
Model Predictive Control
for a Mecanum-wheeled Robot
Navigating among Obstacles ?

Iñigo Moreno-Caireta ∗ Enric Celaya ∗∗ Llúıs Ros ∗∗

∗ Facultat de Matemàtiques i Estad́ıstica (FME), Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain. (e-mail:

inigo.moreno@upc.edu).
∗∗ Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona,

Spain. (e-mails: celaya@iri.upc.edu, ros@iri.upc.edu)

Abstract: Mecanum-wheeled robots have been thoroughly used to automate tasks in many
different applications. However, they are usually controlled by neglecting their dynamics and
relying only on their kinematic model. In this paper, we model the behaviour of such robots
by taking into account both their equations of motion and the electrodynamic response of
their actuators, including dry and viscous friction at their shafts. This allows us to design a
model predictive controller aimed to minimise the energy consumed by the robot. The controller
also satisfies a number of non-linear inequalities modelling motor voltage limits and obstacle
avoidance constraints. The result is an agile controller that can quickly adapt to changes in the
environment, while generating fast and energy-efficient manoeuvres towards the goal.

Keywords: Dynamic modelling of wheeled robots, model predictive control, motion control,
mobile robot, trajectory and path planning, optimization-based control, obstacle avoidance,
energy efficiency, Mecanum wheels, directional sliding wheels.

1. INTRODUCTION

Today, many ground robots and transport systems use
traditional wheels to displace themselves (Campion and
Chung, 2008). Such wheels are limited to move in a single
direction of the plane, as their sliding along the orthogonal
direction is prevented by friction. This is beneficial in some
cases. For example, in car-like vehicles that go at high
speeds it is important to avoid lateral motions for security
reasons, and to make the manoeuvrability more intuitive.
When moving at lower speeds, however, traditional wheels
are less attractive, as they impede holonomic motions in
the plane, forcing the vehicle to use multiple manoeuvres
even to perform local movements (as when parking a
car-like robot in a tight spot). Mecanum wheels solve
this problem by mounting rollers on the wheels (Fig. 1,
top). With such rollers, the ground force still acts in one
direction, but a second direction is available for sliding.
By mounting three or more of such wheels, the robot
chassis is then free to follow any motion in the plane
(Agulló et al., 1987). The wheels can even be fixed to the
chassis, which simplifies the robot design substantially. A
downside, however, is that mecanum wheeled robots can
be inefficient in terms of energy consumption, as the wheels
may produce ground opposing forces with a null effect on
motion (Fig. 1, bottom). A careful control of the motor
torques or voltages is thus needed to minimise this effect.

Due to their freedom of movement and simple design,
mecanum-wheeled robots are increasingly used in different
? Work partially funded by the Spanish Ministry of Science, Inno-
vation, and Universities under project DPI2017-88282-P.

contexts, as in intelligent storage facilities, assembly lines
of trains or planes, or hospitals, among others (Adăscăliţei
and Doroftei, 2011). In such contexts, the robot is required
to move to a goal location autonomously without colliding
with the environment. The obstacles may be fixed or
moving, or have unpredictable behaviour, as when human
workers or other robots enter the workspace unexpectedly.
The goal of this paper is to develop a motion controller
to help fulfilling the previous task. Given a goal state for
the robot, specified by a position and a velocity to be
attained, the controller computes a sequence of feasible
control actions aiming to bring the robot towards such
state. Our controller (1) is based on a thorough dynamic
model including the equations of motion of the robot and
the electrodynamic effects and frictions of the motors,
(2) respects motor voltage limits, (3) avoids the collisions
with obstacles, and (4) attempts to minimise the energy
consumption so as to reduce ground opposing forces to the
largest possible extent.

