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Abstract. With a non-intrusive load monitoring paradigm, this paper
poses the first steps to monitor the health of airport baggage handling
systems. This goal is reached by measuring the energy consumption of the
electrical cabinets that power a set of conveyor belt systems. Therefore,
using an energy disaggregation approach, each motor in the conveyor
system can be monitored. The proposed methodology consists of an al-
gorithm to detect power-on/off events and how those events can be clus-
tered by characterizing transient states, employing unsupervised cluster-
ing algorithms. Energy measurements were filtered to remove noise, and
the on-off events were detected and characterized. The power-on and -
off events were clustered, using k-means and Gaussian mixture model
(GMM), showing similar grouping behaviors with discrepancies for la-
beling samples at the frontier of the clusters. Since the GMM provides
more information for samples with ambiguity in overlapping clusters, its
results are presented and analyzed. From each cluster important insight
are extracted in terms of energy consumption.
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1 Introduction

The contribution of this work is a non-intrusive load monitoring (NILM) method-
ology of multiple conveyor belt systems, which will allow the detection and dis-
aggregation of each belt conveyors from a single source of electrical measure-
ment. This methodology focuses on detecting on-off events and clustering them,
with an unsupervised algorithm, to subsequently monitor them. In this way,
this methodology lays the foundation for implementing multiple conveyor condi-
tion monitoring at airport baggage handling systems (ABHSs) using electricity
consumption with the minimum number of sensors. Furthermore, the energy
desegregation of a line of conveyor belt systems can help to understand their
consumption and detect energy inefficiencies that can be mitigated, promoting
energy efficiency in ABHSs.
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2 Problem Statement

ABHSs are made up of many conveyor belt systems for transporting baggage,
which are segmented by areas, e.g., check-in area, merging area, security inspec-
tion site/screening area, sorting area, loading area [1]. Those areas have many
electrical cabinets to supply electricity to a set of conveyor systems, as well
as photoelectric sensors, programmable logic controllers (PLCs), and variable
frequency drives (VFDs). Therefore, the energy consumption of each electrical
cabinet is the superposition of the consumption of motors of each conveyor sys-
tem and an aggregate constant consumption of sensors and PLCs, i.e.,

pt(k) = po(k) + pn(k) +

nm∑
i=0

pm,i(k), (1)

being k ∈ Z≥0 the discrete-time index, pt(k) ∈ R the total power consumption of
electrical cabinet, po ∈ R the constant consumption (sensors, PLCs, others), nm
the number of motors connected, pm,i ∈ R the power consumption of i-th motors
and pn the noise in the energy consumption of the electricity supplier network.
The energy consumption of each motor (pm,i) has a dynamic behavior with
transient and stationary states. The transient state is characterized by having an
overshoot, settling time, damped oscillation, and slew rate. Note that the VFDs
are in the middle of the electrical cabinet and the motors. Their consumption
is divided into the motor consumption and the constant consumption of the
VFD electronics. Thereby, the VFD consumption is distributed respectively in
equation (1).

Following a NILM scheme, a three-phase smart meter was installed in an
electrical cabinet of Bilbao airport ABHS (Spain). The installed smart meter
acquires measurements at a sampling frequency of 8 kHz for one month. The
electrical cabinet supplies energy to 40 conveyor belt systems, whose motors have
different specifications, and their individual energy footprints are unknown. Ad-
ditionally, the PLC configuration handles multiple motors simultaneously, over-
lapping their power consumption in the transient state, challenging its energy
disaggregation and labeling process.

3 Proposed approach

As a first approach to analyze this power consumption and label motors in
a NILM scheme, an event-based methodology is proposed to detect switching
on or off of motors. With the on-off events detected, an unsupervised learning
process was carried out to cluster each event.

3.1 Power signal pre-processing

The first step in this methodology is to pre-process the power signal in order to
reduce signal noise. This preprocessing stage requires inspecting the spectrum of
the power signal. This inspection looks for those frequency bands that hold over
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Fig. 1: Moving slope evolution along a transient state of a signal [3].

time and do not depend on the activation/deactivation of the motors. Therefore,
those frequency bands must be filtered with a notch filter. Another strategy to
eliminate noise is to perform a median filter [2].

