution by assuming noise can even
provide better solutions than the competing approaches for
clean annotations. The performance of LRMC (Cai et al.
2010) is far below the other two algorithms. We hypothe-
size this is due to the pseudo-block structure of the miss-
ing data, as each missing point does indeed represent three
–recall that for this experiment, D=3– adjacent null ele-
ments in Y. This is especially relevant when the missing
entries are structured, as it can be seen in the bottom part of
Figs. 4 and 5. Note also that BFMC (Cabral et al. 2013) and
LRMC (Cai et al. 2010) are specifically designed for ma-
trix completion. These algorithms do not provide any kind

of affinity measure, that allows subsequent clustering. Some
instances for several scenarios when the missing entries are
random are displayed in Fig. 6. Moreover, our algorithm is
faster than the competing approaches, producing an speed
up of 2.7× when BFMC (Cabral et al. 2013) is considered.

As we have commented above, our approach also esti-
mates spatial and temporal clustering. Tables 2 and 3 sum-
marize the mean error for each sequence and all levels of
missing data for the random and structured cases, respec-
tively, for noiseless (τ = 0) and noisy (τ = {1, 2}) mea-
surements. As it can be seen, our approach produces very
good results for most of the sequences, especially in terms
of spatial clustering where we obtain an almost negligible
clustering error. In fact, our algorithm produces better spa-
tial clustering solutions with artifacts that the provided by
LRR (Liu et al. 2013) even assuming full observations (re-
member that this method needs full data, i.e., ρ = 0), as it is
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Fig. 5 Motion completion errors of different algorithms as a function of the missing entries rate ρ on motion capture sequences with four
people. Again, every algorithm is evaluated under noise-free (τ = 0) and noisy (τ = {1, 2}) data. The error of LRMC has been divided by a
factor 3.5 in all graphs. Top: Random missing entries. Bottom: Structured missing entries.

(noise) Jump Violence Shelters Pull Stumbles Soldiers Nursery Stares Jump4 Greet4 Shelters4 Zombie4

eMTC τ = 0 4.23e-2 5.39e-2 5.98e-2 5.51e-2 5.52e-2 5.77e-2 9.66e-2 3.64e-2 2.70e-2 3.20e-2 3.05e-2 3.16e-2
τ = 1 4.91e-2 6.17e-2 6.60e-2 6.27e-2 6.06e-2 6.27e-2 10.40e-2 4.23e-2 3.14e-2 3.57e-2 3.62e-2 3.66e-2
τ = 2 6.62e-2 7.71e-2 8.31e-2 7.91e-2 7.78e-2 7.91e-2 12.70e-2 6.36e-2 4.35e-2 4.99e-2 4.97e-2 5.28e-2

eTC τ = 0 1.39(2) 2.39(2) 2.51(2) 5.35(2) 1.31(3) 7.95(3) 26.23(2) 0.80(2) 3.94(2) 8.40(2) 4.40(2) 1.87(2)
[%] τ = 1 2.54(2) 3.45(2) 3.29(2) 5.58(2) 1.65(3) 9.03(3) 31.45(2) 0.93(2) 4.63(2) 8.40(2) 4.80(2) 2.80(2)

τ = 2 3.01(2) 3.99(2) 3.87(2) 5.81(2) 2.08(3) 10.11(3) 33.90(2) 1.25(2) 4.63(2) 9.60(2) 6.00(2) 2.80(2)

eSC τ = 0 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(4) 0.00(4) 1.22(4) 0.00(4)
[%] τ = 1 0.00(2) 1.22(2) 1.22(2) 1.22(2) 0.00(2) 2.44(2) 1.22(2) 0.00(2) 0.00(4) 0.00(4) 1.22(4) 0.00(4)