While motion controllers for mecanum-wheeled robots
have been given in the past, most of them rely only on the
kinematic model of the robot (Indiveri, 2009; Lynch and
Park, 2017). That is, they neglect inertia and motor torque
limitations in the hope that the commanded velocities will
accurately be followed. A kinematic controller may suffice
if the robot is light, or if its motors are powerful, but if
we have a heavy-weight robot that needs some time to
accelerate, or less powerful actuators, a proper control
will only be achieved if, as we propose, the full robot
dynamics is taken into account. Moreover, since kinematic
models only involve position and velocity coordinates,



Free displacements

Motor torques

Ground reactions

Resultant ground reaction

Fig. 1. Top: A mecanum wheel and its application to
a mobile manipulation platform (picture courtesy of
Kuka AG). Bottom: Possible directions for the motor
torques, ground reactions, and free displacements in a
wheel when seen from the ground. In a forward move
due to the green torques, the four ground reactions in
red have opposing lateral components that make the
motion inefficient in terms of energy consumption.

and not motor torques or voltages, such models do not
allow energy minimisation during the control loop. Also,
while in many robots a geometric path is initially planned
and later tracked using some control law (Liu et al.,
2008; Kuenemund et al., 2017), this approach may be
unsuitable if obstacles arise or move unexpectedly, making
the planned path invalid at some point. To minimise
these situations, we design a model predictive controller
that adds flexibility to the system. If sudden changes
occur in the environment, or if the robot model has small
inaccuracies, or its state suffers a perturbation, the control

system will mitigate these issues by recomputing a new
action plan to bring the robot to the goal.

The rest of the paper is organised as follows. Section 2
is devoted to obtain the dynamic model of the robot
taking into account the nonholonomic constraints existing
between the turning speeds of the wheels. The electrome-
chanical behaviour of the motors is also accounted for so
that the control signals are given by motor voltages instead
of torques, as the latter are not directly controllable in our
case. Section 3 then develops a model predictive controller
based on this model, introduces the torque and workspace
constraints of the robot, and defines the terminal and
running cost functions. The performance of the controller
is illustrated in Section 4 under various situations includ-
ing fixed or moving obstacles to be avoided. The paper
conclusions and several points for further attention are
finally given in Section 5.

2. DYNAMIC MODEL

The dynamic model of a mecanum-wheeled robot was
developed by Agulló et al. (1989) using the principle of
virtual work. However, Agulló et al. (1989) employ velocity
coordinates that are associated with pseudo-coordinates,
so their model requires additional manipulations to leave
it in a form suitable for control design. To directly obtain
a model in the pose coordinates of the chassis, and their
time derivatives, we here apply Lagrange’s equation with
multipliers, which results in less involved derivations. Also
in contrast to (Agulló et al., 1989), and to related works
like (Wampfler et al., 1989), we extend the model to
account for the electrodynamic effects of the motors,
including the dry and viscous friction in their axes. In
what follows, we shall assume that (1) the robot moves on
flat terrain; (2) its wheel rollers have negligible rotational
inertia; and (3) the rollers establish non-slipping contacts
with the ground.

2.1 Kinematic constraints

We consider the symmetric robot geometry shown in
Fig. 2. The vehicle pose is given by the (x, y) coordinates
of the vehicle’s centre of mass G and the orientation
angle ψ of its chassis, both relative to an absolute frame
{O,X, Y, Z} (not drawn for simplicity). We number the
wheels from 1 to 4 and let ϕk denote the rotation angle
of the k-th wheel. We also define the chassis configuration
by qr = [x, y, ψ]T and the wheels configuration by qw =
[ϕ1, . . . , ϕ4]T. The robot configuration is then given by
q = [qTr , q

T
w]T. Since the rollers do not slip, however, the

values of qr and qw are not independent. They are coupled
by the differential constraint

q̇w = RRT
ψq̇r, (1)

where

R =
1

r

1 −1 −(L+ l)
1 1 L+ l
1 1 −(L+ l)
1 −1 L+ l

 ,
and Rψ is the 3 × 3 matrix that encodes a rotation of
angle ψ about the Z axis. Equation (1) can be obtained
by noting that the velocity of the centre point Ci of each
wheel can be computed in terms of q̇r, if Ci is seen as



ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

45◦

45◦

−45◦

−45◦

l

l

L

L

xB

yB

ψG

Fig. 2. Geometry of a mecanum-wheeled robot.

a chassis point, or in terms of q̇w, if it is seen as a wheel
point, and equating the resulting expressions (Agulló et al.,
1987).

2.2 Lagrange’s equation with multipliers

Note that equation (1) can be written as

C q̇ = 0. (2)

where C = [−RRT
ψ I4] and I4 is the 4×4 identity matrix.