3.2 Event detection

The following event detection methodology was developed to detect transient
states and estimate when they start and stop. Assume constant power consump-
tion that can be described by a straight line as follows:

p(k) = α+ βk + η, (2)

being p the power consumption at time instant k, α the constant consumption
level, β the slope of the straight line that would be close to zero for constant con-
sumption, and η the additive white Gaussian noise. When any load is switched
on/off, those parameters change continuously until reaching a steady state, then
both α and β are set to new constant values. Furthermore, when those tran-
sient states start or stop, the signal undergoes a sudden change that is perceived
with high slope values, which are positive or negative when the signal increases
or decreases, respectively (see Figure 1). Thereby, with a sliding window with
length nw, a slope signal can be computed as βp(k) = β(tw(k),Pw(k)), where
tw(k) = [k − nw, . . . , k + nw] and Pw(k) = [p(k + nw), . . . , p(k − nw)] are time

and power windows with length nw, respectively. The slope function β̂ is com-
puted for n values as

β(x,y) =
∑n

i=0(xi−x̄)(yi−ȳ)∑n
i=0 (xi−x̄)2

, (3)

being x̄ = Mean(x) and ȳ = Mean(y) the means of vectors x and y, respectively.
The mean function for a x vector with n values is computed as Mean(x) =
1
n

∑n
i=0 xi. Performing an inspection of the slope signal βp(k), any time instant

k is collected in vector Ion, whilst βp(k) is a positive peak with a value greater
than φon ∈ R. Thus, Ion has the time instants with power-on event, according to
the threshold φon that defines the level of relevant activation events. Similarly,
a vector Ioff is computed for negative peaks less than φoff ∈ R.

With Ion and Ioff vectors, the next step is to determine the time instance
k when the transient states start and stop. For load activation events, each time
instant of Ion is evaluated following this procedure: The instance where the
transient state starts is determined by looking back at the first negative peak
in the βp(k) signal. To estimate where to stop the transient state, it is required
to calculate the angle signal θp(k) = θ(tw(k),Pw(k)) signal, where θ function is



4 Bermeo-Ayerbe et al.

define as θ(x,y) = arctan (β(x,y)). Therefore, the transient state stops when a
peak in θp(k) is lower than θon ∈ R, being θon the minimum peak of θp(k) to be
considered as a transient state. In this way, a power-on event vector is obtained
as

Eon =

k(1)
on,1 k

(1)
on,2 . . . k

(1)
on,ion

. . . k
(1)
on,non

k
(2)
on,1 k

(2)
on,2 . . . k

(2)
on,ion

. . . k
(2)
on,non


T

,

for ion ∈ {1, . . . , non}, being non the number of power-on events detected, while

k
(1)
on,ion

and k
(2)
on,ion

are the start and stop times of each transient state, respec-
tively.

For shutdown events, a new slope signal βVarp(k) = β(tw(k),Var(Pw(k)))

should to be computed, being Var(x) = 1
n

∑n
i=0 (xi − x̄)

2
the variance func-

tion of x vector. Thus, the start and stop k instants of the shutdown events
Ioff correspond to the positive and negative closed peak of the βVarp(k) signal,
respectively. Consequently, the power-off event vector is obtained as

Eoff =

k(1)
off,1 k

(1)
off,2 . . . k

(1)
off,ioff

. . . k
(1)
off,noff

k
(2)
off,1 k

(2)
off,2 . . . k

(2)
off,ioff

. . . k
(2)
off,noff


T

,

for ioff ∈ {1, . . . , noff}, where noff is the number of power-off events de-

tected, while k
(1)
off,ioff

and k
(2)
off,ioff

are the start and stop times of ioff -th event,
respectively.

3.3 Clustering analysis

Throughout the process of characterizing edge events, similar events can be
grouped, using clustering techniques. In this way, considering a tolerance error,
this process can indicate when a set of motors are turned on/off, using only
total energy consumption, which enables to implement a condition monitoring
approach. The methodology proposed is to extract characteristics of each event
and use an unsupervised clustering algorithm to group the different types of
events, either power-on or -off.

