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1 University of A Coruña, CTC, CITIC,
Department of Industrial Engineering, Ferrol, A Coruña, Spain

{esteban.jove, jlcalvo}@udc.es
2 LIFTEC, CSIC-Univ. of Zaragoza
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Abstract. The use of Proton-Exchange Membranes Fuel Cells is pre-
sented as a key alternative to face the increasing and concerning prob-
lems related to global warming. The international expansion of green
policies, has resulted in the need of ensuring their quality and reliabil-
ity performance. Although fuel cells can get to play a significant role,
this technology is still under development, paying special attention to
the problems related to gas starvation and degradation. In this context,
the present work deals with the virtual sensor implementation of one
of the voltage cells present in a stack, whose operation is subjected to
several degradation cycles. The proposal predicts indirectly the voltage
of one cell from the current state of the rest of the cells by means of an
intelligent model.
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1 Introduction

During last century, the global society has faced a significant development in
terms of technology, industry and life standard, among others. However, this has
resulted in an increase of greenhouse gasses emission derived by fossil fuels use.
Then, modern societies started to focus their efforts on palliating this critical
problem, and, consequently, most governments promoted green policies [6, 18]
and, nowadays, there is a legislation whose restriction level tend to be higher
[28, 4, 17].
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Given this situation, different alternatives are presented to contribute for
preserving the environment by slowing down the climate change [10, 7, 8]. A
common solution consists of the use of renewable energy sources such as solar,
wind, hydraulic or even ocean energy [20, 11, 7]. On the other hand, an interesting
research line is focused on Proton-Exchange Membranes Fuel Cells (PEMFC)
[21, 19]. This technology can be efficiently used in micro-combined heat and
power units (CHP) and electric vehicles [3, 27].

Although the PEMFC can get to play a significant role, its technology is still
under development [3, 2]. One of the main research lines is related to the develop-
ment of devices which works over 100 °C, also denoted as as High-Temperature
PEM fuel cells (HT-PEMFC). The High-Temperature Proton-Exchange Mem-
brane Power Cell commonly works with a phosphoric acid doped polybenzim-
idazole (PBI) membrane [30], that raises the allowed temperature to a range
between 120 °C and 180 °C. This features give significant advantages compared
to the low-temperature PEMFCs [30, 5]. First, it is important to emphasise the
CO tolerance and the simplification of water management systems [26]. Fur-
thermore, it is demonstrated that the electrochemical kinetics of cathode and
anode reactions are enhanced [26]. Finally, these high-temperature devices are
simpler and more reliable since sophisticated humidification subsystems can be
dispensable. Hence, cooling systems are highly simplified due to the increase in
temperature gradient between fuel cell stack and coolant [26].

One of the common problems of power cells is the degradation induced by
gas starvation, considerably decreasing the durability of the electrodes [9]. In
this context, having an accurate model of a power cell could present a useful
tool to determine normal operation of the device. This work deals with the
implementation of a virtual sensor to determine the voltage cell, which offers
the possibility of estimating the current state of the system. To achieve this
goal, an empirical dataset registered from different operating conditions and
degradation levels, ensuring a good generalisation [1].

The present document is structured as follows. After this introduction, a brief
description of the case of study is presented in next section. Then, the model
approach is detailed, followed by the Experiments and Results section. Finally,
the reached conclusions are exposed in the last section.

2 Case study

In spite of the significant breakthroughs made in PEMFC technology, some key
aspects regarding performance durability and degradation are still under de-
velopment [22]. In this sense, several research works are focused on improving
lifetime of HT-PEMFCs under variable load conditions [22]. This work deals with
a laboratory equipment to test the battery degradation due to gas starvation,
whose main features are described in this section.
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2.1 Physical system

The starvation experiments have been developed in a stack consisting of five
different cells whose gas supply is independent. It has six JP-945 graphite bipolar
plates of 280 mm x 195 mm x 5 mm whose temperature can reach up to 200
°C. Furthermore, there are two more plates, made of stainless steal, in charge
of connecting the reactant gasses lines (H2 and O2). The flowfield geometry of
both cathode and anode sides consisted of straight parallel channels with a land-
to-channel ratio of 1, as recommended by the manufacturer. The cathode side
flowfield geometry consisted of 87 channels with a width of 1 mm and a depth of
2 mm, and a total length of 120 mm. The anode side was formed by 47 channels
with a width of 1 mm, a depth of 1.5 mm, and a total length of 210 mm. Figure
1 shows the 3D design of the fuel cell and the physical system.