Equation (2) constitutes a nonholonomic constraint on
the configuration variables, as it cannot be integrated to
depend solely on q. On systems subject to such kind of
constraints, the dynamic model can be formulated by using
Lagrange’s equation with multipliers, which has the form

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂U

∂q
+ CTλ = F . (3)

In this equation, T = T (q, q̇) and U = U(q) provide
the kinetic and potential energies of the system, F is
the generalised force of actuation, and λ is a vector of
Lagrange multipliers. It is easy to see that, for a mecanum-
wheeled robot,

T (q, q̇) =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
Izψ̇

2 +

4∑
k=1

1

2
Ikϕ̇

2
k, (4)

where m is the total mass of the system, Iz is the moment
of inertia of the vehicle around the Z-axis at G assuming
each wheel has its mass concentrated at its centre point Ci,
and Ik is the moment of inertia of the k-th wheel around
its spin axis. Equation (4) can be compactly written as

T (q, q̇) =
1

2
q̇T M q̇ (5)

where

M =
[
Mr

Mw

]
, Mr =

[
m

m

Iz

]
, Mw =

I1 I2
I3

I4

 .
Note that, since the robot moves on flat terrain, the term
∂U/∂q is zero in equation (3). Moreover, for the chosen q
coordinates we have

F =

[
0
τ

]
, (6)

where 0 is a column vector of 3 zeros, τ = [τ1, . . . , τ4]T,
and τk is the torque exerted by the k-th motor on the
vehicle chassis.

By evaluating the partial derivatives in equation (3) we
obtain

M q̈ + CTλ = F . (7)

For a given τ , equation (7) is a system of 7 equations in 11
unknowns (the 7 + 4 components of q̈ and λ). To be able
to solve for q̈ and λ, therefore, we have to complement
equation (7) with the time derivative of equation (2),

Ċ q̇ + C q̈ = 0. (8)

By using equations (7) and (8) simultaneously it would
now be possible to write q̈ as a function of τ , which
would result in a model of the form ẋ = f(x, τ ), with
x = [qT, q̇T]T. We could now design our controller using
such a model, but the optimisation problem to be solved in
Section 3 would be of considerable size, as x would involve
14 state variables. On the other hand, since we only wish to
control the positions and velocities of the vehicle chassis,
a model involving only qr and q̇r will be sufficient to our
needs. Such a model can be derived as follows.

By employing the block definitions of M, C, and F , it can
be checked that equations (7) and (8) can be expanded to

Mrq̈r −RψR
Tλ = 0 (9)

Mwq̈w + λ = τ (10)

and
−RṘT

ψq̇r −RRT
ψq̈r + q̈w = 0 (11)

respectively. If we then isolate q̈w from equation (11), and
substitute the result into equation (10), we get

λ = τ −MwRṘ
T
ψq̇r −MwRR

T
ψq̈r. (12)

Inserting this value for λ into equation (9) and rearranging
the terms we arrive at

H q̈r + K q̇r = RψR
Tτ , (13)

where

H = Mr +RψR
TMwRR

T
ψ, (14)

K = RψR
TMwRṘ

T
ψ, (15)

or, using the vehicle parameters,

H =

m+ 4 Iw
r2 0 0

0 m+ 4 Iw
r2 0

0 0 Iz + 4 Iw (L+l)2

r2

 , (16)

K =

 0 4 Iw ψ̇
r2 0

− 4 Iw ψ̇
r2 0 0
0 0 0

 . (17)

Using the trivial equation q̇r = q̇r in conjunction with
equation (13) we now can write[

q̇r
q̈r

]
=

[
q̇r

H−1(RψR
Tτ −Kq̇r)

]
. (18)

Finally, if we redefine the state variable as x = [qTr , q̇
T
r ]T

and let f(x, τ ) denote the right-hand side of equation (18),
we obtain

ẋ = f(x, τ ). (19)

which gives the model in the first-order form typically
assumed in control systems design.



2.3 Accounting for the motor dynamics

Suppose our robot is actuated by DC motors, which is
often the case in practice. If such motors admit reference
torque signals, and are powerful enough to accurately
follow such signals, then the model in equation (19) may be
sufficient to design a proper controller. Here, however, we
shall assume that the motors are less potent, or that they
only admit voltages as inputs, so we will need to transform
the model into one of the form

ẋ = f(x,u), (20)

where u = [v1, . . . , v4]T, being vk the voltage input to the
k-th motor. A clear advantage of this model over a purely
kinematic one is that, since equation (20) relates motor
voltages to state rates, it allows an easy formulation of a
cost term penalising energy consumption. This point will
be exploited in Section 3.2 below.