τ = 2 0.00(2) 2.44(2) 3.66(2) 2.44(2) 0.00(2) 3.66(2) 1.22(2) 1.22(2) 0.00(4) 0.61(4) 1.22(4) 0.61(4)

eSC τ = 0 0.00(2) 2.44(2) 4.88(2) 2.44(2) 50.00(2) 50.00(2) 0.00(2) 0.00(2) 0.00(4) 0.00(4) 16.46(4) 19.51(4)
[%] τ = 1 0.00(2) 2.44(2) 6.10(2) 2.44(2) 48.78(2) 50.00(2) 0.00(2) 0.00(2) 0.00(4) 17.67(4) 26.22(4) 11.58(4)
LRR (ρ = 0) τ = 2 0.00(2) 2.44(2) 7.31(2) 3.66(2) 48.78(2) 50.00(2) 0.00(2) 0.00(2) 8.53(4) 0.00(4) 18.29(4) 23.17(4)

Table 2 Completion and spatio-temporal clustering results on the CMU dataset as a function of noisy measurements for random missing
entries. We represent the median values from ρ = {0.1, . . . , 0.8} for the motion track completion eMTC as well as both temporal eTC [%]
and spatial eSC [%] clustering errors considering noise-free (τ = 0) and noisy (τ = {1, 2}) measurements. In parenthesis it is represented the
number of estimated temporal and spatial clusters our approach recovers, respectively. The last part in the table includes the eSC [%] errors for the
baseline LRR Liu et al. (2013) by considering full matrices, i.e., (ρ = 0).

(noise) Jump Violence Shelters Pull Stumbles Soldiers Nursery Stares Jump4 Greet4 Shelters4 Zombie4

eMTC τ = 0 3.12e-2 5.25e-2 6.50e-2 5.52e-2 5.29e-2 4.54e-2 8.07e-2 3.33e-2 3.08e-2 1.64e-2 1.53e-2 1.59e-2
τ = 1 3.61e-2 5.56e-2 6.80e-2 5.87e-2 5.57e-2 4.79e-2 8.36e-2 3.74e-2 3.31e-2 2.10e-2 2.11e-2 2.52e-2
τ = 2 5.09e-2 6.70e-2 7.84e-2 7.09e-2 6.39e-2 5.55e-2 9.29e-2 4.81e-2 4.22e-2 3.55e-2 3.79e-2 4.74e-2

eTC τ = 0 1.15(2) 2.19(2) 2.66(2) 5.29(2) 1.15(3) 7.22(3) 23.58(2) 0.52(2) 4.16(2) 5.60(2) 3.30(2) 1.52(2)
[%] τ = 1 1.62(2) 2.86(2) 3.43(2) 5.52(2) 1.32(3) 7.67(3) 25.11(2) 0.62(2) 4.86(2) 5.60(2) 3.80(2) 1.87(2)

τ = 2 2.08(2) 2.39(2) 3.87(2) 6.05(2) 1.97(3) 7.22(3) 27.61(2) 0.63(2) 4.40(2) 5.20(2) 4.40(2) 2.34(2)

eSC τ = 0 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(4) 0.00(4) 0.61(4) 0.00(4)
[%] τ = 1 0.00(2) 2.44(2) 1.22(2) 1.22(2) 0.00(2) 2.44(2) 1.22(2) 0.00(2) 0.00(4) 0.00(4) 1.83(4) 0.61(4)

τ = 2 0.00(2) 2.44(2) 3.66(2) 3.66(2) 0.00(2) 3.66(2) 2.44(2) 1.23(2) 0.00(4) 0.61(4) 1.22(4) 0.61(4)

Table 3 Completion and spatio-temporal clustering results on the CMU dataset as a function of noisy measurements for structured
missing entries. We represent the median values from ρ = {0.1, . . . , 0.4} (recall that patterns with 50% of missing entries were simulated) for
the motion track completion eMTC as well as both temporal eTC [%] and spatial eSC [%] clustering errors considering noise-free (τ = 0) and
noisy (τ = {1, 2}) measurements. In parenthesis it is represented the number of estimated temporal and spatial clusters our approach recovers,
respectively.
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Fig. 6 3D motion track completion on multi-body scenarios, assuming missing entries (ρ = 0.7) and noisy measurements (τ = 1). The
sequences in order of appearance (from top to bottom) are: Shelters, Nursery, Greet4 and Zombie4, respectively. For everyone, several instant
frames are represented from two orthogonal viewpoints (z-x and y-z). 3D Ground truth is represented by circles and squares, where the color
denoted if a point is visible (black circles) or not (blue squares). We represent our motion track completion by means of red dots. Observe that
even for high levels of missing entries, our algorithm produces an accurate and clean completion. Although it is not represented in this figure, it is
worth pointing out that our algorithm also recovers the spatio-temporal segmentation, even for large degrees of overlapping between the bodies, as
it can be seen in the displayed scenarios. Best viewed in color.