stoichiometry above 1.5 should be ensured in order to avoid gas star-
vation, and a minimum current of 100mA cm−2 (16.35 A) must be
drawn. The activation procedure enables the MEA to reach a higher
performance. During the break-in stage, stack temperature was kept at
160 °C, and a constant current of 32.7 A (0.2 A cm−2) was drawn. The
gas stoichiometry was set to 1.7 and 3.0 for hydrogen and oxygen, re-
spectively. To speed up the performance increase, several polarization
curves were run up to a maximum current density of 1 A cm−2 during
this period. Due to some limitations in the experimental facility, the
total time spent for the stack conditioning was 22.5 h distributed in
three days. To shut the stack down, the current drawn was limited to
16.35 A (0.1 A cm−2), the flowrate of the reactant gases was fitted to
this current and the resistance of the external heat sources were turned
off. When the stack temperature decreased to 120 °C, the current de-
manded for the dynamic electric load was set to cero and the solenoid
valves of the gas supply lines were closed, letting the stack to cool down
to room temperature.

2.4. Starvation tests

To perform the induced degradation tests, the stack was initially
heated up to 140 °C. Reactant gases flowrates were established to
0.7 Nl min−1 for H2 and 0.4 Nl min−1 for O2, respectively and a current
of 16.35 A was demanded during 10min, in order to ensure a constant
delivered voltage and a constant working stack temperature of 160 °C.
Subsequently, the current was increased stepwise to reach 32.7 A, ad-
justing the reactant gases flowrates to the corresponding values for a
stoichiometry of 1.15 for hydrogen and 1.25 for oxygen. It is important
to note that the performance of the stack was analyzed under steady-

state conditions just before and after the induced starvation tests. In
these tests, the demanded current was kept constant at 32.7 A, and an
average working temperature of 160 °C was also established.

2.4.1. Moderate starvation of the reactant gases induced in the central cell
To induce the “moderate starvation” of reactant gases to cell 3

(central), the flowrate was reduced 20% of that corresponding to stoi-
chiometric flow conditions (λH2= λO2= 1) for the demanded current
of 32.7 A. Thus, the flow of hydrogen to cell 3 was set to 0.2 Nl min−1

(0.25 Nl min−1 for the rest of cells) and 0.10 Nl min−1 for oxygen
(0.13 Nl min−1 for the rest of cells). The cell was maintained in this
operating conditions for 30min. This test is identified as T20/30, in-
dicating the reduction of reactant gases (20%) and the time of the test
(30min).

2.4.2. Severe starvation of the reactant gases induced in the central cell
For the “severe starvation” tests, the flowrate of reactant gases was

reduced from 100% to 50% in 10% steps. The cell operated for 15min
in each one of these steps. In the final condition (50% of the flow) the
cell was maintained in operation for 30min, and after this time the
flowrate of both gases was set again to 100%. This test is identified as
T50/30. It is also important to note that this test was performed the day
after the “moderate starvation” one. In a different day, another severe
starvation test was performed, operating the central cell with the same
gas starvation (50%), but maintaining this condition for 2 h. This test is
identified as T50/120.

Fig. 1. SolidEDGE image of the stack design (a), and a photo of the stack assembled ready for tests (b).

Fig. 2. Experimental setup of the 5-cell stack in the dual test bench.

C. Alegre, et al. Applied Energy 250 (2019) 1176–1189
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Fig. 1. Fuel cell 3D desing (a) and physical system (b)

The stack was assembled inside a greenhouse in the laboratory to guaran-
tee adequate humidity conditions. To decrease the relative humidity inside the
greenhouse, dry compressed air was injected using two pipes connected to the
main air pressure line. A complete description and illustrative photos of this
facility can be consulted in [3].

2.2 Dataset description

To check the HT-PEMFC degradation performance and durability, the stack was
subject to a series of starvation cycles. These tests followed the next structure:

– Day 1

1. The stack is warmed up to 160 °C.
2. A constant current of 32.7 A is demanded for 3 hours.
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3. The flow rate of one cell is reduced a 20 % of that corresponding to
stoichiometric flow conditions for 30 minutes.

– Day 2

1. The stack is warmed up to 160 °C.

2. A constant current of 32.7 A is demanded for 3 hours.

3. The flow rate of one cell is reduced a 50 % of that corresponding to
stoichiometric flow conditions for 30 minutes.

– Day 3

1. The stack is warmed up to 160 °C.

2. A constant current of 32.7 A is demanded for 3 hours.

3. The flow rate of one cell is reduced a 50 % of that corresponding to
stoichiometric flow conditions for 120 minutes.

– Day 4

1. The stack is warmed up to 160 °C.

2. A constant current of 32.7 A is demanded for 1 hour.

During the operation, the voltage measured at each of the 5 fuel cells is
registered with a sample rate of five minutes. The data available are the following:

– Operation at constant current from days 1, 2, 3 and 4: 130 samples.