To obtain equation (20) from equation (19), it suffices to
show how each torque τk can be written as a function of
vk and ϕ̇k. This can be achieved by first writing vk as a
voltage drop along the motor armature; i.e.,

vk = R ik + L
dik
dt

+K N ϕ̇k, (21)

where R, ik, and L are the resistance, current, and induc-
tance of the armature circuit, K is the torque constant of
the motor, and N is the gearbox ratio. On the other hand,
the net motor torque at the output shaft of the gearbox is
given by

τk = ηNK ik − τ frick − τ inertk , (22)

where η ∈ [0, 1] is the gearbox efficiency factor (which
models the fact that the gearbox amplifies the motor
torque by a bit less than N), and τ frick and τ inertk are
the friction and inertia torques of the motor reduced to
its output shaft. Since both L and the inertia moment
of the motor are often small, the terms L dik

dt and τ inertk
can usually be neglected in the last two equations. If we
then isolate ik from equation (21) and substitute it into
equation (22), we see that

τk =
ηNK

R
vk −

ηN2K2

R
ϕ̇k − τ frick . (23)

All parameters in equation (23) can be obtained from
the datasheets of the motor in principle. However, τ frick
is a function of ϕ̇k that, very often, has to be identified
experimentally. Following common practice (see Kuene-
mund et al. (2016) for example), we shall assume that this
function takes the form

τ frick = a ϕ̇k + b sign (ϕ̇k) , (24)

where the first and second terms model the viscous and
Coulomb friction torques at the motor, and a and b are
unknown constants a priori. To find a and b, one can
apply a certain voltage vk to the motor and wait for
its rotor to reach a constant velocity ϕ̇k, which can be
measured using the motor encoder. As ϕ̇k is constant,
there is no acceleration, and thus τk = 0 in equation (22).
We can then use equation (22) to obtain τ frick for the
known values vk and ϕ̇k. Repeating the experiment for
multiple values of vk, we can draw an empiric plot of τ frick
versus ϕ̇k and infer a and b using nonlinear regression. By
substituting equation (24) into equation (23) we finally
obtain τk as a function of vk and ϕ̇k, and hence the model
in equation (20).

3. CONTROLLER DESIGN

Suppose now that, at a given iteration of its control loop,
our robot is at a current state xc, and we wish to find
the action uc that brings it as close as possible to a goal
state xg. A model predictive controller finds uc by solving
a discrete-time optimal control problem (Maciejowski,
2002). To this end, the model in equation (20) is discretised
into a state transition equation of the form xi+1 =
f(xi,ui) using a fixed time increment ∆t. The trajectory
to be planned is also discretised into n states x1, . . . ,xn, so
the future planned horizon is of n ∆t seconds. The optimal
control problem can be posed as follows:

Find the states x1, . . . ,xn, and corresponding
actions u1, . . . ,un, that minimise

J = T (xn,xg) +

n∑
i=1

Ri(xi,ui) (25)

subject to the constraints

x1 = xc, (26)

xi+1 = f(xi,ui), (27)

I(xi,ui) ≥ 0. (28)

In this problem, T (xn,xg) is a terminal cost used to
penalise the mismatch between xn and xg, Ri(xi,ui) is
a running cost that, when added for i = 1 to n, accounts
for the control effort employed along the trajectory, and
I(xi,ui) ≥ 0 is a system of inequality constraints charac-
terising the set of admissible states and actions for the
robot.

Note that, while n actions u1, . . . ,un are computed, only
the first one is fed to the system, so uc = u1 (Maciejowski,
2002). The whole problem is then solved again at the
next iteration of the control loop. In doing so, the control
system can be made very robust, as it is easy to account for
eventual changes in the model parameters, or in the state
or action constraints, and update them into equations (27)
and (28). We next explain how we have formulated equa-
tions (25)-(28) in our case.