Features extraction
Combining the on and off events, a set of indicators is proposed to character-

ize each edge event. The characteristic extraction stage consists in analyzing the
transient state and the changes in the steady states of energy signals due to a
given event. For this analysis, four time instants were considered for each event:
kie,0, kie,1, kie,2 and kie,3, for ie ∈ {1, . . . , ne}, being ne the total number of
events. The time interval between kie,0 and kie,1 corresponds to the steady state
prior to the ie-th event, between times kie,1 and kie,2, the transient state occurs
of the ie-th event, and finally, the interval kie,2 to kie,3 belongs to the steady
state that occurs just after the ie-th event. Therefore, the following features have
been extracted for each event:
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(i) Maximum relative peak. This feature measures the maximum value of power
added during the ie-th event, i.e.,

f1,ie = max(P kie,1:kie,2
)−Mean(P kie,0:kie,1

), (4)

where the subscripts •k1:k2
indicate the portion of the signal considered as

a matrix in the time interval [k1, k2].
(ii) Minimum relative peak. This feature measures the minimum value of power

during the ie-th event relative to steady state prior the event,

f2,ie = min(P kie,1:kie,2)−Mean(P kie,0:kie,1). (5)

(iii) Settling time. Duration of the transient state,

f3,ie = kie,2 − kie,2. (6)

(iv) Delta mean active power. The mean added/subtracted to the total active
power signal due to the ie-th event,

f4,ie = Mean(P kie,2:kie,3
)−Mean(P kie,0:kie,1

). (7)

(v) Delta variance active power. The variance added/subtracted to active power
signal due to the ie-th event,

f5,ie = Var(P kie,2:kie,3)−Var(P kie,0:kie,1). (8)

(vi) Delta RMS filtered current. The added/subtracted distortion of the ie-th
event was characterized via the delta root mean square (RMS) of filtered
current (without fundamental components at 50Hz), i.e.,

f6,ie = Mean
(
RMS(If,kie,2:kie,3

)
)
−Mean

(
RMS(If,kie,0:kie,1

)
)
, (9)

being If ∈ R3 the filtered three-phase current and RMS equation defined as

RMS(x) =
√

1
n

∑n
i=1 x

2
i .

Unsupervized clustering analysis
With the matrix F on−off of features computed by event, F on−off is di-

vided into two matrices F on and F off . Thus, using an unsupervised clustering
algorithm, both power-on and -off events can be clustered, executing the clus-
tering algorithm for F on and F off individually. In this way, power-on events
can be grouped and labeled, allowing monitoring each group of events (similarly
for power-off events) and subsequently matching power-on events to power-off
events. For the purpose of this paper, two clustering algorithms were considered:
the k-means learning and the Gaussian Mixture Model (GMM). The k-means al-
gorithm is based on pairwise Euclidean distances between data points, whereas
GMM is a parametric probability density function represented as a weighted
sum of multi-dimensional Gaussian probability distributions that models the
probability distribution of data [4].
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Fig. 2: ON-OFF event detection.

(a) (b)

Fig. 3: Clustering analysis for power-on events: (a) MDS analysis of power-on
event clusters. (b) Dynamic behavior for each clustered event.

4 Results

The proposed methodology was validated with one and a half hours of electrical
measurement of an ABHS electrical cabinet at Bilbao airport (Spain). These
measurements have a sampling frequency of 8 kHz. After an analysis of the
frequency spectrum of the current and power signals, the main information is
concentrated in the band 0 to 500 Hz. Thereby, the measures were resampled
at 1 kHz to reduce the amount of samples. Furthermore, a sanity check was
performed on the signal to guarantee data quality. Pre-processing with filtering
techniques was carried out to reduce signal noise and increase data quality.

The edge event detection parameters established were: windows length nw
of 0.1s, activation threshold φon = 5, deactivation threshold φoff = 2, and min-
imum slope angle θon = 30◦. As Figure 2 shows, the ON-OFF switching events
were detected properly, detecting 655 and 1032 power on/off events, respectively.
The first column of Figure 2 displays an example of a power-on event with slope
signal β(k) and angle signal θ(k); the start and stop of the transient state are
marked according to the explained methodology. Similarly, the second column
shows a shutdown event with βVar(k) signal. Note that shutdown events have a
positive and negative peaks in the βVar(k) signal when the events start and stop,
respectively. Whereas with β(k) and θ(k) signals for power-on events, start and
stop instances are unclear as power-on events have more fluctuations and more
cases need to be considered, e.g., when turned on several engines at the same
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(a) (b)