observed in table 2. For temporal clustering, our solution is
implicitly compared with respect to LRR Liu et al. (2013),
showing consistent solutions as a function of the level of
noisy. For both types of artifacts, the worst results are ob-
tained for the sequences Shelters and Nursery, since the type

of motion does not include many deformation cycles. In any
case, even for these complex motions, our algorithm pro-
vides a good trade-off between accuracy and computational
cost.
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Fig. 7 2D Tracking completion for the ASL dataset. Results for three frames of the sequence. For every image, visible 2D tracking data are
shown as red dots. To complete the non-visible tracks, we use our algorithm (blue crosses) and the low-trajectory-rank approach of (Gotardo and
Martinez 2011) (green circles). Qualitative results show that our approach provides more accurate track completion for this challenging experiment.
Best viewed in color.

6.2 Real Experiment on ASL Tracking Completion

We now consider the completion of time-series trajectories
from a real monocular video. We use two American Sign
Language (ASL) sequences (Gotardo and Martinez 2011)
of 114 image frames, where 77 feature points per sequence
are tracked. For the purpose of evaluating the spatial clus-
tering ability of our algorithm, we merge the frames of the
two sequences to render a unique video with two faces (with
N=154 feature points). The face tracks are corrupted by miss-
ing entries (corresponding to ρ = 0.1445) due to partial oc-
clusions produced by one or two hands (self-occlusion), or
by the face self-rotation causing lack of visibility.

Results are shown in Fig. 7. We compare against (Go-
tardo and Martinez 2011), a completion algorithm that esti-
mates missing tracks enforcing low-rank trajectory models.
Note that this approach requires fine-tuning the rank of the
subspace a priori, producing very different solutions when
this is done. We use the rank value provided by the au-
thors. For the non-visible points there is no ground truth, but
from a qualitative inspection we observe our approach to be
remarkably more accurate (see for instance the right-most
frame of Fig. 7). We may nevertheless measure the accuracy
of the estimated position for the visible points (red dots).
For these, our method provides a solution 2.35 times more
accurate than that obtained by (Gotardo and Martinez 2011)
without assuming any rank knowledge.

6.3 Real Experiment on Multi-fish Data

Finally, we consider a very challenging multi-fish real se-
quence taken from the DAVIS dataset Perazzi et al. (2016).
Particularly, this is a sequence of 51 frames where 33 points
per image are tracked. The incomplete tracks are provided
by hand, obtaining a level of missing entries of ρ = 0.129

(as a combination of random and structured missing tracks),
due mainly to multiple partial occlusions produced by the
dynamic motion of the animals. A qualitative evaluation of
our algorithm is displayed in Fig. 8. As it can be seen, our
algorithm can accurately recover the missing tracks without
assuming any extra information about the type of observed
scene, such as the number of objects, the type of deforma-
tions, or the rank of every subspace.

7 Conclusion

We have proposed an algorithm for simultaneous motion
track completion and clustering based on two different cri-
teria. For this purpose, we have devised a model that allows
to jointly enforce the entries of the matrix to lie in a dual
union of subspaces. This goes beyond state-of-the-art solu-
tions, which were restricted to single union of subspaces.
Using the machinery of the augmented Lagrange multipli-
ers we have obtained an efficient solution to the problem,
and applied it to the case of input data obtained from motion
capture systems of multiple human motion, and to challeng-
ing real videos. Extensive evaluation demonstrates the abil-
ity of our approach to recover missing tracks, and segment
input data into each of the objects being captured, and auto-
matically discovering their motion primitives. Further theo-
retical analysis of the algorithm and convergence proofs will
be investigated in the future. Moreover, we pretend to extend
our formulation for sequential estimation as the data arrive.
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