3.1 Constraints formulation

To discretise equation (20) into equation (27), we have
applied the explicit Runge-Kutta method of 4th order.
This method provides good integration accuracy while
still making f(xi,ui) sufficiently simple to evaluate. The
inequalities in equation (28) are in turn defined by the
torque constraints and workspace limits of the robot, and
by collision avoidance constraints. The torque constraints
can be formulated as direct bounds of the form vmink ≤
vk ≤ vmaxk , where vmink and vmaxk are the minimum
and maximum voltages allowed for the kth motor. For
the workspace constraints, we assume that our robot
has to stay within a rectangular region W defined by
bottom-left and upper-right corner points (xl,l, yl,l) and
(xu,r, yu,r) in the absolute coordinate frame. We then
define a rectangular bounding box B for the robot and
force its four vertices to stay withinW. Thus, if (w, h) are
the coordinates of one such vertex in the body-fixed frame
{G,XB , YB} of Fig. 2, we add the following equations to
equation (28):



xl,l ≤ x+ w cosψ − h sinψ ≤ xu,r (29)

yl,l ≤ y + w cosψ + h sinψ ≤ yu,r (30)

Precise collision constraints are not easy to enforce. To
keep the formulation simple, we assume that each one of
the obstacles is enclosed within a bounding ellipse and then
force each of the contour segments of B to not intersect
any such ellipse using the inequalities in (Potdar, 2018,
Appendix C).

3.2 Terminal and running cost functions

Since the main goal of the system is to move the robot
to a certain goal position (xg, yg) and orientation ψg, the
terminal cost function T (xn,xg) is simply defined with the
weighted squared distance

Wpos(xg−xn)2 +Wpos(yg−yn)2 +Wang(ψg−ψn)2, (31)

whose weights Wpos and Wang are tuned to account for
the mixed positional and angular coordinates intervening.
The distance is squared in order to ease its automatic
differentiation by the solver employed (Section 3.3).

To select energy-efficient trajectories and minimise ground
opposing forces as much as possible (recall Fig. 1), our
running cost Ri(xi,ui) quantifies the energy consumed
by the motors. The energy consumed by the k-th motor
during a time step ∆t is Pk∆t, where Pk is the motor
power during such step. Clearly Pk = vk ik but since ik
can be written in terms of vk using equation (21), we have

Pk = vk ik = vk
vk −NKϕ̇k

R
, (32)

which allows us to easily formulate Ri(xi,ui) in terms of
the state and action variables employed.

3.3 Numerical optimisation method

Notice that equations (25)-(28) give rise to a nonlinear
nonconvex optimisation problem that, due to its general
structure, is rather difficult to solve. In practice, thus, the
controller is implemented by only finding a locally-optimal
solution to the problem. The most popular methods to
find such a solution belong to the so-called Newton-type
family, which can be subdivided into sequential quadratic
programming (SQP) and interior point (IP) methods.
The former consist in resolving a sequence of quadratic
programming problems obtained from quadratic and linear
approximations of J and equations (27)-(28) respectively.
While SQP methods are very popular, they are also
computationally intensive. This implies that, to obtain
uc in the shortest possible time, only a few iterations
of an SQP method are often executed, which leads to
suboptimal operation of the system. IP methods, on the
other hand, compare favourably with SQP ones, allowing
the computation of a locally-optimal action plan in short
times. In particular, we have used the recent IP method by
Zanelli et al. (2017), which turns to be faster than other
state of the art approaches.

4. TEST CASES

To test the performance of the controller, we implemented
a robot simulator using the geometric and dynamical pa-
rameters of a Mecanum Wheel Vectoring Robot IG42 built

Fig. 3. Graphical user interface of the simulator

by SuperDroid Robots Inc., using the motor specifications
provided by the supplier and the friction parameters iden-
tified on a particular robot [see Moreno-Caireta (2019)
for details]. A graphical user interface (Fig. 3) allows the
definition of moving obstacles in the simulated workspace,
as well as the initial and goal configurations of the robot
(shown in red and blue respectively). The weights of the
cost function and permitted obstacle clearance margins
can be easily set through the interface. The interface is
connected to the controller to display the current config-
uration of the robot (shown in grey) and the obstacles in
simulated time. In all test cases the planned trajectory is
discretised in intervals of ∆t = 0.1s, and the controller is
made to plan for n = 10 stages, i.e., the trajectory of the
robot is computed for one second ahead in the future. This
allows the solver to fulfil the time constraints required to
allow real-time execution.