– Degradation stage of day 1: 60 samples.

– Degradation stage of day 2: 40 samples.

– Degradation stage of day 3: 55 samples.

3 Model approach

As the main goal of this research is the implementation of a virtual sensor capable
of estimating the voltage value of one cell from the values of the other cells, the
topology of the proposal and the technique applied are described in this section.

3.1 Model Topology

The general topology of the proposed model is shown in Figure 2. This consists in
the prediction of voltage in cell 1 from the voltage of cells 2, 4 and 5. Furthermore,
to incorporate the system dynamic to the model, the possibility of adding the
previous states of the measurements is considered.

In this case, the voltage of cell 3 is not considered because it is the one
subjected to a gas starvation during the test. The idea is to check if it is possible
to model the behaviour of one cell from data measured on other cells.

DRAFT COPY



Title Suppressed Due to Excessive Length 5

Model Voltage cell1(t)

Voltage cell2(t)

Voltage cell4(t)

Voltage cell5(t)

Voltage cell2(t-n)

Voltage cell4(t-n)

Voltage cell5(t-n)

Fig. 2. Model topology

3.2 Multilayer Perceptron

The modelling process is carried out using the Multilayer Perceptron (MLP)
technique, which is one of the most used supervised learning ANN due to its
simple structure and its robustness. An artificial neural network (ANN) is a sys-
tem designed to emulate the brain operation in a specific functions of interest
or tasks. In this century, ANN have been applied successfully to solve real and
challenging problems [29, 16]. The MLP presents the structure shown in Figure
3, which presents one input layer, one output layer and one or more hidden lay-
ers. These layers are made of neurons and weighted connections links different
layer neurons [12, 23, 13, 15]. The values of the weights are adjusted following
an error reduction criteria, being the error the difference between real and esti-
mated output. In the most common configuration, the same activation function
is assigned to all neurons from a layer. The activation function can be linear,
tan-sigmoid or log-sigmoid.

The employed learning algorithm was Gradient descent, and the algorithm
for model training was Levenberg-Marquardt. Also, to measure the network per-
formance, the MAE (Mean Absolute Error) method was applied.

4 Experiments and Results

To achieve the best model performance, a wide range of configurations is checked.
The MLP parameters were swept according the following configurations:

– Three MLP topologies are tested: the current state of the inputs, the current
and one previous state of the inputs and the current and two previous states
of the inputs.
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Fig. 3. MLP structure

– The activation function of the hidden layer was set to linear, tan-sigmoid or
log-sigmoid.

– The number of neurons in the hidden layer was tested from 1 to 50.

From the combination of all these configurations, a total amount of 450 mod-
els have been implemented and validated. To validate the proposal, a k-fold cross
validation with k = 5 is implemented. The process followed by this method is
depicted in Figure 4.

Test Train Train

Train Test Train

Train Train Test

Dataset

Fold 1

Fold 2

Fold 3

Mean 
MAE

MAE 1

MAE 2

MAE 3

Fig. 4. Implementation of k-fold with k=3

The results obtained for each MLP topology and their corresponding config-
uration are summarised in Table 1.
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Input states Activation function Hidden layer size MAE (mV)

Current log-sigmoid 22 1.1029

Current and previous tan-sigmoid 16 1.3690

Current and two previous log-sigmoid 24 1.2258
Table 1. Best results for each tolopogy

It is important to remark that the best configuration achieves an error of
1.1029 mV in the prediction, which is a significantly low value. This result is
reached with a log-sigmoid activation function in the hidden layer and 22 neurons
and taking into consideration only the current state of the rest of cells.

5 Conclusions and future works

The present work dealt with the voltage prediction of a cell located in a HT-
PEMFC that has been subjected to different gas degradation process. The model
proposed gives successful results, especially when the model takes into consider-
ation the current state and previous state of the inputs.

The proposal is presented is a useful tool to estimate the the real state of
the fuel cell as a previous step to detect anomalous situations. The difference
between the real and predicted values is presented as a good indicator about the
correct performance of the fuel cell. Furthermore, the model is trained taking
into consideration different degradation cycles, so it represents a wide range of
cell operation.

As future works, in spite of using data from steady state, the use of data from
the degradation cycles could be considered to determine the voltage value at the
degraded cell. This model, combined with expert system knowledge [24, 25] and
imputation techniques [14], could help to determine the degradation level of the
fuel cell.
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J.L.: A fault detection system based on unsupervised techniques for industrial
control loops. Expert Systems 36(4), e12395 (2019)

DRAFT COPY



Title Suppressed Due to Excessive Length 9

16. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle,
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