Fig. 4: Clustering analysis for shutdown events: (a) MDS analysis of shutdown
event clusters. (b) Dynamic behavior for each clustered event.

time. Furthermore, although the power signals were filtered, the biggest chal-
lenge in event detecting in this dataset has been discerning between high noise
variations and power-on/off events. This is due to the noise from each conveyor
system overlapped, resulting in a total noise comparable to a motor consump-
tion. When the noise variations were comparable to switch on-off events and
detected as event, those events were filtered comparing the power signal offset
before and after the event, i.e., if the variation of the power signal offset is less
than the minimum consumption of the conveyor belt systems (70W), the event
is removed.

For the unsupervised analysis, the clustering algorithms, the k-means learn-
ing and the Gaussian Mixture Model (GMM), were executed. The clusters result-
ing from both algorithms were compared to map the closest ones, which resulted
in around 78% of the events being labeled in the same group for both on and
off events. Since the rest of the 22% of the events belong to boundaries between
clusters, the GMM approach is able to provide probabilistic information about
each sample related to each cluster, which represents an advantage for labeling
samples with ambiguity in overlapping clusters and for measuring the stability
of data. Therefore, Figure 3 and 4 show the clustering results using a GMM
for power-on/off events, respectively. The number of clusters was determined by
computing several GMMs with different number of cluster and measuring their
Bayesian information criterion (BIC), i.e., ten GMMs were calculated for two
components, for three and so on, up to 20 components. The median of BIC was
calculated for models with the same cluster number, for which the number of
components that have a minimum median of BIC is selected. This procedure
was performed for power-on and -off events, resulting in eight components for
both cases.

The Multidimensional scaling (MDS) algorithm was used to visualize the in-
stances of the clustered event in a two-dimensional space [5]. Figure 3a shows
the MDS for power-on events, specifying the number of events that belong to
each group. Moreover, Figure 3b presents an example of the dynamic behavior
of power-on events that were characterized and grouped in each cluster. Note
that each type of event has different dynamics and some patterns considering
multiple motor activations, which are repeated several times along the dataset,
indicating that the programmable logic controller (PLC) surely has the rule to
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activate those engines when baggage is detected near those conveyor belt sys-
tems. Similarly, Figure 4 shows the MDS visualization, dynamic behaviors, and
active power labeling for shutdown events, respectively. The MDS visualization
of shutdown events has more overlap between clusters than power-on events,
this may be because many shutdown events share more similarities but belong
to different clusters or due to the view of MDS visualization. An interesting
case is the cluster with only one event, giving the same result with the k-means
algorithm. This case was the shutdown event that took the longest setting time.

5 Conclusions

ON-OFF event detection is proposed with a nonintrusive load monitoring scheme
in airport baggage handling systems, which detects when a set of loads has been
power-on or -off and captures when the transient state event started and stopped.
Moreover, it is proposed how to characterize these ON-OFF events and group
them. In this way, those ON-OFF events can be characterized and clustered to
identify which loads are on or off, allowing a condition monitoring approach to
be implemented for those loads. Thus, in the case of a failure, the first sign
of failure can be detected and alerted, improving the maintenance process and
reducing costs related to unplanned shutdowns in the airport system.

This methodology was validated with measurements from an electrical cab-
inet that feeds multiple conveyor belt systems at Bilbao airport. The energy
signals were preprocessed to eliminate noise. With these filtered energy signals,
the detection of ON-OFF events was carried out and for each detected event, and
a set of characteristics was calculated. Subsequently, two clustering algorithms,
k-means and Gaussian mixture model (GMM), were tested. The clustering pro-
cess of GMM manages to differentiate events that share similar features but
belong to different clusters, showing an advantage over the k-means algorithm.
On the other hand, it is crucial to highlight the importance of ON-OFF detec-
tions and the sensitivity of the clustering procedure when the transient states
start and stop are not set correctly, as this can be affected the feature extrac-
tion, consequently perform a clustering incorrectly. Finally, with this proposed
methodology, future work will focus on matching the on and off events to esti-
mate the activation/deactivation signal for each load.
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