We next examine the performance of the controller in three
illustrative situations. The results can be seen in detail
in the companion video https://youtu.be/jr-4Tv9pAtY.
In the video, and in the figures below, the set of robot
positions planned for the next n∆t seconds is represented
as a curvy line in magenta. It can be seen that this line is
modified at each stage as the robot moves along.

4.1 Free movement problem

In this test, the robot must go from a start to a goal con-
figuration with the same initial orientation, moving in an
obstacle-free environment. Fig. 4 shows the configuration
reached by the robot at three different times. It can be
observed (and it is clearly seen in the video) that the robot
starts moving fast towards the goal, but it slows down
when it is near the target position. This is due to the
definition of the cost function, which penalises, on the one
hand, the energy consumption and, on the other hand, the
square of the distance to the goal. This causes that, while
the distance is large, shortening it reduces the cost much
more than limiting the energy consumption. Conversely,
when the distance is short enough, its square becomes tiny
and reducing the energy cost is more advantageous. Since
our cost function does not involve the time used to reach
the goal, the controller minimises energy consumption
and takes two more seconds to drive the robot from the
configuration shown in the last snapshot of Fig. 4 to the
goal.



Interestingly, despite the orientation of the initial and
final configurations are the same, the robot changes its
orientation along the trajectory. This can be explained
as a way to reduce the energy consumption by trying
to minimise the strength of the opposing forces which
do not contribute to the robot movement but that in
most situations are generated by the wheels against the
ground. Clearly, when moving in a diagonal direction, two
of the wheels do not turn, they simply slide along their
free displacement direction (see Fig. 1) and no torque
needs to be applied to them. Torque must be applied
to the other two wheels and, since the reaction forces of
the ground are directed along the axes of the rollers in
contact with ground, all reaction forces are aligned with
the direction of the robot’s movement. Thus, in the case of
diagonal movement, all resulting forces are directed along
the advance direction, they fully contribute to the robot
propulsion and no opposing forces appear.

4.2 Narrow corridor problem

The second test shows the ability of the controller to
avoid obstacles. The robot is faced with a challenging

-4 -3 -2 -1 0 1 2 3 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4. Three snapshots of the motion that results in the
“free movement” problem, taken after 2, 3.5, and 7
seconds, respectively.

environment with four circular obstacles whose separation
is less than the longest side of the robot (Fig. 5). The
controller is able to find a path by adjusting the orientation
of the robot as necessary. Notice that the robot does not
keep advancing forwards for the whole trajectory: when
approaching the gap between the two central obstacles, it
turns clockwise to cross the opening by moving backwards
(2nd and 3rd snapshots).

4.3 Moving obstacle avoidance

The last test is to show the controller ability to modify
the trajectory on-line to account for unexpected changes.
It involves a dynamical environment consisting of four
obstacles that cross the robot path moving in opposite
directions. The robot is able to observe only the current
position of the obstacles, and assumes they will keep
moving with constant velocities as estimated from the last
two configurations observed. An action sequence planned
for one second ahead taking into account the current
positions and estimated velocities of the obstacles, may
lead to an unexpected collision if an obstacle suddenly
changes its velocity and irrupts in the robot trajectory in
the meantime. The controller deals with such eventualities
by executing only the first action of the planned sequence
and re-planning on-line the next one-second trajectory
taking into account the new situation.

The result is shown in the accompanying video. It can be
seen in https://youtu.be/jr-4Tv9pAtY how the initial
trajectory is deflected downwards to avoid the first obsta-
cle as it invades the robot planned path. The second ob-
stacle is similarly avoided: at first, the planned trajectory
tries to pass the obstacle by going up, but as the obstacle
invades the path, a different trajectory is planned that
drives the robot downwards. The third obstacle, however,
forces a more drastic change of the trajectory. While trying
to avoid the obstacle by going below it, the obstacle moves
further downwards and blocks the path completely. At this
point, the robot makes a turn and passes the obstacle by
moving above it. Finally, the fourth obstacle has already
gone out of the path when it is approached by the robot,
so the robot heads directly towards the goal.

5. CONCLUSIONS

In this paper we have shown that model predictive control
offers a powerful design methodology to obtain agile and
energy-efficient controllers for mecanum wheeled robots.
Due to its flexibility, this methodology can account for
the full nonlinear dynamics of the robot and important
additional constraints like actuator saturations, or collision
avoidance constraints in changing environments. While all
goal states in the paper have been static, note that the
controller could also be used to drive the vehicle towards
nonzero velocity states. The goal state could even be made
time-varying, allowing to synchronise the robot with a
specified goal trajectory. This would be useful, for exam-
ple, to transfer a load between two wheeled robots moving
in parallel along some path. The controller, moreover,
could be employed as a local steering method if embed-
ded into a higher-level motion planner. It would fit well
onto the schemes of, for example, probabilistic roadmaps
or rapidly-exploring random trees (LaValle, 2006). This



-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 [

m
]

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 [

m
]

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 [

m
]

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 [

m
]

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 [

m
]

Fig. 5. Five snapshots of the solution for the “narrow
corridor” problem.

application would be particularly interesting, as it would
endow the robot with the capacity to navigate complex
environments like labyrinthic workshops, or situations in-
volving bug traps. The implementation of such possibilities
and the experimental testing of the method in a real
robot are part the current efforts by the authors (Moreno-
Caireta, 2019).

REFERENCES

Adăscăliţei, F. and Doroftei, I. (2011). Practical appli-
cations for mobile robots based on mecanum wheels-
a systematic survey. The Romanian Review Precision
Mechanics, Optics and Mechatronics, 40, 21–29.

Agulló, J., Cardona, S., and Vivancos, J. (1987). Kine-
matics of vehicles with directional sliding wheels. Mech-
anism and Machine Theory, 22(4), 295–301.

Agulló, J., Cardona, S., and Vivancos, J. (1989). Dynamics
of vehicles with directionally sliding wheels. Mechanism
and Machine Theory, 24(1), 53–60.

Campion, G. and Chung, W. (2008). Wheeled robots.
Springer handbook of robotics, 391–410.

Indiveri, G. (2009). Swedish wheeled omnidirectional
mobile robots: Kinematics analysis and control. IEEE
Transactions on Robotics, 25(1), 164–171.

Kuenemund, F., Hess, D., and Roehrig, C. (2016). Energy
Efficient Kinodynamic Motion Planning for Holonomic
AGVs in Industrial Applications using State Lattices.
Proceedings of ISR 2016: 47st International Symposium
on Robotics, 2016, 1–8.

Kuenemund, F., Hess, D., and Roehrig, C. (2017). Mo-
tion controller design for a mecanum wheeled mo-
bile manipulator. 1st Annual IEEE Conference on
Control Technology and Applications, CCTA 2017,
2017-Janua(August), 444–449. doi:10.1109/CCTA.2017.
8062502.

LaValle, S.M. (2006). Planning algorithms. Cambridge
University Press.

Liu, Y., Zhu, J.J., Williams II, R.L., and Wu, J. (2008).
Omni-directional mobile robot controller based on tra-
jectory linearization. Robotics and Autonomous Sys-
tems, 56(5), 461–479.

Lynch, K.M. and Park, F.C. (2017). Modern Robotics: Me-
chanics, Planning, and Control. Cambridge University
Press.

Maciejowski, J.M. (2002). Predictive control with con-
straints. Pearson education.

Moreno-Caireta, I. (2019). Model Predictive Control for
a Mecanum-wheeled Robot in Dynamical Environments.
Master’s thesis, Universitat Politècnica de Catalunya.
https://cutt.ly/3nonSzy.

Potdar, N.D. (2018). Online Trajectory Planning and
Control of a MAV Payload System in Dynamic Envi-
ronments. Master’s thesis, TU Delft.

Wampfler, G., Salecker, M., and Wittenburg, J. (1989).
Kinematics, dynamics, and control of omnidirectional
vehicles with mecanum wheels. Mechanics Based Design
of Structures and Machines, 17(2), 165–177.

Zanelli, A., Domahidi, A., Jerez, J., and Morari, M. (2017).
FORCES NLP: an efficient implementation of interior-
point methods for multistage nonlinear nonconvex pro-
grams. International Journal of Control, 93(1), 13–29.


